首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The recent cloning of the ob gene (leptin) has revolutionized our understanding of obesity and the underlying factors that govern weight homeostasis. There is growing evidence that long term food intake regulation is controlled by the central nervous system by a number of peptide hormones in response to changes in leptin levels. Studies of these hormones, using both genetic and pharmacological approaches, have provided a foundation for decoding the molecular logic of the neuronal circuits which regulate food intake control and energy balance. A review of the current progress in the melanocortin-4 receptor pathway, with particular emphasis on its relation to leptin, neuropeptide Y and other obesity hormones known to modulate weight homeostasis, is presented.  相似文献   

2.
The hormone leptin plays a crucial role in maintenance of body weight and glucose homeostasis. This occurs through central and peripheral pathways, including regulation of insulin secretion by pancreatic beta cells. To study this further in mice, we disrupted the signaling domain of the leptin receptor gene in beta cells and hypothalamus. These mice develop obesity, fasting hyperinsulinemia, impaired glucose-stimulated insulin release, and glucose intolerance, similar to leptin receptor null mice. However, whereas complete loss of leptin function causes increased food intake, this tissue-specific attenuation of leptin signaling does not alter food intake or satiety responses to leptin. Moreover, unlike other obese models, these mice have reduced fasting blood glucose. These results indicate that leptin regulation of glucose homeostasis extends beyond insulin sensitivity to influence beta cell function, independent of pathways controlling food intake. These data suggest that defects in this adipoinsular axis could contribute to diabetes associated with obesity.  相似文献   

3.
Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system.  相似文献   

4.
Objective : Leptin, an adipocyte-secreted hormone, has been shown to signal the status of energy stores to the brain, regulate energy homeostasis, and mediate the neuroendocrine response to food deprivation. Obesity is associated with increased leptin levels, and several hormones, including insulin and glucocorticoids, have been associated with leptin levels and expression in rodents. Although obesity has been strongly associated with increased leptin in humans, a significant percentage of leptin's variability remains unexplained. The role of endogenous hormones, demographic factors, or certain life-style factors in explaining the residual variability of leptin levels has not yet been clarified. We performed this cross-sectional study to document the relative importance of obesity, lifestyle factor, and endogenous hormones in determining serum leptin levels. Research Methods and Procedures : We measured serum concentrations of insulin, Cortisol, testosterone, growth hormone, and dehydroepiandrosterone sulfate; ascertained anthropometric, demographic, and lifestyle characteristics; and studied these variables in relationship to serum leptin concentrations in a sample of young healthy men. Results : Obesity and alcohol intake were independently and positively associated with circulating leptin concentrations. Additionally, cigarette smoking was negatively and independently associated with leptin concentrations. Finally, serum insulin concentration was an independent hormonal determinant of circulating leptin concentrations, whereas serum testosterone was negatively associated with leptin only by bivariate analysis. Discussion : We conclude that, in addition to obesity, cigarette smoking, alcohol intake, and serum insulin levels are associated with leptin levels in a population of healthy young men.  相似文献   

5.
Suppressor of cytokine signaling-3 (Socs-3) negatively regulates the action of various cytokines, as well as the metabolic hormones leptin and insulin. Mice with haploinsufficiency of Socs-3, or those with neuronal deletion of Socs-3, are lean and more leptin and insulin sensitive. To examine the role of Socs-3 within specific neurons critical to energy balance, we created mice with selective deletion of Socs-3 within pro-opiomelanocortin (POMC)-expressing cells. These mice had enhanced leptin sensitivity, measured by weight loss and food intake after leptin infusion. On chow diet, glucose homeostasis was improved despite normal weight gain. On a high-fat diet, the rate of weight gain was reduced, due to increased energy expenditure rather than decreased food intake; glucose homeostasis and insulin sensitivity were substantially improved. These studies demonstrate that Socs-3 within POMC neurons regulates leptin sensitivity and glucose homeostasis, and plays a key role in linking high-fat diet to disordered metabolism.  相似文献   

6.
Adipose tissue performs complex metabolic and endocrine functions. This review will focus on the recent literature on the biology and actions of three adipocyte hormones involved in the control of energy homeostasis and insulin action, leptin, acylation-stimulating protein, and adiponectin, and mechanisms regulating their production. Results from studies of individuals with absolute leptin deficiency (or receptor defects), and more recently partial leptin deficiency, reveal leptin's critical role in the normal regulation of appetite and body adiposity in humans. The primary biological role of leptin appears to be adaptation to low energy intake rather than a brake on overconsumption and obesity. Leptin production is mainly regulated by insulin-induced changes of adipocyte metabolism. Consumption of fat and fructose, which do not initiate insulin secretion, results in lower circulating leptin levels, a consequence which may lead to overeating and weight gain in individuals or populations consuming diets high in energy derived from these macronutrients. Acylation-stimulating protein acts as a paracrine signal to increase the efficiency of triacylglycerol synthesis in adipocytes, an action that results in more rapid postprandial lipid clearance. Genetic knockout of acylation-stimulating protein leads to reduced body fat, obesity resistance and improved insulin sensitivity in mice. The primary regulator of acylation-stimulating protein production appears to be circulating dietary lipid packaged as chylomicrons. Adiponectin increases insulin sensitivity, perhaps by increasing tissue fat oxidation resulting in reduced circulating fatty acid levels and reduced intramyocellular or liver triglyceride content. Adiponectin and leptin together normalize insulin action in severely insulin-resistant animals that have very low levels of adiponectin and leptin due to lipoatrophy. Leptin also improves insulin resistance and reduces hyperlipidemia in lipoatrophic humans. Adiponectin production is stimulated by agonists of peroxisome proliferator-activated receptor-gamma; an action may contribute to the insulin-sensitizing effects of this class of compounds. The production of all three hormones is influenced by nutritional status. These adipocyte hormones, the pathways controlling their production, and their receptors represent promising targets for managing obesity, hyperlipidemia, and insulin resistance.  相似文献   

7.
The hormones that regulate the hypothalamic circuits that control essential functions, such as reproduction and energy homeostasis, also specify brain architecture by regulating key developmental events. The cellular mechanisms underlying the developmental actions of testosterone and estrogen to determine patterns of neuronal cell death, synaptogenesis and axon guidance are being identified. Recent neuroanatomical evidence indicates that the adipocyte-derived hormone leptin may direct the development of hypothalamic pathways involved in energy homeostasis by promoting axonal projections from the arcuate nucleus of the hypothalamus to other hypothalamic sites that mediate the effects of leptin on food intake and body weight. Understanding how sex steroids and leptin regulate hypothalamic development will enable us to identify hormonally directed signaling events essential to the specification of neural circuitry that is optimized for sustained homeostasis.  相似文献   

8.
With the steady rise in the prevalence of obesity and its associated diseases, research aimed at understanding the mechanisms that regulate and control whole body energy homeostasis has gained new interest. Leptin and insulin, two anorectic hormones, have key roles in the regulation of body weight and energy homeostasis, as highlighted by the fact that several obese patients develop resistance to these hormones. Within the brain, the hypothalamic proopiomelanocortin and agouti‐related protein neurons have been identified as major targets of leptin and insulin action. Many studies have attempted to discern the individual contributions of various components of the principal pathways that mediate the central effects of leptin and insulin. The aim of this review is to discuss the latest findings that might shed light on, and lead to a better understanding of, energy balance and glucose homeostasis. In addition, recently discovered targets and mechanisms that mediate hormonal action in the brain are highlighted.  相似文献   

9.
Brain melanocortin system (MC-system) participates in regulation of energy homeostasis. Dominant mutation yellow of the Agouti gene leads to the hyperphagia, obesity and type 2 diabetes. Stress is known to inhibit food intake and body weight. The aim of the work was to study effects of repeating emotional stress on food intake and lipid-carbohydrate metabolism in Ay-mice. Male mice of C57B1/6J strain predisposed to the obesity (Ay/a-genotype) and normal (a/a-genotype) were used. In control group food intake, body weight and blood levels of insulin and leptin were increased in Ay/a-mice as compared to a/a-mice. Repeating emotional stress (30 min restraint 3 times a week for 5 weeks) did not alter food intake and indices of lipid-carbohydrate metabolism in a/a-mice and decreased food intake, body weight and blood levels of insulin and leptin in Ay/a-mice. Insulin and leptin blood levels were the same in Ay/a- and a/a-mice on 5 week of treatment. The stress increased basal and stress-induced concentrations of corticosterone to an equal degree in Ay/a- and a/a-mice. Thus, light repeating emotional stress hampered development of obesity and 2 type diabetes in the mice with the Agouti yellow mutation.  相似文献   

10.
Obesity is the result of a positive balance between total energy intake and its catabolism. Although many factors are involved in the regulation of energy metabolism, the discovery of leptin led to energy homeostasis being investigated in greater depth. Since its identification, leptin has been considered important in the development of obesity, given its anorexigenic effect and influence on food intake and energy expenditure. Leptin is involved in diverse physiological processes such as energy balance, appetite and body weight control, fat and carbohydrate metabolism, and reproduction. However, to be able to function, this hormone has many specific receptors both centrally (hypothalamus) and peripherally in the skeletal muscle, lungs and kidneys. This study aims to review the key aspects relating leptin to the development of obesity and discusses its potential as an anorectic agent.  相似文献   

11.
Obesity is frequently associated with leptin resistance. The present study investigated whether leptin resistance in rats is present before obesity develops, and thus could underlie obesity induced by 16 wk exposure to a liquid, palatable, high-energy diet (HED). Before HED exposure, male Wistar rats (weighing between 330 and 360 g) received intravenous infusions of 20 microg leptin 2 h before dark (approximately 57 microg/kg rat). Relative to saline infusion, this caused a highly variable effect on food intake (ranging between -94 and +129%), with food intake suppression that appeared negatively correlated with HED-induced increases in body weight gain, caloric intake, adiposity, and plasma leptin levels. In contrast, leptin's thermogenic response was positively correlated to body weight gain linked to weights of viscera, but not to adiposity. Before HED exposure, leptin unexpectedly increased food intake in some rats (fi+, n = 8), whereas others displayed the normal reduction in food intake (fi-, n = 7). HED-exposed fi+ rats had higher plasma leptin levels, retroperitoneal fat pad weight, HED intake, and body weight gain than fi- and chow-fed rats. These parameters were also higher in HED-exposed fi-rats relative to chow rats, except for plasma leptin concentrations. It is concluded that leptin's reduced efficacy to suppress food intake could predict obesity on an HED. An unexpected orexigenic effect of leptin might potentially contribute to this as well.  相似文献   

12.
Prostate cancer is one of the leading causes of death among men in the United States, and acquisition of hormone resistance (androgen independence) by cancer cells is a fatal event during the natural history of prostate cancer. Obesity is another serious health problem and has been shown to be associated with prostate cancer. However, little is known about the molecular basis of this association. Here we show that factor(s) secreted from adipocytes stimulate prostate cancer cell proliferation. Leptin is one of the major adipose cytokines, and it controls body weight homeostasis through food intake and energy expenditure. We identify leptin as a novel growth factor in androgen-independent prostate cancer cell growth. Strikingly, leptin stimulates cell proliferation specifically in androgen-independent DU145 and PC-3 prostate cancer cells but not in androgen-dependent LNCaP-FGC cells, although both cell types express functional leptin receptor isoforms. c-Jun NH2-terminal kinase (JNK) has been shown recently to play a crucial role in obesity and insulin resistance. Intriguingly, leptin induces JNK activation in androgen-independent prostate cancer cells, and the pharmacological inhibition of JNK blocked the leptin stimulation of androgen-independent prostate cancer cell proliferation. This suggests that JNK activation is required for leptin-mediated, androgen-independent prostate cancer cell proliferation. Furthermore, other cytokines produced by adipocytes and critical for body weight homeostasis cooperate with leptin in androgen-independent prostate cancer cell proliferation: interleukin-6 and insulin-like growth factor I demonstrate additive and synergistic effects on the leptin stimulation of androgen-independent prostate cancer cell proliferation, respectively. Therefore, adipose cytokines, as well as JNK, are key mediators between obesity and hormone-resistant prostate cancer and could be therapeutic targets.  相似文献   

13.
Leptin plays a critical role in the control of energy homeostasis. The sympathetic cardiovascular actions of leptin have emerged as a potential link between obesity and hypertension. We previously demonstrated that in mice, modest obesity induced by 10 wk of a high-fat diet is associated with preservation of leptin ability to increase renal sympathetic nerve activity (SNA) despite the resistance to the metabolic effects of leptin. Here, we examined whether selective leptin resistance exists in mice with late-stage diet-induced obesity (DIO) produced by 20 wk of a high-fat diet. The decrease in food intake and body weight induced by intraperitoneal or intracerebroventricular injection of leptin was significantly attenuated in the DIO mice. Regional SNA responses to intravenous leptin were also attenuated in DIO mice. In contrast, intracerebroventricularly administered leptin caused contrasting effects on regional SNA in DIO mice. Renal SNA response to intracerebroventricular leptin was preserved, whereas lumbar and brown adipose tissue SNA responses were attenuated. Intact renal SNA response to leptin combined with the increased cerebrospinal fluid leptin levels in DIO mice represents a potential mechanism for the adverse cardiovascular consequences of obesity. Lastly, we examined the role of phosphoinositol-3 kinase (PI3K) and melanocortin receptors (MCR) in mediating the preserved renal SNA response to leptin in obesity. Presence of PI3K inhibitor (LY294002) or MC3/4R antagonist (SHU9119) significantly attenuated the renal SNA response to leptin in DIO and agouti obese mice. Our results demonstrate the importance of PI3K and melanocortin receptors in the transduction of leptin-induced renal sympathetic activation in obesity.  相似文献   

14.
Leptin is an adipocyte-derived hormone that plays a key role in energy homeostasis, yet resistance to leptin is a feature of most cases of obesity in humans and rodents. In vitro analysis suggested that the suppressor of cytokine signaling-3 (Socs3) is a negative-feedback regulator of leptin signaling involved in leptin resistance. To determine the functional significance of Socs3 in vivo, we generated neural cell-specific SOCS3 conditional knockout mice using the Cre-loxP system. Compared to their wild-type littermates, Socs3-deficient mice showed enhanced leptin-induced hypothalamic Stat3 tyrosine phosphorylation as well as pro-opiomelanocortin (POMC) induction, and this resulted in a greater body weight loss and suppression of food intake. Moreover, the Socs3-deficient mice were resistant to high fat diet-induced weight gain and hyperleptinemia, and insulin-sensitivity was retained. These data indicate that Socs3 is a key regulator of diet-induced leptin as well as insulin resistance. Our study demonstrates the negative regulatory role of Socs3 in leptin signaling in vivo, and thus suppression of Socs3 in the brain is a potential therapy for leptin-resistance in obesity.  相似文献   

15.
Lecklin A  Dube MG  Torto RN  Kalra PS  Kalra SP 《Peptides》2005,26(7):1176-1187
The efficacy of central leptin therapy on weight homeostasis through various phases of reproduction, pregnancy outcome and postnatal, prepubertal and pubertal growth of offspring was assessed. Enhanced leptin transgene expression after a single intracerebroventricular injection of recombinant adeno-associated virus vector encoding the leptin gene (rAAV-lep) decreased calorie intake and weight in adult nulliparous female rats. rAAV-lep treated rats conceived normally, displayed unremarkable pregnancy rate, parturition and delivered normal sized litters. Significantly lower weight was maintained through gestation, lactation, and post-lactation periods. The maintenance of a modest weight reduction was accompanied by voluntarily reduced calorie intake, increased thermogenic energy expenditure, decreased adiposity as reflected by drastically reduced leptin levels, and suppressed insulin and insulin-like growth factor 1 levels through lactation and post-lactation in rAAV-lep treated dams. The offspring at birth weighed significantly less than those of controls and this lower weight range was sustained during postnatal, prepubertal, pubertal and adult (3 months old) periods, contemporaneous with metabolic circulating hormones in the normal range. For the first time we show the persistent efficacy of central leptin gene therapy to suppress weight gain through all phases of reproduction, lactation and post-lactation in dams and reveal the potential imprinting link to producing lower weight in the F1 generation.  相似文献   

16.
Objective: In order to circumvent the multiple peripheral effects of hyperleptinemia and leptin resistance, the efficacy of leptin transgene expression in the hypothalamic paraventricular nucleus (PVN) to reinstate the central energy homeostasis in obesity was examined. Research Methods and Procedures: A recombinant adeno‐associated viral vector encoding either leptin (rAAV‐lep) or green fluorescent protein (rAAV‐GFP) was microinjected into the PVN of obesity‐prone rats consuming a high‐fat diet (HFD). Results: rAAV‐lep, and not rAAV‐GFP, microinjection significantly reduced energy intake and enhanced energy expenditure, thereby resulting in normalization of weight and blood levels of leptin, insulin, free fatty acids, and glucose concomitant with enhanced ghrelin secretion during the extended period of observation. Discussion: Thus, we show, for the first time, that amelioration of leptin insufficiency with enhanced localized leptin availability in the PVN alone can reverse dietary obesity and the attendant hyperinsulinemia and concurrently block the central stimulatory effects of elevated endogenous ghrelin on food intake and adiposity.  相似文献   

17.
Skeletal muscle resistance to the key metabolic hormones, leptin and insulin, is an early defect in obesity. Suppressor of cytokine signaling 3 (SOCS3) is a major negative regulator of both leptin and insulin signaling, thereby implicating SOCS3 in the pathogenesis of obesity and associated metabolic abnormalities. Here, we demonstrate that SOCS3 mRNA expression is increased in murine skeletal muscle in the setting of diet-induced and genetic obesity, inflammation, and hyperlipidemia. To further evaluate the contribution of muscle SOCS3 to leptin and insulin resistance in obesity, we generated transgenic mice with muscle-specific overexpression of SOCS3 (MCK/SOCS3 mice). Despite similar body weight, MCK/SOCS3 mice develop impaired systemic and muscle-specific glucose homeostasis and insulin action based on glucose and insulin tolerance tests, hyperinsulinemic-euglycemic clamps, and insulin signaling studies. With regards to leptin action, MCK/SOCS3 mice exhibit suppressed basal and leptin-stimulated activity and phosphorylation of alpha2 AMP-activated protein kinase (α2AMPK) and its downstream target, acetyl-CoA carboxylase (ACC). Muscle SOCS3 overexpression also suppresses leptin-regulated genes involved in fatty acid oxidation and mitochondrial function. These studies demonstrate that SOC3 within skeletal muscle is a critical regulator of leptin and insulin action and that increased SOCS may mediate insulin and leptin resistance in obesity.  相似文献   

18.
Oxytocin neurons represent one of the major subsets of neurons in the paraventricular hypothalamus (PVH), a critical brain region for energy homeostasis. Despite substantial evidence supporting a role of oxytocin in body weight regulation, it remains controversial whether oxytocin neurons directly regulate body weight homeostasis, feeding or energy expenditure. Pharmacologic doses of oxytocin suppress feeding through a proposed melanocortin responsive projection from the PVH to the hindbrain. In contrast, deficiency in oxytocin or its receptor leads to reduced energy expenditure without feeding abnormalities. To test the physiological function of oxytocin neurons, we specifically ablated oxytocin neurons in adult mice. Our results show that oxytocin neuron ablation in adult animals has no effect on body weight, food intake or energy expenditure on a regular diet. Interestingly, male mice lacking oxytocin neurons are more sensitive to high fat diet-induced obesity due solely to reduced energy expenditure. In addition, despite a normal food intake, these mice exhibit a blunted food intake response to leptin administration. Thus, our study suggests that oxytocin neurons are required to resist the obesity associated with a high fat diet; but their role in feeding is permissive and can be compensated for by redundant pathways.  相似文献   

19.
The world is experiencing an epidemic of obesity and its concomitant health problems. One implication is that the normally robust negative feedback system that controls energy homeostasis must be responding to different inputs than in the past. In this review we discuss the influence of gender on the efficacy of adiposity hormones as they interact with food intake control systems in the brain. Specifically, the levels of insulin and leptin in the blood are correlated with body fat, insulin being related mainly to visceral fat and leptin to subcutaneous fat. Since females carry more fat subcutaneously and males carry more fat viscerally, leptin correlates better with total body fat in females and insulin correlates better in males. High visceral fat and plasma insulin are also risk factors for the complications of obesity, including type-2 diabetes, cardiovascular problems, and certain cancers, and these are more prevalent in males. Consistent with these systemic differences, the brains of females are more sensitive to the catabolic actions of low doses of leptin whereas the brains of males are more sensitive to the catabolic action of low doses of insulin. The implications of this are discussed.  相似文献   

20.
Iglesias P  Díez JJ 《Cytokine》2007,40(2):61-70
Thyroid hormones act on several aspects of metabolic and energy homeostasis influencing body weight, thermogenesis, and lipolysis in adipose tissue. Adipocytokines are biologically active substances produced by adipocyte with different physiological functions. These substances have multiple effects on several tissues acting on the intermediate and energy metabolism. For these reasons, attention has recently been focused on the possible relationship between adipocytokines, thyroid status, and thyroid dysfunction. Leptin, a signal of satiety to the brain and regulator of insulin and glucose metabolism, reflects the amount of fat storage and is considered as a pro-inflammatory adipocytokine. Adiponectin is inversely related to the degree of adiposity, increases insulin sensitivity, and may have antiatherogenic and anti-inflammatory properties. Resistin impairs glucose homeostasis and insulin action in mice but not in humans. Resistin might be considered a pro-inflammatory adipocytokine and participate in obesity-associated inflammation. Several reports indicate that leptin regulates thyroid function at hypothalamic-hypophyseal level and, conversely, thyroid hormones might control leptin metabolism at least in some animals studies. Both adiponectin and thyroid hormones share some physiological actions as reduction of body fat by increasing thermogenesis and lipid oxidation. Resistin also seems to be regulated by thyroid hormones, at least in rats. Thyroid dysfunction does not significantly affect serum leptin concentrations. Serum levels of adiponectin are no influenced by thyroid hypofunction; however, hyperthyroidism is associated with normal or elevated adiponectin levels. Finally, discordant results in resistin levels in thyroid dysfunction have been reported in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号