首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a model of the extrinsic blood coagulation system that includes the stoichiometric anticoagulants. The model accounts for the formation, expression, and propagation of the vitamin K-dependent procoagulant complexes and extends our previous model by including: (a) the tissue factor pathway inhibitor (TFPI)-mediated inactivation of tissue factor (TF).VIIa and its product complexes; (b) the antithrombin-III (AT-III)-mediated inactivation of IIa, mIIa, factor VIIa, factor IXa, and factor Xa; (c) the initial activation of factor V and factor VIII by thrombin generated by factor Xa-membrane; (d) factor VIIIa dissociation/activity loss; (e) the binding competition and kinetic activation steps that exist between TF and factors VII and VIIa; and (f) the activation of factor VII by IIa, factor Xa, and factor IXa. These additions to our earlier model generate a model consisting of 34 differential equations with 42 rate constants that together describe the 27 independent equilibrium expressions, which describe the fates of 34 species. Simulations are initiated by "exposing" picomolar concentrations of TF to an electronic milieu consisting of factors II, IX, X, VII, VIIa, V, and VIIII, and the anticoagulants TFPI and AT-III at concentrations found in normal plasma or associated with coagulation pathology. The reaction followed in terms of thrombin generation, proceeds through phases that can be operationally defined as initiation, propagation, and termination. The generation of thrombin displays a nonlinear dependence upon TF, AT-III, and TFPI and the combination of these latter inhibitors displays kinetic thresholds. At subthreshold TF, thrombin production/expression is suppressed by the combination of TFPI and AT-III; for concentrations above the TF threshold, the bolus of thrombin produced is quantitatively equivalent. A comparison of the model with empirical laboratory data illustrates that most experimentally observable parameters are captured, and the pathology that results in enhanced or deficient thrombin generation is accurately described.  相似文献   

2.
3.
Renal tubular cell injury induced by calcium oxalate (CaOx) is a critical initial stage of kidney stone formation. Theaflavin (TF) has been known for its strong antioxidative capacity; however, the effect and molecular mechanism of TF against oxidative stress and injury caused by CaOx crystal exposure in kidneys remains unknown. To explore the potential function of TF on renal crystal deposition and its underlying mechanisms, experiments were conducted using a CaOx nephrocalcinosis mouse model established by glyoxylate intraperitoneal injection, and HK-2 cells were subjected to calcium oxalate monohydrate (COM) crystals, with or without the treatment of TF. We discovered that TF treatment remarkably protected against CaOx-induced kidney oxidative stress injury and reduced crystal deposition. Additionally, miR-128-3p expression was decreased and negatively correlated with SIRT1 level in mouse CaOx nephrocalcinosis model following TF treatment. Moreover, TF suppressed miR-128-3p expression and further abolished its inhibition on SIRT1 to attenuate oxidative stress in vitro. Mechanistically, TF interacted with miR-128-3p and suppressed its expression. In addition, miR-128-3p inhibited SIRT1 expression by directly binding its 3''-untranslated region (UTR). Furthermore, miR-128-3p activation partially reversed the acceerative effect of TF on SIRT1 expression. Taken together, TF exhibits a strong nephroprotective ability to suppress CaOx-induced kidney damage through the recovery of the antioxidant defense system regulated by miR-128-3p/SIRT1 axis. These findings provide novel insights for the prevention and treatment of renal calculus.  相似文献   

4.
A mathematical model of the extrinsic or tissue factor (TF) pathway of blood coagulation is formulated and results from a computational study of its behavior are presented. The model takes into account plasma-phase and surface-bound enzymes and zymogens, coagulation inhibitors, and activated and unactivated platelets. It includes both plasma-phase and membrane-phase reactions, and accounts for chemical and cellular transport by flow and diffusion, albeit in a simplified manner by assuming the existence of a thin, well-mixed fluid layer, near the surface, whose thickness depends on flow. There are three main conclusions from these studies. (i) The model system responds in a threshold manner to changes in the availability of particular surface binding sites; an increase in TF binding sites, as would occur with vascular injury, changes the system's production of thrombin dramatically. (ii) The model suggests that platelets adhering to and covering the subendothelium, rather than chemical inhibitors, may play the dominant role in blocking the activity of the TF:VIIa enzyme complex. This, in turn, suggests that a role of the IXa-tenase pathway for activating factor X to Xa is to continue factor Xa production after platelets have covered the TF:VIIa complexes on the subendothelium. (iii) The model gives a kinetic explanation of the reduced thrombin production in hemophilias A and B.  相似文献   

5.
Human T lymphocytes become glucocorticoid-sensitive upon immune activation   总被引:1,自引:0,他引:1  
A murine model for Transfer Factor (TF) was used in an attempt to identify the nature of its antigen-specific component. TF was prepared from lymph node cells of CBA/Ca/T6 mice sensitized 30 days previously with 2,4-dinitrofluorobenzene (DNFB). To assay for the specific component of TF, 2 × 107 lymphocyte equivalents were injected intravenously into normal syngeneic recipients. Lymph node cells obtained 18–24 hr later gave a positive response in the macrophage migration inhibition (MMI) test in the presence of the soluble analog of DNFB (sodium 2,4-dinitrobenzenesulfonate). The activity of TF was abrogated by absorption with anti-Ia sera including both an Ia alloantiserum (A.TH anti-A.TL) and a xenogeneic rabbit anti-serum which exclusively recognizes carbohydrate-defined Ia antigens. Analysis by paper chromatography using the technique for purification of carbohydrate-defined Ia antigens revealed that MIF production was obtained exclusively with those fractions known to contain Ia antigenic activity. In addition, pretreatment of TF with insoluble conconavalin A (Con A) which has an affinity for carbohydrate-defined Ia antigens resulted in removal of its activity. Taken together these findings pointed to the presence in TF of I-region gene products. Absorption with antibody directed against the dinitrophenyl determinant abolished the capacity of TF to stimulate macrophage inhibition factor production suggesting that it might also contain antigen fragments possibly in association with Ia. No evidence was, however, obtained for H-2 restriction of the action of TF in vivo since it was found to exert an effect in a variety of strain combinations including A.TH and Balb/c which share no known common I-region specificities. Parallel experiments were carried out with the lymphocyte transformation assay since this is known to be a measure of the nonspecific components in TF. Pretreatment with mouse allo-anti-Iak serum directed against both protein-and carbohydrate-defined Ia antigens caused a partial reduction in the proliferative response. In contrast no change in response was observed when the TF was absorbed with insoluble Con A or anti-DNP serum. Furthermore, lymphocyte transformation was obtained with only one of the three paper chromatography fractions positive in the MMI assay as well as two other different fractions. Taken together, these findings permitted a distinction to be made between specific and nonspecific components of TF and indicated that the specificity of TF could be explained in terms of the presence of I-region gene coded products possibly in association with antigen fragments.  相似文献   

6.
Abstract

Two distinct populations, active and cryptic forms of tissue factor (TF), reside on the cell surface. Apart from phospholipid contribution, various models have been introduced to explain decryption/encryption of TF. The proposed model, the switching of Cys186–Cys209 bond of TF, has become the matter of controversy. However, it is well accepted that this disulfide has an immense influence upon ligand factor VIIa (FVIIa) for its binding. However, molecular level understanding for this remains unveiled due to lack of detailed structural information. In this regard, we have performed the molecular dynamic study of membrane-bound TF/TF–FVIIa in both the forms (±Cys186–Cys209 allosteric disulfide bond), individually. Dynamic study depicts that disulfide bond provides structural rigidity of TF in both free and ligand-bound forms. This disulfide bond also governs the conformation of FVIIa structure as well as the binding affinity of FVIIa toward TF. Significant differences in lipid–protein interaction profiles of both the forms of TF in the complex were observed. Two forms of TF, oxidized and reduced, have different structural conformation and behave differentially toward its ligand FVIIa. This disulfide bond not only alters the conformation of GLA domain of FVIIa in the vicinity but allosterically regulates the conformation of the distantly located FVIIa protease domain. We suggest that the redox status of the disulfide bond also governs the lipid-mediated interactions with both TF and FVIIa.

Communicated by Ramaswamy H. Sarma  相似文献   

7.
Human transferrin polymorphism   总被引:7,自引:0,他引:7  
The application of isoelectric focussing (IEF) has revealed a large amount of heterogeneity in the human transferrin (TF) system and has enhanced its potential value in anthropological and genetic studies. The average heterozygosity has been elevated from 0.05, observed by conventional methods of electrophoresis, to 0.29 detected by IEF. So far approximately 30,000 individuals from 122 population groups have been analyzed for TF subtypes to evaluate the magnitude of genetic variation at the TF locus. Possible environmental and biological factors, which may be operating to maintain the TF polymorphism, are discussed.  相似文献   

8.
Y Sun  Z Zhu  R Wang  Y Sun  T Xu 《PloS one》2012,7(9):e43936
Transferrin (TF) is a protein that plays a central role in iron metabolism. This protein is associated with the innate immune system, which is responsible for disease defense responses after bacterial infection. The clear link between TF and the immune defense mechanism has led researchers to consider TF as a candidate gene for disease resistance. In this study, the Miichthys miiuy (miiuy croaker) TF gene (MIMI-TF) was cloned and characterized. The gene structure consisted of a coding region of 2070 nucleotides divided into 17 exons, as well as a non-coding region that included 16 introns and spans 6757 nucleotides. The deduced MIMI-TF protein consisted of 689 amino acids that comprised a signal peptide and two lobes (N- and C-lobes). MIMI-TF expression was significantly up-regulated after infection with Vibrio anguillarum. A series of model tests implemented in the CODEML program showed that TF underwent a complex evolutionary process. Branch-site models revealed that vertebrate TF was vastly different from that of invertebrates, and that the TF of the ancestors of aquatic and terrestrial organisms underwent different selection pressures. The site models detected 10 positively selected sites in extant TF genes. One site was located in the cleft between the N1 and N2 domains and was expected to affect the capability of TF to bind to or release iron indirectly. In addition, eight sites were found near the TF exterior. Two of these sites, which could have evolved from the competition for iron between pathogenic bacteria and TF, were located in potential pathogen-binding domains. Our results could be used to further investigate the function of TF and the selective mechanisms involved.  相似文献   

9.
Adenosine triphosphatase from the thermophilic bacterium PS3(TF1) has been studied by solution X-ray scattering. A structural change in TF1 caused by the binding of ADP was observed by examining the difference between the radii of gyration of the unligated and ligated forms. The radius of gyration of the unligated TF1 was found to be 49.5 +/- 0.3 A, and it decreased by approximately 3% after ligation with ADP. The positions and the amplitudes of a subsidiary maximum and a shoulder in the scattering profile showed subtle change on nucleotide binding. The lower limit of the maximum length of TF1 was determined to be 165 A for the unligated form and 150 A for the ligated form. The shape analysis of TF1 was performed by model calculations for simple triaxial bodies or their complexes. Among the various models tested, the one that gave the best fit with the experimental data consisted of seven ellipsoids of revolution; six identical ellipsoids with semi-axes: a = b = 18.5 A and c = 74 A. arranged hexagonally, and the other with a = b = 28 A and c = 45 A, located below the other six on the 6-fold axis. On the basis of this model it was suggested that there is a structural change on ligation with nucleotides, consisting of a shrinkage of the six long ellipsoids by 6% along their major axes.  相似文献   

10.
11.
The ATPase of the thermophilic bacterium PS3, TF0F1, and its subunits has been isolated and their absorption and fluorescence spectra have been measured. The following results were obtained: The tryptophan content of the subunits was determined spectroscopically. Although tryptophan (Trp) and tyrosine (Tyr) are found in TF1, the fluorescence spectrum of native TF1 and its subunits is dominated by Tyr fluorescence; this is in contrast to other proteins. Among (native) TF1 and its subunits only TF1 and the alpha-subunit show a weak fluorescence of Trp, which is blue-shifted, indicating a location in a strongly hydrophobic environment. TF0 fluorescence is dominated by the strong Trp fluorescence. TF0F1 fluorescence is also dominated by the Trp residues. Additionally, its fluorescence is higher than the sum of the isolated TF0 and TF1, indicating marked changes in the microenvironment of the fluorescing aminoacids upon binding of TF1 to TF0.  相似文献   

12.
Sulphated esters of the flavonoids sulphated quercetin 3,7,3',4'-tetrasulphated (QTS) and quercetin 3-acetyl-7,3,4'-trisulphate (ATS), isolated from Flaveria bidentis, have demonstrated anticoagulant and antiplatelet properties. In this study, we examined if both compounds affected the expression of the procoagulant tissue factor (TF) induced by lipopolysaccharide (LPS) on human monocyte. Monocytes were pretreated with different concentrations of each flavonoid (0.1-500μM), followed by a 4h incubation with LPS in order to induce TF expression. Results of the TF expression showed different behaviors for the two flavonoids studied. A slight inhibitory effect on the TF expression was detected at a QTS concentration of 0.1μM, but from 1μM onwards a significant inhibitory effect that remained up to 500μM could be observed. In contrast, ATS induced a poor inhibitory effect on TF expression at all concentrations tested. These results suggest that QTS has another antithrombotic property, to be added to its already renowned ability as an anticoagulant and antiplatelet compound.  相似文献   

13.
14.
Tissue factor (TF) is a transmembrane molecule that, when exposed to plasma, is the key initiator of coagulation. Cellular TF activity is normally "encrypted", but treating cells with calcium ionophore (i.e. , ionomycin or A23187) increases ("deencrypts") TF activity without increasing TF mRNA or antigen expression. Deencryption results from both plasma membrane phosphatidylserine (PS)-dependent and -independent mechanisms; however, the nature of the PS-independent component is unclear. Since deencryption has been suggested to result from release of TF dimers on the cell surface, and since TF's cytoplasmic domain binds to actin-binding protein 280 and interacts with the cytoskeleton, we hypothesized that interactions with the cytoskeleton, through the cytoplasmic domain, play a role in mediating encryption/deencryption. We examined TF deencryption and the role of the cytoplasmic domain in the PS-independent component using baby hamster kidney (BHK) cells expressing full length TF (BHK-TF) or TF lacking its cytoplasmic domain (BHK-descyt) (Sorensen et al. (1999) J. Biol. Chem. 274, 21349). Both BHK-TF and BHK-descyt cells exhibited a dose-dependent, 1.5- to 10-fold increase in TF activity upon treatment with calcium ionophore, and this increase in activity was only partially blocked by annexin V. These results indicate that deencryption is not restricted to cells which naturally express TF and that the PS-independent component of deencryption is intact on cells transfected with either full length or truncated TF. Our results clearly indicate that deencryption is not dependent on an intact cytoplasmic domain in transfected BHK cells.  相似文献   

15.
Tissue factor (TF) is the most important trigger of blood coagulation in vascular pathology. Rabbit TF, with or without (delta C) its COOH-terminal intracellular tail, has been conjugated to green fluorescent protein (GFP) to study subcellular localization and other functions of TF. TF-GFP and TF delta C-GFP are associated with Na2CO3-resistant buoyant fractions in HEK-293 cells (lipid rafts); there is no morphological difference in the surface distribution of these or other GFP-labeled membrane proteins present in or excluded from rafts (confocal microscopy, HEK-293 cells). Endogenous TF expressed by rabbit aortic smooth muscle cells (SMCs) is also raft associated. Membranes from HEK-293 cells expressing recombinant TF-GFP or wild-type TF were equipotent to clot human plasma; however, TF delta C-GFP was approximately 20-fold more active (per membrane weight). Immunoblot confirmed that the deletion mutant is more abundantly expressed, and confocal microscopy showed that it has preferential membrane localization, whereas TF-GFP is mainly intracellular (nuclear lining and multiple granules). With a similar half-life (<4 h), the two constructions differ by their intracellular retention, lower for TF delta C-GFP. In serum-starved SMCs, the expression of endogenous TF was upregulated by interleukin-1 beta and/or FBS treatment (immunoblot, immunofluorescence, clotting assay). However, TF secretion or surface expression was not regulated by stimuli of physiological intensity (such as stimulation of the coexpressed kinin B1 receptors), although a calcium ionophore was highly active in this respect. TF is a raft-associated molecule whose surface expression (secretion) is apparently retarded or impaired by structural determinant(s) located in its COOH-terminal tail.  相似文献   

16.
Chaperone binding at the ribosomal exit tunnel   总被引:2,自引:0,他引:2  
The exit tunnel region of the ribosome is well established as a focal point for interaction between the components that guide the fate of nascent polypeptides. One of these, the chaperone trigger factor (TF), associates with the 50S ribosomal subunit through its N-terminal domain. Targeting of TF to ribosomes is crucial to achieve its remarkable efficiency in protein folding. A similar tight coupling to translation is found in signal recognition particle (SRP)-dependent protein translocation. Here, we report crystal structures of the E. coli TF ribosome binding domain. TF is structurally related to the Hsp33 chaperone but has a prominent ribosome anchor located as a tip of the molecule. This tip includes the previously established unique TF signature motif. Comparison reveals that this feature is not found in SRP structures. We identify a conserved helical kink as a hallmark of the TF structure that is most likely critical to ensure ribosome association.  相似文献   

17.
Molecular Basis of Transferrin Polymorphism in Goldfish (Carassius auratus)   总被引:1,自引:0,他引:1  
Yang L  Zhou L  Gui JF 《Genetica》2004,121(3):303-313
Transferrin (TF) polymorphism was investigated in a color variety of goldfish (Carassius auratus), and its molecular basis analyzed. Three TF variants (A1, A2 and B1) were identified from an inbred strain of the goldfish, of which A1 and B1 displayed a large electrophoretic difference on both native and SDS-PAGE gels. The TF cDNAs corresponding to variants A1 and B1 were cloned and sequenced from A1A1, A1B1 and B1B1 individuals, and their deduced amino acid sequences were analyzed. Substantial amino acid variation occurred between variants A1 and B1, with significant differences in peptide length, theoretical molecular weight (Mw) and isoelectric point (pI). No potential glycosylation sites were observed in the two amino acid sequences, which excluded the possibility that carbohydrate difference might cause electrophoretic variation among the TF variants. Further analysis suggested that the distinct electrophoretic mobility of the two variants A1 and B1 by SDS-PAGE resulted from their Mw difference, while the difference by the native PAGE could be explained by their pI variation. Furthermore, genomic DNA fragments containing the transferrin alleles were amplified and subjected to RFLP analysis in A1A1, A1B1 and B1B1 individuals. The data revealed characteristic banding patterns for each TF genotype, and demonstrated that the TF alleles A1 and B1 could be used as a co-dominant marker system. The initial work relating to the goldfish TF variants will benefit the understanding of the evolutionary and functional significance of TF polymorphism in fish.  相似文献   

18.
Autophagy has an important role in tumor biology of hepatocellular carcinoma (HCC). Recent studies demonstrated that tissue factor (TF) combined with coagulation factor VII (FVII) has a pathological role by activating a G-protein-coupled receptor called protease-activated receptor 2 (PAR2) for tumor growth. The present study aimed to investigate the interactions of autophagy and the coagulation cascade in HCC. Seventy HCC patients who underwent curative liver resection were recruited. Immunohistochemical staining and western blotting were performed to determine TF, FVII, PAR2 and light chain 3 (LC3A/B) expressions in tumors and their contiguous normal regions. We found that the levels of autophagic marker LC3A/B-II and coagulation proteins (TF, FVII and PAR2) were inversely correlated in human HCC tissues. Treatments with TF, FVII or PAR2 agonist downregulated LC3A/B-II with an increased level of mTOR in Hep3B cells; in contrast, knockdown of TF, FVII or PAR2 increased LC3A/B. Furthermore, mTOR silencing restored the impaired expression of LC3A/B-II in TF-, FVII- or PAR2-treated Hep3B cells and activated autophagy. Last, as an in vivo correlate, we administered TF, FVII or PAR2 agonist in a NOD/severe combined immunodeficiency xenograft model and showed decreased LC3A/B protein levels in HepG2 tumors with treatments. Overall, our present study demonstrated that TF, FVII and PAR2 regulated autophagy mainly via mTOR signaling. The interaction of coagulation and autophagic pathways may provide potential targets for further therapeutic application in HCC.  相似文献   

19.
20.
Hypercoagulation with upregulated monocytic tissue factor (TF) activity often occurs under a variety of inflammatory conditions including endotoxemia. The antagonism to bacterial endotoxin (LPS) signaling often results in the depression in TF upregulation. We herein report that compound 48/80 (48/80) significantly depressed LPS-induced TF activity in human and cebus monkey peripheral blood monocytes. Employing a model monocyte-like cell line (THP-1), we explored the regulatory mechanism to identify the inhibitory site(s) of 48/80. We determine whether the inhibition results from the blockade of LPS signaling. 48/80 dose-dependently inhibited LPS-induced TF activity. Chase of LPS-challenged cells with 48/80 also significantly offset TF upregulation. In immunofluorescent approaches, FACScan analysis revealed that 48/80 had no effect on either LPS recognition or the expression of its receptors (CD14 and CD11b). Moreover, LPS-induced TF expression as well as synthesis remained unaffected in the presence of 48/80. Consistent with the independence of LPS action, 48/80 was also able to inhibit TF activity induced by A23187, ionomycin, or Quin-2 AM. Interestingly, 48/80 significantly decreased the FVII binding to either resting or LPS-challenged cells. In conclusion, our results elucidate that the inhibitory action of 48/80 was independent of LPS signaling including recognition, receptor expression, and the induced TF expression/ synthesis. However, 48/80 was able to directly block FVII binding to monocytic TF, thereby resulting in such antagonism to LPS-induced TF-initiated extrinsic coagulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号