首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Z Eichenbaum  Z Livneh 《Genetics》1998,149(3):1173-1181
A new mutagenesis assay system based on the phage 434 cI gene carried on a low-copy number plasmid was used to investigate the effect of UV light on intermolecular transposition of IS10. Inactivation of the target gene by IS10 insertion was detected by the expression of the tet gene from the phage 434 PR promoter, followed by Southern blot analysis of plasmids isolated from TetR colonies. UV irradiation of cells harboring the target plasmid and a donor plasmid carrying an IS10 element led to an increase of up to 28-fold in IS10 transposition. Each UV-induced transposition of IS10 was accompanied by fusion of the donor and acceptor plasmid into a cointegrate structure, due to coupled homologous recombination at the insertion site, similar to the situation in spontaneous IS10 transposition. UV radiation also induced transposition of IS10 from the chromosome to the target plasmid, leading almost exclusively to the integration of the target plasmid into the chromosome. UV induction of IS10 transposition did not depend on the umuC and uvrA gene product, but it was not observed in lexA3 and DeltarecA strains, indicating that the SOS stress response is involved in regulating UV-induced transposition. IS10 transposition, known to increase the fitness of Escherichia coli, may have been recruited under the SOS response to assist in increasing cell survival under hostile environmental conditions. To our knowledge, this is the first report on the induction of transposition by a DNA-damaging agent and the SOS stress response in bacteria.  相似文献   

2.
3.
We report a technique which uses the cointegrate intermediate of transposon Tn1000 transposition as a means to lower the copy number of ColE1-type plasmids. The transposition of Tn1000 from one replicon to another is considered a two-step process. In the first step, the transposon-encoded TnpA protein mediates fusion of the two replicons to produce a cointegrate. In the second step, the cointegrate is resolved by site-specific recombination between the two transposon copies to yield the final transposition products: the target replicon with an integrated transposon plus the regenerated donor replicon. Using in vitro techniques, the DNA sequence of the Tn1000 transposon was altered so that cointegrate formation occurs but resolution by the site-specific recombination pathway is blocked. When this transposon was resident on an F factor-derived plasmid, a cointegrate was formed between a multicopy ColE1-type target plasmid and the conjugative F plasmid. Conjugational transfer of this cointegrate into a polA strain resulted in a stable cointegrate in which replication from the ColE1 plasmid origin was inhibited and replication proceeded only from the single-copy F factor replication origin. We assayed isogenic strains which harbored plasmids encoding chloramphenicol acetyltransferase to measure the copy number of such F factor-ColE1-type cointegrate plasmids and found that the copy number was decreased to the level of single-copy chromosomal elements. This method was used to study the effect of copy number on the expression of the fabA gene (which encodes the key fatty acid-biosynthetic enzyme beta-hydroxydecanoylthioester dehydrase) by the regulatory protein encoded by the fadR gene.  相似文献   

4.
Transfer factor pBFTM10, isolated from the obligate anaerobic bacterium Bacteroides fragilis, carries a clindamycin resistance determinant which we have suggested is part of a transposable element. DNA homologous to this determinant is found in many Clnr Bacteroides isolates, either in the chromosome or on plasmids. We have now established that Ccr resides on a transposon, Tn4400. In addition to the Ccr determinant that functions under anaerobic conditions in B. fragilis, Tn4400 also carries a determinant for tetracycline resistance (Tcr) which only functions in Escherichia coli under aerobic conditions. The presence of Tn4400 on pBFTM10 does not confer tetracycline resistance on B. fragilis cells containing it. DNA from pBFTM10 was cloned in E. coli, with pDG5 as the cloning vector, to form pGAT500. Using a mobilization assay involving pGAT500 and an F factor derivative, pOX38, we determined that a 5.6-kilobase region of pBFTM10 DNA was capable of mediating replicon fusion and transposition. Most of the mobilization products resulted from inverse transposition reactions, while some were the result of true cointegrate formation. Analysis of the cointegrate molecules showed that three were formed by the action of one of the ends of Tn4400 (IS4400), and one was formed by the action of the whole element (Tn4400). The cointegrate molecule carrying intact copies of Tn4400 at the junction of the two plasmids could resolve to yield an unaltered donor plasmid (pGAT500) and a conjugal plasmid containing a copy of Tn4400 or a copy of one insertion sequence element (pOX38::Tn4400 or pOX38::IS4400). Thus, Tn4400 is a compound transposon containing active insertion sequence elements as directly repeated sequences at its ends.  相似文献   

5.
G. Riess  B. Masepohl  A. Puehler 《Plasmid》1983,10(2):111-118
Escherichia coli plasmids like pACYC184 or pBR325 can be mobilized by the P-type plasmid R68.45, which carries a tandem duplication of insertion element IS21, at a frequency of 10?3–10?5 per donor cell. Analysis of exconjugant cells revealed that plasmid mobilization occurs via cointegrate formation involving transposition of IS21. No resolution of cointegrates of pACYC184 and the P-type plasmid could be found in recA recipient cells. In the cointegrate, the E. coli plasmid is flanked by single copies of IS21 in direct orientation. After resolution of the cointegrate in recA+ recipients, the mobilizing plasmid R68.45 lost one copy of IS21 becoming indistinguishable from plasmid R68. It was shown that during mobilization, insertion element IS21 transposes to the mobilized plasmid. Insertion sites and orientations of IS21 in 33 pACYC184::IS21 insertion mutants have been determined: IS21 was found to be integrated in plasmid pACYC184 in different regions but only in one orientation. The IS21 tandem structure of plasmid R68.45 and its role in the mobilization process is discussed.  相似文献   

6.
A 10.8-kb transposable DNA sequence conferring resistance to tetracycline resides on the IncY Escherichia coli plasmid pIP231. This sequence, designated Tn1523, was shown to insert into different sites of the replicons of the IncY prophage P1Cm c1.100 and the IncI1 plasmid pIP112. This process is not dependent on the host recombination system recA. Genetic results indicate that Tn1523 transposition involves the formation of a cointegrate intermediate, either between pIP231 and P1Cm c1.100, or between pIP231 and pIP112. These intermediates were found to be resolved into donor and recipient plasmids, each harboring a copy of the Tn1523 transposon. A stable structure formed by fusion of the pIP231 plasmid with the pIP112 plasmid was also observed. This event occurs in the absence of the bacterial recA gene product and seems to involve a site-specific reciprocal recombination between "IS-like" elements.  相似文献   

7.
8.
Transposable-element-mediated fusion of the conjugal plasmid pOX38::Tn9 with pBR322 results in the appearance of cointegrates composed of a single copy of each plasmid, and cointegrates which carry a single copy of pOX38 but multiple tandem copies of pBR322. These plasmids are separated by directly repeated copies of the transposable element. We demonstrate here that such multimers can be generated from monomeric cointegrates, probably by unequal crossing over between the flanking Tn9(IS1) elements. Their appearance is thus not necessarily associated with the original transposition (fusion) event. Our study demonstrates that the process of duplication is strongly dependent on the homologous recombination system of Escherichia coli, since it is undetectable by our methods in recA- strains. It is also strongly dependent on the presence of a functional DNA polymerase I in the cell. The major pathway(s) for this duplication thus appears to rely on both the homologous recombination system and the replication of the duplicated segment.  相似文献   

9.
Summary The insertion sequence, IS50R, promotes cointegrate formation between a lambda::IS50R phage and the chromosome of Escherichia coli strain C. We show that formation of cointegrates mediated by IS50R between the non-replicating phage genome and the bacterial chromosome requires multiple donor molecules and depends on homologous recombination functions. We conclude that the two copies of IS50 present in the cointegrate originate in two different molecules. Thus, the existence of the cointegrate structure cannot be used as evidence for replication of IS50 sequences during IS50 transposition.  相似文献   

10.
Analyses of the Staphylococcus epidermidis multiresistance plasmids pSK697 and pSK818 have revealed them to be closely related to the trimethoprim resistance plasmid pSK639, also isolated from S. epidermidis. pSK697 and pSK818 were found to contain a cointegrated copy of a second plasmid related to the S. epidermidis multidrug antiseptic and disinfectant resistance plasmid pSK108 and the S. aureus tetracycline resistance plasmid pT181, respectively. In contrast to pSK639, both plasmids were found to contain a third copy of IS257, such that the integrated plasmids in both cases are flanked by a copy of this element. This organization and the presence of duplicated sequences at the extremities of the integrated plasmids implicate IS257 in the formation of these cointegrate plasmids. Sequence analysis of the IS257 elements from these plasmids has provided insights into the probable mechanism of cointegration, viz., nonresolved replicative transposition of IS257.  相似文献   

11.
12.
We describe a novel type of transposon in the tetracycline resistance plasmid pYM103, a derivative of pSC101 carrying a single copy of an insertion element IS102. The new transposons we found were identified as DNA segments, approximately 6 kb (Tn1021) and 10 kb (Tn1022) in length, able to mediate the cointegration of pYM1O3 with plasmid Col E1. The resulting cointegrate contains either of these pYM1O3 segments duplicated in a direct orientation at the junctions of the parent plasmids. A direct duplication of a 9 bp sequence at the target site in Col E1 is found at the junctions for cointegration. Both transposons have IS1O2 at one end and also contain different lengths of the pYM103 DNA adjacent to IS102, including the tetracycline resistance gene. Each transposon contains terminal inverted repeats of a short nucleotide sequence. These results and the fact that IS102 can itself mediate plasmid cointegration, giving rise to a duplication of a 9 bp target sequence, indicate that IS102 is responsible for generation of Tn1021 and Tn1022. They are quite different from the common IS-associated transposons, which are always flanked by two copies of an IS element, and may be similar to transposons such as those of the Tn3 family and phage Mu.  相似文献   

13.
14.
Summary Plasmid pMR5 (pRP1ts) failed to replicate in Pseudomonas cepacia at 47° C. Selection at this temperature for maintenance of tetracycline resistance associated with this plasmid allowed isolation of cointegrate plasmids formed by fusion of pMR5 with pTGL6, a 170 kb plasmid harbored by P. cepacia 249. In the cointegrate plasmids pTGL100, pTGL101, and pTGL102, different regions of pTGL6 were involved in fusion with the same tra-2-containing region of pMR5. Formation of all three plasmids was promoted by insertion sequences on pTGL6, which were also represented in the chromosome.Two different copies of a 1.3 kb element, IS401, were involved in formation of pTGL100 and pTGL101. Another insertion sequence, IS402 (1 kb), promoted the fusion which formed pTGL102. Southern hybridization experiments indicated that each of the cointegrate plasmids contained an additional copy of the fusion mediating element. Plasmid pTGL100 was observed to resolve into two independent replicons: pTGL6 and pTGL105 (pMR5::IS401), a novel derivative of pMR5 containing a copy of IS401.The third cointegrate plasmid, pTGL102, evolved in two steps: fusion of pTGL6 and pMR5 mediated by IS402, and transposition of IS411 (1.9 kb) to a region of pMR5 distinct from that involved in the fusion. Plasmid pTGL6 contained one copy of IS402 and IS411 while pTGL102 contained two copies of each of these elements.  相似文献   

15.
I S Dunn 《Gene》1991,108(1):109-114
Pseudomonas aeruginosa plasmids which cannot replicate in Escherichia coli have been used to introduce specific modifications into the E. coli chromosome by homologous recombination ('gene targeting'). The E. coli gene (gpt) encoding guanine-xanthine phosphoribosyltransferase (Gpt) was used for initial targeting studies owing to the availability of a powerful positive selection for loss of the Gpt+ phenotype (6-thioguanine resistance or 6TGR or Gpt-). P. aeruginosa plasmids containing selectable markers flanked by gpt sequences were introduced as supercoiled DNA into an E. coli strain which contained a normal gpt locus. Primary cointegration of such plasmids into the E. coli genome results in a gene duplication event which maintains Gpt function; a secondary recombinational event which resolves the cointegrate either reverses the primary event or results in replacement of the original gpt copy with the modified version. A 316-bp region of homology was sufficient for cointegrate formation, and resolution of the cointegrates through a shorter (92 bp) homologous flank was selectable through loss of Gpt function. The frequency of cointegrate resolution under these conditions was significantly above the spontaneous gpt mutational loss rate.  相似文献   

16.
Homologous recombination at the bacterial transposon Tn7 donor site is stimulated 10-fold when Tn7 is activated to transpose at high frequency in RecD(-) Escherichia coli, where recombination is focused near the ends of double-chain breaks. This is observed as an increase in recombination between two lacZ heteroalleles when one copy of lacZ carries within it a Tn7 that is transposing at high frequency. This stimulation of recombination is dependent upon the presence of homology with the donor site, is independent of SOS induction, and is not due to a global stimulation of recombination. When stimulated by Tn7 transposition, the conversion events giving rise to Lac(+) recombinants occur preferentially at the site of Tn7, suggesting that transposition is stimulating gene conversion at the donor site. These results support the model that Tn7 transposition occurs by a ``cut and paste' mechanism, leaving a double-chain break at the donor site that is repaired by the host homologous recombination machinery; normally, repair would use homology in a sister chromosome to regenerate a copy of the transposon. This proposed series of events allows transposition that is nonreplicative, per se, to be effectively replicative.  相似文献   

17.
18.
The host range of an octopine Ti plasmid is limited to Rhizobiaceae. This has been extended also to Escherichia coli in the form of a stable cointegrate with the wide-host-range plasmid R772. Its structure was studied by constructing a physical map of R772 and of the R772::pTiB6 cointegrate. An insertion sequence present in R772, called IS70, turned out to be involved in cointegrate formation. We found one intact copy of IS70 and a small segment of IS70, respectively, at the junctions of R772 and Ti DNA. The absence of a complete second copy of IS70 is a likely explanation for the stability of the cointegrate plasmid. A procedure for site-directed mutagenesis of this cointegrate plasmid in E. coli is described. The effect of mutations in the Ti plasmid part can be studied subsequently by transferring the cointegrate into Agrobacterium tumefaciens. The advantage of this procedure for Ti plasmids over other methods used at present is discussed.  相似文献   

19.
The numbers of chromosomal copies of the insertion sequence IS1 in strains of Salmonella typhimurium (0 to 8 copies), Shigella sonnei (56 copies), and Shigella flexneri (41 copies) isolated in Mexico City, Mexico, were similar to those reported for these genera isolated in other countries. Of the 11 Shigella strains studied, all carried several small plasmids; however, in only one of these strains did a small plasmid contain IS1, IS1 recombination, cointegrate formation mediated by IS1 or by the IS1-flanked transposon Tn9, and transposition of Tn9 occurred at a higher frequency in S. typhimurium than in either Escherichia coli or S. sonnei strains. The frequencies of IS1 recombination in S. typhimurium strains containing either zero or eight copies of IS1 were similar.  相似文献   

20.
We report that the major product of IS15-promoted transposition is a cointegrate. When present in the multicopy plasmid pBR322, IS15 and its progenitor IS15-delta mediate the formation of cointegrates at frequencies of 3.5 X 10(-4) and 2.9 X 10(-5), respectively. We have studied the stability of the cointegrates generated by IS15 and IS15-delta. While these structures are resolved in a rec+ host, they were stable in a rec- host. These observations suggest that neither IS15 nor IS15-delta encode a resolvase and that cointegration is an end product of their transposition process. These properties of IS15-delta and IS15 can explain the transitions from IS15-delta to IS15 and from IS15 to IS15-delta observed in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号