首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cytotherapy》2022,24(1):32-36
Immunotherapy of cancer and other diseases is often dependent on adoptive transfer to patients of cellular products generated in Current Good Manufacturing Practice (cGMP) facilities. With the availability and approval of various cellular products for therapy, cell production facilities are experiencing unprecedented growth in demand for services. Increasingly, these services involve processing of externally generated cells for transfer to the bedside. The arrival of cells from external manufacturing facilities for processing and eventual infusion of cell therapy products into patients creates a new layer of responsibility and adds to an already demanding list of the existing procedures in academic cGMP facilities. Sponsors introduce their own requirements for the handling of cells that the laboratory must incorporate and follow. The challenges of creating additional access to cleanrooms, writing new standard operating procedures, expanding personnel training, altering pre-existing schedules and incorporating additional monitoring for safety of external products alter the balance of laboratory operations. Adjustments for accommodating externally manufactured products are numerous and varied, as each sponsor has requests that are product-specific. If cells produced by several different external manufacturers are handled by the same facility, the negative impact on the regular activities in this facility may be considerable. Here the authors provide a review of operational challenges that an academic-based laboratory faces and discuss solutions that could ameliorate the difficulties related to an increasing volume of industry-sponsored trials. The solution may be the development under the auspices of the Foundation for Accreditation of Cellular Therapy or the Food and Drug Administration of regulations that will guide the processing of products manufactured by external companies and make these regulations broadly applicable in all cGMP facilities.  相似文献   

2.
Cell manufacturing for clinical applications is a unique form of biologics manufacturing that relies on maintenance of stringent work practices designed to ensure product consistency and prevent contamination by microorganisms or by another patient's cells. More extensive, prolonged laboratory processes involve greater risk of complications and possibly adverse events for the recipient, and so the need for control is correspondingly greater. To minimize the associate risks of cell manufacturing adhering to international quality standards is critical. Current good tissue practice (cGTP) and current good manufacturing practice (cGMP) are examples of general standards that draw a baseline for cell manufacturing facilities. In recent years, stem cell researches have found great public interest in Iran and different cell therapy projects have been started in country. In this review we described the role of our tissue banking experiences in establishing a new cGMP cell manufacturing facility. The authors concluded that, tissue banks and tissue banking experts can broaden their roles from preparing tissue grafts to manufacturing cell and tissue engineered products for translational researches and phase I clinical trials. Also they can collaborate with cell processing laboratories to develop SOPs, implement quality management system, and design cGMP facilities.  相似文献   

3.
Lai H  Chen Q 《Plant cell reports》2012,31(3):573-584
Despite the success in expressing a variety of subunit vaccine proteins in plants and the recent stride in improving vaccine accumulation levels by transient expression systems, there is still no plant-derived vaccine that has been licensed for human use. The lack of commercial success of plant-made vaccines lies in several technical and regulatory barriers that remain to be overcome. These challenges include the lack of scalable downstream processing procedures, the uncertainty of regulatory compliance of production processes, and the lack of demonstration of plant-derived products that meet the required standards of regulatory agencies in identity, purity, potency and safety. In this study, we addressed these remaining challenges and successfully demonstrate the ability of using plants to produce a pharmaceutical grade Norwalk virus (NV) vaccine under current Good Manufacture Practice (cGMP) guidelines at multiple gram scales. Our results demonstrate that an efficient and scalable extraction and purification scheme can be established for processing virus-like particles (VLPs) of NV capsid protein (NVCP). We successfully operated the upstream and downstream NVCP production processes under cGMP regulations. Furthermore, plant-derived NVCP VLP demonstrates the identity, purity, potency and safety that meet the preset release specifications. This material is being tested in a Phase I human clinical trial. This research provides the first report of producing a plant-derived vaccine at scale under cGMP regulations in an academic setting and an important step for plant-produced vaccines to become a commercial reality.  相似文献   

4.
The binding of atrial natriuretic factor (ANF) was studied in kidney membranes of inbred salt-sensitive (S) and inbred salt-resistant (R) rats on high or low salt diet. Important differences between strains were seen in the rate of dissociation of ANF from its renal receptor(s) and this was dependent on salt (NaCl) intake. On low salt diet ANF dissociation rates were similar between strains. R rats responded to high salt diet with a decrease in the rate of ANF dissociation from its renal receptor, but ANF dissociation in S rats was not altered by dietary salt. Receptor density was similar between strains. Basal cGMP production was slightly higher for renal membranes of S rats, but ANF stimulation of cGMP production was similar between strains and was not influenced by salt intake in either strain. Since strain-related salt-induced changes in ANF-receptor binding kinetics were not reflected in any strain-related salt-induced changes in ANF stimulated cGMP production, it is tentatively concluded that the ANF receptor likely to be different between S and R strains is the ANF receptor not linked to cGMP production.  相似文献   

5.
It has been predicted that one of the greatest increase in prevalence of diabetes will happen in the Middle East bear in the next decades. The aim of standard therapeutic strategies for diabetes is better control of complications. In contrast, some new strategies like cell and gene therapy have aimed to cure the disease. In recent years, significant progress has occurred in beta-cell replacement therapies with a progressive improvement of short-term and long term outcomes. In year 2005, considering the impact of the disease in Iran and the promising results of the Edmonton protocol, the funding for establishing a current Good Manufacturing Practice (cGMP) islet processing facility by Endocrinology and Metabolism Research Center was approved by Tehran University of Medical Sciences. Several islet isolations were performed following establishment of cGMP facility and recruitment of all required equipments for process validation and experimental purpose. Finally the first successful clinical islet isolation and transplantation was performed in September 2010. In spite of a high cost of the procedure it is considered beneficial and may prevent long term complications and the costs associated with secondary cares. In this article we will briefly describe our experience in setting up a cGMP islet processing facility which can provide valuable information for regional countries interested to establish similar facilities.  相似文献   

6.
Microbial electrochemical systems (MESs) are a highly versatile platform technology with a particular focus on power or energy production. Often, they are used in combination with substrate conversion (e.g., wastewater treatment) and production of value-added compounds via electrode-assisted fermentation. This rapidly evolving field has seen great improvements both technically and biologically, but this interdisciplinarity sometimes hampers overseeing strategies to increase process efficiency. In this review, we first briefly summarize the terminology of the technology and outline the biological background that is essential for understanding and thus improving MES technology. Thereafter, recent research on improvements at the biofilm–electrode interface will be summarized and discussed, distinguishing between biotic and abiotic approaches. The two approaches are then compared, and resulting future directions are discussed. This mini-review therefore provides basic knowledge of MES technology and the underlying microbiology in general and reviews recent improvements at the bacteria–electrode interface.  相似文献   

7.
Burger SR 《Cytotherapy》2000,2(2):111-122
Medical centers and biotechnology companies active in cellular and gene therapy increasingly are working to design and build clinical laboratories capable of performing cellular engineering and vector production using current good manufacturing practices (cGMPs). Because cell engineering is a rapidly changing field, and definitions for cell engineering cGMPs are still being established, a cGMP cell-engineering laboratory most often should be designed with a broad range of potential applications in mind. While the laboratory facility is the most tangible aspect of cGMP, it represents only part of a larger process, which it must be designed and built to support.  相似文献   

8.
We investigated a transgenic mouse model of sickle cell disease, homozygous for deletion of mouse beta-globin and containing transgenes for human beta(S) and beta(S-antilles) globins linked to the transgene for human alpha-globin. In these mice, basal cGMP production in aortic rings is increased, whereas relaxation to an endothelium-dependent vasodilator, A-23187, is impaired. In contrast, aortic expression of endothelial nitric oxide synthase (NOS) is unaltered in sickle mice, whereas expression of inducible NOS is not detected in either group; plasma nitrate/nitrite concentrations and NOS activity are similar in both groups. Increased cGMP may reflect the stimulatory effect of peroxides (an activator of guanylate cyclase), because lipid peroxidation is increased in aortae and in plasma in sickle mice. Despite increased vascular cGMP levels in sickle mice, conscious systolic blood pressure is comparable to that of aged-matched controls; sickle mice, however, evince a greater rise in systolic blood pressure in response to nitro-L-arginine methyl ester, an inhibitor of NOS. Systemic concentrations of the vasoconstrictive oxidative product 8-isoprostane are increased in sickle mice. We conclude that vascular responses are altered in this transgenic sickle mouse and are accompanied by increased lipid peroxidation and production of cGMP; we suggest that oxidant-inducible vasoconstrictor systems such as isoprostanes may oppose nitric oxide-dependent and nitric oxide-independent mechanisms of vasodilatation in this transgenic sickle mouse. Destabilization of the vasoactive balance in the sickle vasculature by clinically relevant states may predispose to vasoocclusive disease.  相似文献   

9.
The natriuretic peptide receptor-A (NPR-A) mediates natriuretic, hypotensive, and antihypertrophic effects of natriuretic peptides through the production of cGMP. In pathological conditions such as heart failure, these effects are attenuated by homologous and heterologous desensitization mechanisms resulting in the dephosphorylation of the cytosolic portion of the receptor. In contrast with natriuretic peptide-induced desensitization, pressor hormone-induced desensitization is dependent on protein kinase C (PKC) stimulation and (or) cytosolic calcium elevation. Mechanisms by which PKC and Ca(2+) promote NPR-A desensitization are not known. The role of cGMP and of the cytosolic Ca(2+) pathways in NPR-A desensitization were therefore studied. In contrast with the activation of NPR-A by its agonist, activation of soluble guanylyl cyclases of LLC-PK1 cells by sodium nitroprusside also leads to a production of cGMP but without altering NPR-A activation. Consequently, cGMP elevation per se does not appear to mediate homologous desensitization of NPR-A. In addition, cytosolic calcium increase is required only for the heterologous desensitization pathway since the calcium chelator BAPTA-AM blocks only PMA or ionomycin-induced desensitization. Calcineurin inhibitors block the NPR-A guanylyl cyclase heterologous desensitization induced by ionomycin, suggesting an essential role for this Ca(2+)-stimulated phosphatase in NPR-A desensitization. In summary, the present report demonstrates that neither cGMP nor Ca(2+) cytosolic elevation cause NPR-A homologous desensitization. Our results also indicate for the first time a role for calcineurin in NPR-A heterologous desensitization.  相似文献   

10.
Serines 64 and 79 are homologous residues that are juxtaposed to the autoinhibitory pseudosubstrate site in cGMP-dependent protein kinase type Ialpha and type Ibeta (PKG-Ialpha and PKG-Ibeta), respectively. Autophosphorylation of this residue is associated with activation of type I PKGs. To determine the role of this conserved serine, point mutations have been made in PKG-Ialpha (S64A, S64T, S64D, and S64N) and PKG-Ibeta (S79A). In wild-type PKG-Ialpha, basal kinase activity ratio (-cGMP/+cGMP) is 0.11, autophosphorylation increases this ratio 3-fold, and the K(a) and K(D) values for cGMP are 127 and 36 nm, respectively. S64A PKG-Ialpha basal kinase activity ratio increases 2-fold, cGMP binding affinity increases approximately 10-fold in both K(a) and K(D), and activation by autophosphorylation is slight. S64D and S64N mutants are nearly constitutively active in the absence of cGMP, cGMP binding affinity in each increases 18-fold, and autophosphorylation does not affect the kinase activity of these mutants. Mutation of the homologous site in PKG-Ibeta (S79A) increases the basal kinase activity ratio 2-fold and cGMP binding affinity 5-fold over that of wild-type PKG-Ibeta. The combined results demonstrate that a conserved serine juxtaposed to the pseudosubstrate site in type I PKGs contributes importantly to enzyme function by increasing autoinhibition and decreasing cGMP binding affinity.  相似文献   

11.
Guanylate cyclase (GC) catalyzes the formation of cGMP and it is only recently that such enzymes have been characterized in plants. One family of plant GCs contains the GC catalytic center encapsulated within the intracellular kinase domain of leucine rich repeat receptor like kinases such as the phytosulfokine and brassinosteroid receptors. In vitro studies show that both the kinase and GC domain have catalytic activity indicating that these kinase-GCs are examples of moonlighting proteins with dual catalytic function. The natural ligands for both receptors increase intracellular cGMP levels in isolated mesophyll protoplast assays suggesting that the GC activity is functionally relevant. cGMP production may have an autoregulatory role on receptor kinase activity and/or contribute to downstream cell expansion responses. We postulate that the receptors are members of a novel class of receptor kinases that contain functional moonlighting GC domains essential for complex signaling roles.  相似文献   

12.
Nitric oxide (NO)-dependent soluble guanylyl cyclase (sGC) is operative in mammalian cells, but its presence and the role in cGMP production in pituitary cells have been incompletely characterized. Here we show that sGC is expressed in pituitary tissue and dispersed cells, enriched lactotrophs and somatotrophs, and GH(3) immortalized cells, and that this enzyme is exclusively responsible for cGMP production in unstimulated cells. Basal sGC activity was partially dependent on voltage-gated calcium influx, and both calcium-sensitive NO synthases (NOS), neuronal and endothelial, were expressed in pituitary tissue and mixed cells, enriched lactotrophs and somatotrophs, and GH(3) cells. Calcium-independent inducible NOS was transiently expressed in cultured lactotrophs and somatotrophs after the dispersion of cells, but not in GH(3) cells and pituitary tissue. This enzyme participated in the control of basal sGC activity in cultured pituitary cells. The overexpression of inducible NOS by lipopolysaccharide + interferon-gamma further increased NO and cGMP levels, and the majority of de novo produced cGMP was rapidly released. Addition of an NO donor to perifused pituitary cells also led to a rapid cGMP release. Calcium-mobilizing agonists TRH and GnRH slightly increased basal cGMP production, but only when added in high concentrations. In contrast, adenylyl cyclase agonists GHRH and CRF induced a robust increase in cGMP production, with EC(50)s in the physiological concentration range. As in cells overexpressing inducible NOS, the stimulatory action of GHRH and CRF was preserved in cells bathed in calcium-deficient medium, but was not associated with a measurable increase in NO production. These results indicate that sGC is present in secretory anterior pituitary cells and is regulated in an NO-dependent manner through constitutively expressed neuronal and endothelial NOS and transiently expressed inducible NOS, as well as independently of NO by adenylyl cyclase coupled-receptors.  相似文献   

13.
The podocytes are highly differentiated cells playing a key role in glomerular filtration. Vasoactive factors including angiotensin II (Ang II) and cyclic guanosine 5' monophosphate (cGMP) are synthesized by these cells upon stimulation as well as in the basal state. In this study we have tested whether angiotensin II affects the total synthesis of cGMP in primary culture of rat podocytes. The cells were stimulated with atrial natriuretic peptide (ANP) and/or a nitric oxide (NO) donor, S-nitroso-N-acetyl penicillamine (SNAP), in the absence or presence of Ang II. The cGMP synthesis was determined by radioimmunoassay (RIA). ANP or SNAP alone increased the cGMP synthesis in podocytes although the effects were not additive unless Ang II was present in the medium. Ang II suppressed the ANP-dependent cGMP synthesis whereas SNAP-dependent cGMP production remained unaffected. These effects were prevented by a non-specific antagonist of Ang II receptors (AT), saralasin. Adversely, PD123319, a specific inhibitor of AT2 receptors, augmented inhibition of ANP-dependent and enhanced the NO-dependent cGMP production. Probenecid, an inhibitor of cGMP extrusion from the cells, suppressed the cGMP generation by both ANP and SNAP. We conclude that cGMP synthesis in cultured podocytes is modulated by angiotensin II and that two adversely acting receptors, AT1 and AT2 are involved in this effect. Additionally, production of cGMP might be intrinsically inhibited by cGMP accumulating inside the cells.  相似文献   

14.
Cleft lip and palate are among the most common of all birth defects. The secondary palate forms from mesenchymal shelves covered with epithelium that adheres to form the midline epithelial seam (MES). The theories suggest that MES cells follow an epithelial to mesenchymal transition (EMT), apoptosis and migration, making a fused palate 1. Complete disintegration of the MES is the final essential phase of palatal confluence with surrounding mesenchymal cells. We provide a method for palate organ culture. The developed in vitro protocol allows the study of the biological and molecular processes during fusion. The applications of this technique are numerous, including evaluating responses to exogenous chemical agents, effects of regulatory and growth factors and specific proteins. Palatal organ culture has a number of advantages including manipulation at different stages of development that is not possible using in vivo studies.  相似文献   

15.
The effect of the organic buffer salts MES, MOPS, and PIPES on the growth of S. thermophilus ST110, medium pH, and accumulation of the antipediococcal bacteriocin thermophilin 110 were evaluated in whey permeate media over a period of 24 h. In nonbuffered medium, thermophilin 110 production at 37°C paralleled the growth of S. thermophilus ST110 and reached a maximum after 8–10 h. Addition of organic buffer salts decreased the drop in medium pH and resulted in increased biomass (dry cells; μg/mL) and higher yields of thermophilin 110 (units/μg cells). The best results were obtained by the addition of 1% (w/v) MES to the medium, which reduced the pH drop to 1.8 units after 10 h of growth (compared to 2.3 pH units in the control) and resulted in a 1.5-fold increase in cell mass (495 μg/mL) and a 7-fold increase in thermophilin 110 yield (77 units/μg dry cells) over the control. The results showed that whey permeate-based media may be suitable for producing large amounts of thermophilin 110 needed for controlling spoilage pediococci in industrial wine and beer fermentations. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

16.
Although important advances have been made over past decades in studying the mechanisms of hypertension, the nature of cellular signaling patterns involved and their relationship remain unclear. High cGMP production rates in isolated renal glomeruli have been presented as a characteristic of spontaneously hypertensive rat (SHR) even before the development of hypertension, which suggests that this event might be a cause of the increase in blood pressure. Using cross-breeding between SHR and WKY parental strains to obtain F1 and F2 hybrids, we have investigated the patterning of high blood pressure and cGMP production rates. We have found that, in the F2 population, the mean blood pressure and both basal and ANP(1-28)-stimulated cGMP production are similar to the parental SHR. In addition, we have found a positive correlation between blood pressure and high cGMP production rates in the F2 population. The higher cGMP production was not a consequence of hypertension, since in DOCA-salt hypertensive rats cGMP production was similar to that observed in normotensive WKY rats. These observations suggest that high cGMP production is a characteristic linked to hypertension. Finally, reciprocal crosses between the SHR and WKY parental strains showed that in the F1 population blood pressure but not cGMP production are associated with the Y chromosome.  相似文献   

17.
C-type natriuretic peptide (CNP), which was recently found to be a selective ligand for one of the two known natriuretic peptide receptor guanylyl cyclases (NPR-B), potently stimulates cGMP production in cultured rat vascular smooth muscle cells (VSMC) and exerts potent antiproliferative effects on the cells. To investigate the structural requirements of CNP for stimulation of cGMP accumulation via NPR-B, we prepared CNP analogs and tested them on cultured rat VSMC. Our results indicate that only the ring portion of CNP with a disulfide bond (CNP(6-22)) participates in stimulation of cGMP accumulation, especially the sequence Leu9-Lys10-Leu11 in the ring portion executes essential roles for both elevation of cGMP and selectivity of the ligand for NPR-B. We also found a good correlation between the activities of the CNP analogs for stimulation of cGMP accumulation and inhibition of DNA synthesis.  相似文献   

18.
Nitric oxide and muscarinic agonists both stimulate motoneuron spike activity and cGMP production in the central nervous system of larval Manduca sexta. The possible role of nitric oxide in mediating muscarinic changes in excitability was examined by measuring cGMP accumulation and proleg motoneuron activity while blocking or mimicking the production of nitric oxide. All the muscarinic-induced changes in cGMP are blocked by the nitric oxide-synthase inhibitor, nitro-l-arginine, an effect that is partially prevented by co-incubation with arginine. Action potential blockage with tetrodotoxin revealed that muscarinic increases in cGMP production have both spike-dependent and spike-independent mechanisms. Furthermore, nitric oxide donors can increase proleg motoneuron activity and this stimulation is blocked by 1H-{1,2,4}oxadiazolo{4, 3-a}quinoxalin-1-one suggesting that it is mediated by a nitric oxide-sensitive guanylyl cyclase. In contrast, nitro-l-arginine and a variety of other nitric oxide-synthase inhibitors and nitric oxide scavengers have no significant effect on muscarinic stimulation of motoneuron activity. Therefore, although a nitric oxide sensitive guanylyl cyclase is capable of elevating spike activity and muscarinic agonists can increase cGMP, this mechanism is not necessary for the normal muscarinic increase in excitability. It is concluded that muscarinic receptors are coupled to nitric oxide and cGMP production in neurons other than those controlling the prolegs. Accepted: 22 July 1999  相似文献   

19.
We recently reported that the ED50 value for (R,S)-2,3-dimethoxypropionamide (1) in the maximal electroshock (MES)-induced seizure test in mice was 30 mg/kg (Choi, D.; Stables, J.P., Kohn, H. Bioorg. Med. Chem. 1996, 4, 2105). This value is comparable to that observed for phenobarbital (ED50 = 22 mg/kg). Compound 1 is structurally similar to a class of MES-selective anticonvulsant agents, termed functionalized amino acids (2), that were developed in our laboratory. The distinguishing feature of 2 is the differential activities observed for enantiomers. In this study, we asked whether comparable differences in activities were observed in the MES-induced seizure test for (R)- and (S)-1. We developed stereospecific syntheses for these enantiomers and showed that both compounds exhibit nearly equal anticonvulsant activity in mice (i.p.) (MES ED50 = 79-111 mg/kg). The surprisingly high ED50 values for (R)- and (S)-1 required our redetermining the ED50 value for (R,S)-1. We revised this value to 79 mg/kg. A limited structure-activity relationship study for 1 was conducted. Special attention was given to the C(2) methoxy unit in 1. We found that replacement of this moiety led to only modest differences in the MES activities upon ip administration to mice. Significantly, we observed an enhancement in the anticonvulsant activity for (R,S)-N-benzyl 2-hydroxy-3-methoxypropionamide ((R,S)-6) upon oral administration to rats ((R,S)-6: mice (i.p.) ED50 > 100, < 300 mg/kg; rat (oral) ED50 = 62 mg/kg). The activities of 3-methoxypropionamides, functionalized amino acids, and related compounds are discussed.  相似文献   

20.
Nitric oxide (NO) plays essential roles in many biotic and abiotic stresses in plant development procedures, including pollen tube growth. Here, effects of NO on cold stress inhibited pollen germination and tube growth in Camellia sinensis were investigated in vitro. The NO production, NO synthase (NOS)-like activity, cGMP content and proline (Pro) accumulation upon treatment with NO scavenger cPTIO, NOS inhibitor L-NNA, NO donor DEA NONOate, guanylate cyclase (GC) inhibitor ODQ or phosphodiesterase (PDE) inhibitor Viagra at 25°C (control) or 4°C were analyzed. Exposure to 4°C for 2 h reduced pollen germination and tube growth along with increase of NOS-like activity, NO production and cGMP content in pollen tubes. DEA NONOate treatment inhibited pollen germination and tube growth in a dose-dependent manner under control and reinforced the inhibition under cold stress, during which NO production and cGMP content promoted in pollen tubes. L-NNA and cPTIO markedly reduced the generation of NO induced by cold or NO donor along with partly reverse of cold- or NO donor-inhibited pollen germination and tube growth. Furthermore, ODQ reduced the cGMP content under cold stress and NO donor treatment in pollen tubes. Meanwhile, ODQ disrupted the reinforcement of NO donor on the inhibition of pollen germination and tube growth under cold condition. Additionally, Pro accumulation of pollen tubes was reduced by ODQ compared with that receiving NO donor under cold or control condition. Effects of cPTIO and L-NNA in improving cold-treated pollen germination and pollen tube growth could be lowered by Viagra. Moreover, the inhibitory effects of cPTIO and L-NNA on Pro accumulation were partly reversed by Viagra. These data suggest that NO production from NOS-like enzyme reaction decreased the cold-responsive pollen germination, inhibited tube growth and reduced Pro accumulation, partly via cGMP signaling pathway in C. sinensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号