首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycine immunoreactive neurons in the medulla oblongata in cats   总被引:1,自引:0,他引:1  
Using a highly specific antiserum to Glycine and a very sensitive immunohistochemical technique with streptavidin-HRP, we visualized for the first time a considerable number of glycine immunoreactive cell bodies and fibers in the cat medulla oblongata. These results suggest that glycine may play an essential role in nearly all the physiological functions involving the medulla oblongata, including the muscular atonia occurring during paradoxical sleep.  相似文献   

2.
M Segal  V Pickel  F Bloom 《Life sciences》1973,13(7):817-821
The projections of the nucleus locus coeruleus (LC) were reconstructed from serial section autoradiographic analysis. Microinjections of H3 proline into LC permitted labelling of the terminal arborizations through the somatofugal transport of labelled macromolecules. The pathways could be traced in toto from their origin in the LC to their terminal regions. These included the limbic cortex, hippocampus, neocortex, amygdala, cerebellar cortex, and various brainstem nuclei.  相似文献   

3.
Topography of catecholamine-containing (CA) neurons of the cat locus coeruleus was studied using a combination of the catecholamine histofluorescence method and rapid embedding of the brain tissue into the paraffin wax. The distribution of CA neurons was examined at frontal and sagittal sections of the brain stem. Unlike that shown previously the quantity of CA neurons in the rostral pole of the locus coeruleus was somewhat higher while at the frontal level of P--2.0-P--4.0 the significant number of CA cells of the locus coeruleus was localized more ventromedially.  相似文献   

4.
D K Pitts  J Marwah 《Life sciences》1986,38(13):1229-1234
The effects of intravenous (i.v.) cocaine HCl on single identified spontaneously firing noradrenergic neurons in the nucleus locus coeruleus (LC) were studied in rats in vivo. Cocaine (0.25-1 mg/kg) produced inhibition of spontaneously firing LC neurons, which was reversed by the administration of the selective alpha 2-adrenoceptor antagonist, piperoxane (250 micrograms/kg, i.v.). Procaine, a local anesthetic that is structurally related to cocaine, did not inhibit LC neurons in doses up to 4 mg/kg, i.v. These results suggest that cocaine in low doses has significant central sympathomimetic effects at the single noradrenergic neuron level and that the inhibition of spontaneous activity may be mediated by alpha 2-adrenoceptors. Our results also indicate that cocaine in pharmacologically relevant doses, can significantly affect central alpha 2-adrenoceptor regulatory processes.  相似文献   

5.
Effects of repetitive stimulation of the locus coeruleus on spinal responses to activation of cortico-, reticulo-, and vestibulospinal tracts were studied in decerebellate cats anesthetized with chloralose. Descending influences of these structures were assessed from changes in amplitude of extensor and flexor monosynaptic discharges or from the magnitude of postsynaptic potentials recorded from the corresponding motoneurons. Stimulation of the motor cortex or modullary reticular formation as a rule evoked two-component inhibitory responses in extensor motoneurons and excitatory-inhibitory responses in flexor motoneurons. Stimulation of locus coeruleus effectively depressed the amplitude of the late component and, to a lesser degree, that of the early component of inhibition arising after stimulation of the cerebral cortex or reticular formation. During stimulation of the locus coeruleus no marked changes were found in inhibitory responses evoked by vestibulospinal influences in flexor motoneurons, and also in excitatory responses arising after stimulation of the above-mentioned descending pathways in both groups of motoneurons.  相似文献   

6.
1. The tonic discharge of the noradrenergic locus coeruleus (LC) neurons is dampened by norepinephrine (NE) which acts not only on alpha2-adrenoceptors located on the somatodendritic membrane, through mechanisms of recurrent inhibition, but also on beta-receptors. Experiments were performed to find out whether inactivation of LC neurons by local injection of the beta-adrenergic agonist isoproterenol into the LC complex of one side produced changes in posture as well as in the gain of vestibulospinal reflexes acting on forelimb extensors. 2. In precollicular decerebrate cats the amplitude of modulation and thus the gain of the multiunit EMG responses of the forelimb extensor triceps brachii to animal tilt at 0.15 Hz, +/- 10 degrees, leading to sinusoidal stimulation of labyrinth receptors, were quite small. Microinjection of 0.25 microliter of a solution of the beta-adrenergic agonist isoproterenol at the concentration of 4.5-9.0 microgram/microliter of sterile saline into the LC complex of one side decreased the extensor rigidity in the ipsilateral limbs and to a lesser response gain of the ipsilateral triceps brachii to the same parameters of labyrinth stimulation greatly increased (t-test, P less than 0.001); moreover, a slight but significant increase in phase lead of the responses was observed. These findings appeared within 5-10 min after the injection of isoproterenol, fully developed within 20-30 min and persisted for about 2-3 hours after the injection. 3. The increased gain of the vestibulospinal reflexes acting on the triceps brachii did not depend on the decreased postural activity following injection of the beta-adrenergic agonist, since it was still observed if the reduced EMG activity of the extensor muscle following the injection was compensated for by an increased static stretch of the muscle. The positive correlation (t-test, P less than 0.001) between gain of the multiunit EMG response of the triceps brachii to animal tilt and base frequency observed in the control experiment disappeared and was substituted by a slight negative correlation (t-test, P less than 0.05) after injection of isoproterenol into the LC complex, probably due to a more prominent recruitment of motor units for low level of background discharge of the muscle. 4. In addition to the effects which involved the triceps brachii ipsilateral to the side of the injection, a smaller but significant increase in response gain affected the contralateral extensor muscle. This increase in gain was also associated with a slight increase in phase lead of the responses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The effects of iontophoretically applied noradrenaline have been tested on intracellularly recorded locus coeruleus neurons grown in explant cultures from neonatal mice. In addition to hyperpolarizing responses mediated by alpha 2-adrenergic receptors, as observed in locus coeruleus neurons in vivo and in brain slices from adult animals, alpha 1-mediated depolarizations were observed to succeed the initial hyperpolarizations in some cultures. It was shown that the depolarizing responses were only present in younger cultures, i.e., less than 26 days in vitro. In cultures less than 20 days old, all cells displayed the biphasic hyperpolarizing-depolarizing responses. Both components of the response appear to be direct, since they were present when synaptic transmission was blocked by including tetrodotoxin or by altering divalent cations in the perfusate. The depolarizing responses were frequently reduced in solutions with altered divalent cation content, and this might reflect a calcium dependency of this response. The hyperpolarizing and depolarizing components of the responses to noradrenaline were progressively blocked by increasing concentrations of the selective antagonists yohimbine and prazosin, respectively, in the dose ranges of 100 mM - 1 microM (yohimbine) and 20-200 nM (prazosin). Recent results from electrophysiological studies of locus coeruleus neurons in brain slices suggest that similar changes occur in the animal as well as in culture. It is possible that the transient depolarizing responses reflect a developmentally important enhanced responsiveness of locus coeruleus neurons during the early postnatal period.  相似文献   

8.
9.
This study sought to delineate the presynaptic role of the locus coeruleus (LC) on hindlimb primary afferent terminals. Changes in presynaptic function in response to LC stimulation were assessed by measuring the dorsal root potential (DRP), interaction of LC- and peripherally-evoked DRPs, and intraspinal afferent terminal excitability. LC stimulation in unanesthetized, decerebrate cats produced a sequence of early and late positive DRPs succeeded by a small-sized negative DRP. Conditioning the negative DRPs elicited from individual hindlimb nerve branches with LC stimuli led to a decrease in test DRPs. Similarly, there was a predominant decrease in excitability in both large muscle and cutaneous afferent terminals. These data suggest a presynaptic role of the LC in augmenting afferent impulse transmission, presumably through inhibition of tonically active interneurons having axoaxonic contacts on primary afferents; functionally, presynaptic facilitation.  相似文献   

10.
Using a retrograde tracer technique with horseradish peroxidase, we have revealed some afferent projections to the locus coeruleus complex from the contralateral pontine tegmentum, raphe nuclei, substantia nigra, nucleus of the solitory tract, dorsal motor nucleus of the vagus and other regions of the ponto-bulbar reticular formation as well as from hypothalamic and preoptic areas.  相似文献   

11.
The action of arecoline on rat locus coeruleus neurons was studied by intracellular recording from the in vitro brain slice preparation. Superfusion of arecoline (0.1-100 microM) caused two dose-related effects, an increased firing rate and, in neurons previously hyperpolarized to a constant potential by passing a steady hyperpolarizing current across the membrane, depolarization. Both effects were associated with a reduction in membrane input resistance. Moreover, the arecoline-induced excitatory effects were antagonized by the muscarinic receptor antagonist, atropine, but not by the nicotinic receptor antagonist, hexamethonium. Methoctramine, a selective M2-muscarinic receptor antagonist, was also effective in reversing the arecoline-induced effects, with a dissociation equilibrium constant of 14.2+/-1.2 nM (n=6). These results therefore suggest that arecoline exerts its excitatory actions by binding to M2-muscarinic receptors on the cell membrane of neurons of the locus coeruleus.  相似文献   

12.
1. Experiments were performed in precollicular decerebrate cats to determine whether activation of locus coeruleus (LC) neurons elicited by local injection of the cholinergic agonist carbachol modifies the dynamic characteristics of responses of forelimb extensors to selective stimulation of labyrinth receptors resulting from roll tilt of the animal. 2. Injection of 0.1-0.4 microliter (usually 0.25 microliter) of carbachol at a concentration of 0.02-0.1 micrograms/microliter of sterile saline into the LC of one side, which slightly increased the tonic contraction of limb extensors ipsilateral to the side of the injection, greatly decreased the amplitude of the multiunit EMG response of the ipsilateral triceps brachii to animal tilt at 0.15 Hz, +/- 10 degrees. Correspondingly, the response gain of this forelimb extensor decreased. Moreover, a significant increase in phase lag of the responses was observed. These findings did not result from the increased postural activity, since they were still observed when the limb position was adjusted so that the spontaneous EMG activity remained constant throughout the experiments. 3. The changes in posture as well as in response characteristics of the forelimb extensor to labyrinth stimulation produced by carbachol injection appeared a few min after the injection and soon reached a plateau level which persisted for several hours before returning to the control levels. 4. The effects described above involved mainly, if not exclusively, the limbs ipsilateral to the side of the injection. However, the effects of local injection into the LC of one side could be reproduced on the contralateral side following injection into the LC of that side. 5. The increase in phase lag of the multiunit EMG responses of the triceps brachii to labyrinth stimulation appeared at a threshold lower than that required to decrease the response gain of this extensor muscle. These findings suggest that different neuronal populations within the LC complex, one projecting directly to the spinal cord, the other projecting indirectly through the pontine reticular formation, are involved in the control of phase angle and gain of the vestibulospinal reflexes, respectively. However, as soon as the threshold was reached the effects described above were dose-dependent. 6. Histological controls indicated that the structure responsible for the postural and reflex changes described above corresponded to the LC. In fact, postural and reflex changes opposite in sign to those described above were obtained when the same amount of carbachol was injected into the dorsal aspect of the pontine reticular formation (pRF) located immediately ventral to the LC.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Microinjections of aspartic acid and chlorpromazine into the region of the locus coeruleus, which strengthen spontaneous unit activity in that structure, in decerebellate cats anesthetized with chloralose, led to depression of the inhibitory influence of flexor reflex afferents on extensor discharges, but did not change the facilitatory action of these afferents on flexor monosynaptic discharges and had no effect on recurrent inhibition of extensor discharges or reduced it. Microinjection of noradrenalin into this region, which depresses spontaneous unit activity in the locus coeruleus, or of procaine, which blocks action potential generation in neurons, led to potentiation of the inhibitory action of flexor reflex afferents on extensor discharges and to strengthening of recurrent inhibition, but did not affect the facilitatory action of these afferents on flexor discharges. The role of tonic descending influences of the locus coeruleus in the control of spinal inhibition evoked by flexor reflex afferents is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 247–256, May–June, 1981.  相似文献   

14.
Terrestrial vertebrate embryos face a risk of low oxygen availability (hypoxia) that is especially great during their transition to air‐breathing. To better understand how fetal brains respond to hypoxia, we examined the effects of low oxygen availability on brain activity in late‐stage chick embryos (day 18 out of a 21‐day incubation period). Using cFos protein expression as a marker for neuronal activity, we focused on two specific, immunohistochemically identified cell groups known to play an important role in regulating adult brain states (sleep and waking): the noradrenergic neurons of the Locus Coeruleus (NA‐LC), and the Hypocretin/Orexin (H/O) neurons of the hypothalamus. cFos expression was also examined in the Pallium (the avian analog of the cerebral cortex). In adult mammalian brains, cFos expression changes in a coordinated way in these areas. In chick embryos, oxygen deprivation simultaneously activated NA‐LC while deactivating H/O‐producing neurons; it also increased cFos expression in the Pallium. Activity in one pallial primary sensory area was significantly related to NA‐LC activity. These data reveal that at least some of the same neural systems involved in brain‐state control in adults may play a central role in orchestrating prenatal hypoxic responses, and that these circuits may show different patterns of coordination than seen in adults. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1030–1037, 2014  相似文献   

15.
Previous studies have shown that aminergic neurons in the normal human brain contain acidophilic cytoplasmic inclusions--called protein bodies (PBs)--that are reduced or absent in parkinsonism and disrupted in depression. The purpose of the present study was to elucidate the constitution of PBs in five formalin-fixed normal human brains using histochemical methods specific for histones, protamines, and the amino acid arginine. PBs were revealed with alkaline fast green and bromphenol blue, exhibiting a high content in histones and in protamines. They developed blue metachromasia with phosphotungstic acid-hematoxylin and green fluorescence with phenanthrenequinone, which established the presence of arginyl residues. Using benzil, which selectively modifies the guanido group of arginine, staining was blocked for each of the above two methods. The application of Mallory's trichrome procedure after benzil differentiated the PBs into an unstained core and a still fuchsinophilic rim. Since the fuchsinophilia of the rim was shown to persist after acetylation as well, we suggest that this rim probably contains acidic macromolecules that attach to the basic charges of the amphoteric acid fuchsin. We conclude that the PB are complex structures consisting of a core segregating arginine-rich proteins and a rim which probably contains macromolecules of an acidic nature.  相似文献   

16.
17.
Repetitive stimulation of the locus coeruleus with a frequency of 40 Hz and strength of 50–150 µA in decerebellated cats anesthetized with chloralose was accompanied by a decrease in the inhibitory action of flexor reflex afferents (FRA) on the extensor monosynaptic reflex. This effect, which appeared after 600 msec, reached a maximum 1500–1700 msec after the beginning of repetitive stimulation. A minimum of 7–10 stimuli was needed to evoke the effect. After the end of stimulation the inhibitory action of FRA was not fully restored until after 2–3 sec. During application of a single stimulus or a short high-frequency series of stimuli of the same strength to the locus coeruleus no such effect was found. An increase in the strength of stimulation in that case was accompanied by activation of adjacent more rapidly conducting structures. The advantage of repetitive stimulation for detecting effects of slowly-conducting brain structures is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 187–195, March–April, 1981.  相似文献   

18.
Extracellular single-cell recordings were performed on rat brain slices to compare the effects of morphine on noradrenergic neurons of the locus coeruleus (LC) and on dopaminergic neurons of the ventral tegmental area (VTA). Morphine inhibited the firing of LC neurons at very low concentrations. The mean IC50 was 13.4 +/- 1nM (mean +/- SEM) (n = 7). Moreover, the inhibitory effect of morphine was identical in slices obtained from rats anesthetized with chloral hydrate or from non-anesthetized rats. On the contrary, morphine did not have any influence on the firing of most VTA neurons (N = 20) up to 100 microM, and did not modify the sensitivity of their autoreceptors (N = 8). It is concluded that morphine potently inhibits the firing of LC neurons in vitro both in slices of anesthetized and not anesthetized animals and has no direct excitatory effect on VTA dopaminergic neurons of the rat.  相似文献   

19.
The brainstem locus coeruleus (LC), the primary norepinephrinergic (NE) nucleus in the brain, has been implicated in the abuse of drugs such as opioids. However, whether and how the LC-NE system is involved in cocaine addiction remains elusive. Here, we demonstrated cocaine-evoked synaptic plasticity of glutamatergic transmission onto LC neurons as one of the earliest traces occurring after a single injection of cocaine. Twenty-four hours after mice were injected intraperitoneally with cocaine, the evoked α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) mediated synaptic transmission onto LC neurons were strongly potentiated without major effect on N-methyl-d-aspartate receptor (NMDAR) mediated synaptic transmission. Compared with saline-pretreated mice, AMPAR-mediated excitatory postsynaptic currents (EPSCs) of cocaine-pretreated mice showed a marked inward rectification, demonstrating the insertion of GluR2-lacking AMPARs to plasma membrane. In addition, the single injection of cocaine did not affect presynaptic glutamate release probability measured by paired pulse ratio. Furthermore, we found that the cocaine-induced potentiation of AMPAR EPSCs could be blocked by prazosin, an inhibitor of α1-adrenoreceptor (AR), indicating that cocaine increases AMPAR transmission via α1-ARs. These results reveal that LC-NE serves as an initial target of drug intake.  相似文献   

20.
Summary Somatostatin-like immunoreactivity was localized in nerve cell bodies and nerve terminals in the cat coeliac ganglion. Two types of somatostatin-immunoreactive cell bodies were revealed, the first being large (diameter 35 m), numerous and weakly labelled, where—as the second was considerably smaller (diameter 10.4 m), sparsely distributed and heavily stained. The immunoreactive nerve terminals were in synaptic contact with many immunonegative large neurons and dendrites. However, in a few cases, somatostatin-immunoreactive nerve terminals could also be observed on the surface of lightly stained neurons. Transection of vagal or mesenteric nerve failed to affect the distribution or density of somatostatin-like immunoreactive nerve terminals. These results demonstrate the existence of a synaptic input to the principal neurons of the coeliac ganglion of the cat by somatostatin-containing nerve terminals and suggest that this peptide may act as a neuromodulator or neurotransmitter. It is proposed that somatostatin-positive neurons provide intrinsic projections to other somatostatin-positive and to somatostatin-negative neurons throughout the coeliac ganglion, thereby creating a complex interneuronal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号