首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functions of the minor phospholipid phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] during vegetative plant growth remain obscure. Here, we targeted two related phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) PIP5K1 and PIP5K2, which are expressed ubiquitously in Arabidopsis thaliana. A pip5k1 pip5k2 double mutant with reduced PtdIns(4,5)P2 levels showed dwarf stature and phenotypes suggesting defects in auxin distribution. The roots of the pip5k1 pip5k2 double mutant had normal auxin levels but reduced auxin transport and altered distribution. Fluorescence-tagged auxin efflux carriers PIN-FORMED (PIN1)–green fluorescent protein (GFP) and PIN2-GFP displayed abnormal, partially apolar distribution. Furthermore, fewer brefeldin A–induced endosomal bodies decorated by PIN1-GFP or PIN2-GFP formed in pip5k1 pip5k2 mutants. Inducible overexpressor lines for PIP5K1 or PIP5K2 also exhibited phenotypes indicating misregulation of auxin-dependent processes, and immunolocalization showed reduced membrane association of PIN1 and PIN2. PIN cycling and polarization require clathrin-mediated endocytosis and labeled clathrin light chain also displayed altered localization patterns in the pip5k1 pip5k2 double mutant, consistent with a role for PtdIns(4,5)P2 in the regulation of clathrin-mediated endocytosis. Further biochemical tests on subcellular fractions enriched for clathrin-coated vesicles (CCVs) indicated that pip5k1 and pip5k2 mutants have reduced CCV-associated PI4P 5-kinase activity. Together, the data indicate an important role for PtdIns(4,5)P2 in the control of clathrin dynamics and in auxin distribution in Arabidopsis.  相似文献   

2.
3.
Expressions of Raldh3 and Raldh4 during zebrafish early development   总被引:1,自引:0,他引:1  
Retinoic acid (RA) plays crucial roles in vertebrate embryogenesis. Four retinal dehydrogenases (Raldhs) that are responsible for RA synthesis have been characterized in mammals. However, only Raldh2 ortholog is identified in zebrafish. Here, we report the identification of raldh3 and raldh4 genes in zebrafish. The predicted proteins encoded by zebrafish raldh3 and raldh4 exhibit 70.0% and 73.5% amino acid identities with mouse Raldh3 and Raldh4, respectively. RT-PCR analyses reveal that both raldh3 and raldh4 mRNAs are present in early development. However, whole mount in situ hybridization shows that raldh3 mRNA is first expressed in the developing eye region of zebrafish embryos at 10-somite stage. At 24 hpf (hours post fertilization), raldh3 mRNA is expressed in the ventral retina of eye. At 36 hpf, the mRNA is also expressed in otic vesicle in addition to ventral retina, and it maintains its expression pattern till 2 dpf (days post fertilization). At 3 dpf, raldh3 mRNA becomes very weak in ventral retina but is present in otic vesicle at a high level. At 5 dpf and 7 dpf, raldh3 is no longer expressed in eyes but is expressed in otic vesicles at a very low level. raldh4 mRNA is initially detected in developing liver and intestine regions at 2 dpf embryos. Its expression level becomes very high in these two regions of embryos from 3 dpf to 5 dpf. Analysis on the sections of 5 dpf embryos reveals that raldh4 is expressed in the epithelium of intestine. At 7 dpf, raldh4 mRNA is only weakly expressed in the epithelium of intestinal bulb.  相似文献   

4.
The monoamine serotonin (5-HT) exerts key neuromodulatory activities in all animal phyla, but the development and function of the serotonergic system is still incompletely understood. The zebrafish Danio rerio is an excellent model to approach this question since it is amenable to a combination of genetic, molecular and embryological studies. In order to characterize the organization of serotonergic neurons in the zebrafish we cloned two cDNAs encoding distinct forms of tryptophan hydroxylase (Tph), the rate-limiting enzyme in serotonin synthesis. We report here the pattern of expression of these two genes in relation with immunoreactive TH and 5-HT nuclei in the developing zebrafish embryo and early larva. tphD1 expression starts at 22 h post-fertilization (hpf) in the epiphysis and in basal spinal cells. Expression persists in the epiphysis until at least 4 days (dpf). Between 48 hpf and 3 dpf, tphD1 expression is initiated in retinal amacrine cells and in restricted preoptic and posterior tubercular nuclei within the basal diencephalon. At 3 and 4 dpf, tphD1 expression is newly initiated in the caudal hypothalamus and in branchial arches-associated neurons. tphD2 mRNA is detected transiently (between 30 somites and 32 hpf) in a restricted preoptic nucleus. All sites of tphD1 or D2 expression within the anterior central nervous system are also immunoreactive for 5-HT, but are not positive for TH. However, neither tphD gene is expressed in raphe nuclei, suggesting that additional tph gene(s) exist in zebrafish to account for 5-HT synthesis in that location. The co-expression of tphD1, tphD2 and 5-HT in the zebrafish diencephalon appears in striking contrast to the situation in mammals, where diencephalic serotonin results from re-uptake rather than from local production.  相似文献   

5.
The monoamine serotonin (5-HT) exerts key neuromodulatory activities in all animal phyla, but the development and function of the serotonergic system is still incompletely understood. The zebrafish Danio rerio is an excellent model to approach this question since it is amenable to a combination of genetic, molecular and embryological studies. In order to characterize the organization of serotonergic neurons in the zebrafish we cloned two cDNAs encoding distinct forms of tryptophan hydroxylase (Tph), the rate-limiting enzyme in serotonin synthesis. We report here the pattern of expression of these two genes in relation with immunoreactive TH and 5-HT nuclei in the developing zebrafish embryo and early larva. tphD1 expression starts at 22 h post-fertilization (hpf) in the epiphysis and in basal spinal cells. Expression persists in the epiphysis until at least 4 days (dpf). Between 48 hpf and 3 dpf, tphD1 expression is initiated in retinal amacrine cells and in restricted preoptic and posterior tubercular nuclei within the basal diencephalon. At 3 and 4 dpf, tphD1 expression is newly initiated in the caudal hypothalamus and in branchial arches-associated neurons. tphD2 mRNA is detected transiently (between 30 somites and 32 hpf) in a restricted preoptic nucleus. All sites of tphD1 or D2 expression within the anterior central nervous system are also immunoreactive for 5-HT, but are not positive for TH. However, neither tphD gene is expressed in raphe nuclei, suggesting that additional tph gene(s) exist in zebrafish to account for 5-HT synthesis in that location. The co-expression of tphD1, tphD2 and 5-HT in the zebrafish diencephalon appears in striking contrast to the situation in mammals, where diencephalic serotonin results from re-uptake rather than from local production.  相似文献   

6.
Bone morphogenetic protein 2 plays an important role in the regulation of osteoblast proliferation and differentiation. Phylogenetic analysis showed that the bmp2 ortholog evolved from the same ancestral gene family in vertebrates and was duplicated in teleost, which were named bmp2a and bmp2b. The results of whole-mount in situ hybridization showed that the expression locations of bmp2a and bmp2b in zebrafish were different in different periods (24 hpf, 48 hpf, 72 hpf), which revealed potential functional differentiation between bmp2a and bmp2b. Phenotypic analysis showed that bmp2a mutations caused partial rib and vertebral deformities in zebrafish, while bmp2b−/− embryos died massively after 12 hpf due to abnormal somite formation. We further explored the expression pattern changes of genes (bmp2a, bmp2b, smad1, fgf4, runx2b, alp) related to skeletal development at different developmental stages (20 dpf, 60 dpf, 90 dpf) in wild-type and bmp2a−/− zebrafish. The results showed that the expression of runx2b in bmp2a−/− was significantly downregulated at three stages and the expression of other genes were significantly downregulated at 90 dpf compared with wild-type zebrafish. The study revealed functional differentiation of bmp2a and bmp2b in zebrafish embryonic and skeletal development.  相似文献   

7.
8.
9.
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) produces phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2), a signaling phospholipid critical for various cellular processes in eukaryotes. The Arabidopsis thaliana genome encodes 11 PIP5K genes. Of these, three type B PIP5K genes, PIP5K7, PIP5K8, and PIP5K9, constitute a subgroup highly conserved in land plants, suggesting that they retain a critical function shared by land plants. In this study, we comprehensively investigated the biological functions of the PIP5K7–9 subgroup genes. Reporter gene analyses revealed their preferential expression in meristematic and vascular tissues. Their YFP-fusion proteins localized primarily to the plasma membrane in root meristem epidermal cells. We selected a mutant line that was considered to be null for each gene. Under normal growth conditions, neither single mutants nor multiple mutants of any combination exhibited noticeable phenotypic changes. However, stress conditions with mannitol or NaCl suppressed main root growth and reduced proximal root meristem size to a greater extent in the pip5k7pip5k8pip5k9 triple mutant than in the wild type. In root meristem epidermal cells of the triple mutant, where plasma membrane localization of the PtdIns(4,5)P2 marker P24Y is impaired to a large extent, brefeldin A body formation is retarded compared with the wild type under hyperosmotic stress. These results indicate that PIP5K7, PIP5K8, and PIP5K9 are not required under normal growth conditions, but are redundantly involved in root growth adaptation to hyperosmotic conditions, possibly through the PtdIns(4,5)P2 function promoting plasma membrane recycling in root meristem cells.  相似文献   

10.
The widely expressed chloride channel ClC-2 is stimulated by the serum and glucocorticoid inducible kinase SGK1. The SGK1-dependent regulation of several carriers involves the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3). The present experiments explored whether SGK1-dependent regulation of ClC-2 similarly involves PIKfyve. The conductance of Xenopus oocytes is increased more than eightfold by ClC-2 expression. In ClC-2-expressing oocytes, but not in water-injected oocytes, the current was further enhanced by coexpression of either, PIKfyve or constitutively active S422DSGK1. Coexpression of the inactive SGK1 mutant K127NSGK1 did not significantly alter the current in ClC-2-expressing oocytes and abrogated the stimulation of the current by PIKfyve-coexpression. The stimulating effect of PIKfyve was abolished by replacement of the serine with alanine in the SGK1 consensus sequence (S318APIKfyve). Coexpression of S318APIKfyve significantly blunted the stimulating effect of S422DSGK1 on ClC-2-activity. In conclusion, PIKfyve is a potent stimulator of ClC-2-activity and contributes to SGK1-dependent regulation of ClC-2.  相似文献   

11.
Wu YL  Pan X  Mudumana SP  Wang H  Kee PW  Gong Z 《Gene》2008,408(1-2):85-94
In the present study, a zebrafish hsp27 promoter was isolated and used to develop heat shock inducible gfp transgenic zebrafish. The endogenous hsp27 mRNAs were constitutively expressed from 4 hpf and increased in several regions of brain, heart and somites in early embryogenesis until 24 hpf. Subsequently, the expression was reduced significantly but maintained in the heart and ears. Heat shock induced hsp27 mRNAs in the blastoderm from 6 hpf and later in somites, branchial arches and several regions of brain. Similarly in hsp27-gfp transgenic zebrafish, constitutive GFP expression was observed from 11 hpf. GFP expression was mainly in the skin cells and increased to the peak level at 7 dpf, followed by a reduction. The constitutive GFP expression in the heart was initiated from 50 hpf and maintained even in the adult fish. After heat shock, GFP expression was mainly induced in the muscle in addition to a mild increase in the skin and heart. The early stages of the embryos were more sensitive than late stages as the time required for induced GFP expression in the muscle is shorter. Thus, the hsp27-gfp transgenic line generally recapitulates the expression pattern and heat shock inducibility of endogenous hsp27 RNAs. We also tested the potential of using the hsp27-gfp transgenic zebrafish embryos for heavy metal induction and demonstrated the inducibility of GFP expression by arsenic; this pattern of induction was also supported by examination of endogenous hsp27 mRNA.  相似文献   

12.
Fran?ois-Neetens fleck corneal dystrophy (CFD) is a rare, autosomal dominant corneal dystrophy characterized by numerous small white flecks scattered in all layers of the stroma. Linkage analysis localized CFD to a 24-cM (18-Mb) interval of chromosome 2q35 flanked by D2S2289 and D2S126 and containing PIP5K3. PIP5K3 is a member of the phosphoinositide 3-kinase family and regulates the sorting and traffic of peripheral endosomes that contain lysosomally directed fluid phase cargo, by controlling the morphogenesis and function of multivesicular bodies. Sequencing analysis disclosed missense, frameshift, and/or protein-truncating mutations in 8 of 10 families with CFD that were studied, including 2256delA, 2274delCT, 2709C-->T (R851X), 3120C-->T (Q988X), IVS19-1G-->C, 3246G-->T (E1030X), 3270C-->T (R1038X), and 3466A-->G (K1103R). The histological and clinical characteristics of patients with CFD are consistent with biochemical studies of PIP5K3 that indicate a role in endosomal sorting.  相似文献   

13.
肌间刺缺失对斑马鱼骨骼发育的影响   总被引:1,自引:0,他引:1  
利用斑马鱼(Danio rerio)野生型与肌间刺完全缺失突变型个体,从骨骼染色和骨骼发育相关基因表达两方面,初步评价了肌间刺缺失对斑马鱼骨骼发育的影响。通过骨骼染色对比观察了两种肌间刺表型个体受精后8dpf(days post fertilization, dpf)到56dpf的骨骼发育情况,结果显示,两种肌间刺表型除肌间刺外,其他骨骼发育基本同步。此外,通过qRT-PCR实验检测分析了6个骨骼发育相关基因(bmp2a、bmp4、smad1、smad4a、runx2a和sp7)在不同肌间刺表型5个胚胎发育时期(3hpf囊胚期、6hpf原肠胚期、12hpf体节期、24hpf咽囊期和72hpf孵化期)和5个胚后生长阶段(15、30、45、60和75dpf)的表达情况。结果显示:在胚胎发育时期,野生型和突变型个体中bmp2a、bmp4、smad1、smad4a基因和突变型个体中sp7基因的表达均呈现先升后降的变化趋势,且在体节期达到最高表达水平;野生型和突变型个体中runx2a基因和野生型个体中sp7基因则表现为逐渐上升的趋势。6个基因在囊胚期和原肠胚期表达量无显著差异, bmp2a的表达...  相似文献   

14.
Mei Y  Jia WJ  Chu YJ  Xue HW 《Cell research》2012,22(3):581-597
Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes the synthesis of PI-4,5-bisphosphate (PtdIns(4,5)P(2)) by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring, and is involved in regulating multiple developmental processes and stress responses. We here report on the functional characterization of Arabidopsis PIP5K2, which is expressed during lateral root initiation and elongation, and whose expression is enhanced by exogenous auxin. The knockout mutant pip5k2 shows reduced lateral root formation, which could be recovered with exogenous auxin, and interestingly, delayed root gravity response that could not be recovered with exogenous auxin. Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2. In addition, analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P(2) reduction, which hence results in suppressed cycling of PIN proteins (PIN2 and 3), and delayed redistribution of PIN2 and auxin under gravistimulation in pip5k2 roots. On the contrary, PtdIns(4,5)P(2) significantly enhanced the vesicle trafficking and cycling of PIN proteins. These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response, and reveal a critical role of PIP5K2/PtdIns(4,5)P(2) in root development through regulation of PIN proteins, providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response, and new insights into the control of polar auxin transport.  相似文献   

15.
The regulation of pollen tube growth by the phospholipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2) ) is not well understood. The Arabidopsis genome encodes two type A phosphatidylinositol-4-phosphate (PI4P) 5-kinases, PIP5K10 and PIP5K11, which are exclusively expressed in pollen and produce PtdIns(4,5)P(2) in vitro. Fluorescence-tagged PIP5K10 and PIP5K11 localized to lateral subapical plasma membrane microdomains in tobacco pollen tubes in a pattern closely resembling the distribution of PtdIns(4,5)P(2,) with the exception of notably weaker association at the extreme apex. Overexpression of PIP5K10 or PIP5K11 in tobacco pollen tubes resulted in severe tip swelling and altered actin fine structure similar to that reported for overexpression of tobacco Nt-Rac5, a monomeric GTPase known to regulate the actin cytoskeleton. Increased sensitivity of Arabidopsis pip5k10 pip5k11 double mutant pollen tubes to Latrunculin B (LatB) further supports a role for type A PI4P 5-kinases in controlling the actin cytoskeleton. Despite the disruption of both its type A PI4P 5-kinases, the pip5k10 pip5k11 double mutant was fertile, indicating that one of the remaining type B PI4P 5-kinase isoforms might be functionally redundant with PIP5K10 and PIP5K11. Antagonistic effects of PIP5K11 and the Nt-Rac5-specific guanine nucleotide dissociation inhibitor, Nt-RhoGDI2, on tip swelling observed in coexpression-titration experiments indicate a link between PtdIns(4,5)P(2) and Rac-signaling in pollen tubes. The data suggest that type A PI4P 5-kinases influence the actin cytoskeleton in pollen tubes in part by counteracting Nt-RhoGDI2, possibly contributing to the control of the pool of plasma membrane-associated Nt-Rac5.  相似文献   

16.
The Na+,glutamate cotransporter EAAT3 is expressed in a wide variety of tissues. It accomplishes transepithelial transport and the cellular uptake of acidic amino acids. Regulation of EAAT3 activity involves a signaling cascade including the phosphatidylinositol-3 (PI3)-kinase, the phosphoinositide dependent kinase PDK1, and the serum and glucocorticoid inducible kinase SGK1. Targets of SGK1 include the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3). The present experiments explored whether PIKfyve participates in the regulation of EAAT3 activity. To this end, EAAT3 was expressed in Xenopus oocytes with or without SGK1 and/or PIKfyve and glutamate-induced current (Iglu) determined by dual electrode voltage clamp. In Xenopus oocytes expressing EAAT3 but not in water injected oocytes glutamate induced an inwardly directed Iglu. Coexpression of either, SGK1 or PIKfyve, significantly enhanced Iglu in EAAT3 expressing oocytes. The increased Iglu was paralleled by increased EAAT3 protein abundance in the oocyte cell membrane. Iglu and EAAT3 protein abundance were significantly larger in oocytes coexpressing EAAT3, SGK1 and PIKfyve than in oocytes expressing EAAT3 and either, SGK1 or PIKfyve, alone. Coexpression of the inactive SGK1 mutant K127NSGK1 did not significantly alter Iglu in EAAT3 expressing oocytes and completely reversed the stimulating effect of PIKfyve coexpression on Iglu. The stimulating effect of PIKfyve on Iglu was abolished by replacement of the serine by alanine in the SGK consensus sequence (S318APIKfyve). Moreover, additional coexpression of S318APIKfyve significantly blunted Iglu in Xenopus oocytes coexpressing SGK1 and EAAT3. The observations demonstrate that PIKfyve participates in EAAT3 regulation likely downstream of SGK1.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号