首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Very low density lipoprotein (VLDL), a large particle containing apolipoprotein B (apoB) and large amounts of neutral lipids, is formed in the luminal space within the endoplasmic reticulum (ER) of hepatic cells. The assembly mechanism of VLDL particles is a tightly regulated process where apoB, associated with an insufficient amount of lipids, is selectively degraded intracellularly. In this study we found that treatment of HuH-7 human hepatoma cells with verapamil inhibited secretion of apoB-containing lipoprotein particles through increasing degradation of apoB. Addition of N-acetylleucyl-leucyl-norleucinal, an inhibitor of proteasome and other cysteinyl proteases that are responsible for apoB degradation, restored apoB recovery from verapamil-treated cells. De novo synthesis of lipids from [14C]acetate was increased in the presence of verapamil, suggesting that verapamil decreases lipid availability for apoB thus leading to the secretion of apoB-containing lipoprotein. We prepared cytosolic fractions from cells preincubated with [14C]acetate and used as a donor of radioactive lipids. When this cytosolic fraction was incubated with microsomes isolated separately, radioactive triglyceride (TG) accumulated in the luminal space of the microsomes. The transfer of radioactive TG from the cytosolic fraction to the microsomal lumen was inhibited in the presence of verapamil, suggesting that there is a verapamil-sensitive mechanism for TG transfer across ER membranes that is involved in formation of apoB-containing lipoprotein particles in ER. Verapamil showed no inhibitory effect on microsomal TG transfer protein, a well known lipid transfer protein in ER. We propose from these results that there is novel machinery for transmembrane movement of neutral lipids, which is involved in providing TG for apoB during VLDL assembly in ER.  相似文献   

2.
The heterogeneous nature of very low density lipoprotein (VLDL) metabolism in hypertriglyceridemia gives rise to complex kinetics when labeled VLDL are traced. Analysis of such systems benefits from the simultaneous study of several metabolically discrete subfractions which are then integrated. We have studied the kinetics of VLDL and intermediate density lipoprotein (IDL) apoprotein B and triglyceride simultaneously by injecting homologous 125I-labeled VLDL1 and 131I-labeled VLDL2 and [2-3H]glycerol intravenously in three diverse type IV hyperlipoproteinemic subjects. An additional type IV subject received only [2-3H]glycerol. Specific radioactivities were measured in: VLDL1-triglyceride and -apoB, VLDL2-triglyceride and -apoB, and in each corresponding subfraction after further separation into heparin-Sepharose-bound and -unbound fractions. ApoB and triglyceride specific radioactivities were also measured in IDL. Analysis of the kinetics of apoB in the unbound fractions in VLDL1 and VLDL2 showed the presence of two pools of particles, one of which turned over rapidly. The kinetics of apoB in the bound fractions in VLDL1 and VLDL2 were, in contrast, dominated by a large slowly turning over pool of particles that resembled the kinetics of whole VLDL. Evidence of a partial precursor-product relationship between the unbound and bound fractions suggested that the former was richer in nascent-like particles, while the latter contained more remnant particles. However, triglyceride specific radioactivity curves for both unbound and bound fractions showed initial rapid rises and broad peaks, indicating that the bound fraction also contained a substantial proportion of nascent-like particles. Using multicompartmental analysis, a model was constructed to account for the kinetics of both apoB and triglyceride in all fractions of VLDL and in IDL. The model comprises two parallel delipidation pathways that supply a common remnant pool with these features: 1) multiple direct inputs of particles into plasma at VLDL2 and IDL levels; 2) heterogeneous triglyceride precursor pools leading to different rates of labeling of VLDL1 and VLDL2; 3) very substantial delipidation of VLDL2 particles prior to conversion to IDL and; 5) triglyceride production rates somewhat higher than previously reported. The inclusion in the model of the rapidly turning over pool of triglyceride-rich particles, identified in the heparin-unbound fraction, suggests that values for triglyceride production in man have been underestimated.  相似文献   

3.
Lipoprotein particles (d less than 1.03 g/ml) were isolated from rough and smooth microsomes and from the Golgi apparatus of rat liver, and were characterized chemically and morphologically. The rough endoplasmic reticulum (ER) particles were rich in protein (50%) and contained phospholipids (PLP) and triglycerides (TG) in smaller amounts, whereas the lipoprotein particles emanating from the smooth ER, and especially the Golgi apparatus, were rich in TG and PLP, resembling very low density lipoproteins (VLDL) of serum. The difference in chemical composition among the particles was associated with change in size both in situ and in isolated lipoprotein fractions. The rough ER particles were 200-800 A in diameter (mean similar to 420 A); the smooth er particles 200-900 A (mean similar to 520 A); the Golgi particles 350-950 A (mean similar to 580A); and serum VLDL 300- 800 A (mean similar to 450 A). Generally, lipoprotein particles were rare in the rough ER, frequent but diffusely dispersed in smooth ER, and occurring mainly in clusters in "secretory vesicles" of the Golgi complex. They were seldom observed in the cisternal compartments of the Golgi complex. At short intervals (less than 15 min), intravenously injected radioactive glycerol was preferentially channelled into TG, whereas at later time points the majority of the isotope was recovered in the PLP. Three TG pools were distinguished: (a) a cytoplasmic pool with a slow turnover rate; (b) a membrane-associated TG pool; and (c) a pool corresponding to the TG moiety of lipoprotein particles, which showed the highest initial rate of labeling and fastest turnover. When, after pulse labeling, the appearance of incorporation of radioactive glycerol into TG or PLP of isolated lipoproteins was followed from one subcellular fraction to the other, a sequence of labeling was noted. During the first interval, TG from both rough and smooth microsomal lipoproteins displayed a high rate of labeling with peak value at 6 min, followed by a quick fall-off, while the Golgi lipoproteins reached maximal level at 10-20 min after administration. There was an interval of 10-15 min before the appearance of labeled VLDL in serum. It is concluded that the assembly of the apoproteins and lipid moieties into lipoprotein particles-presumed to be precursors of liver VLDL-begins in the rough ER and continues in the smooth ER. Also, there is a parallel change in chemical composition and size of the lipoprotein particles as they make their way through the ER and the Golgi apparatus. Some remodeling of the particles may take place in the Golgi apparatus before discharge into the circulation.  相似文献   

4.
Rat and human very low density lipoproteins (VLDL) were fractionated by zonal ultracentrifugation, yielding sharply defined fractions with narrow sedimentation limits. Sedimentation coefficients for the individual fractions were determined at two densities with the analytical ultracentrifuge, and the results were analyzed to yield buoyant densities and molecular weights for the particles in each fraction. For the rat lipoproteins, the weight concentrations of triglycerides, cholesterol, phospholipid, and protein were determined for each fraction, and their molar concentrations of apolipoprotein B were measured with a radioimmunoassay. For the human lipoproteins the corresponding values were taken from Patsch et al. (Patsch, W., J. R. Patsch, G. M. Kostner, S. Sailer, and H. Braunsteiner. 1978. Isolation of subfractions of human very low density lipoproteins by zonal ultracentrifugation. J. Biol. Chem. 253:4911-4915). From these data, a ratio of the number of apoB peptides to the number of lipoprotein particles was calculated for each fraction. This ratio was close to 1 for all VLDL fractions, ranging in particle diameter from about 40 to 80 mm and 30 to 50 mm, respectively, for rat and human VLDL. The majority rat VLDL contain B-48 rather than B-100 as their (single) apoB peptide. Based on these data, we proposed that only a single copy of B-48 is required for VLDL assembly in rat liver, unless nascent hepatic VLDL contain additional apoB peptides which are uniformly lost from the plasma VLDL particles when they are analyzed.  相似文献   

5.
Apolipoprotein-B100 (apoB100) is the essential protein for the assembly and secretion of very low density lipoproteins (VLDL) from liver. The hepatoma HepG2 cell line has been the cell line of choice for the study of synthesis and secretion of human apoB-100. Despite the general use of HepG2 cells to study apoB100 metabolism, they secrete relatively dense, lipid-poor particles compared with VLDL secreted in vivo. Recently, Huh-7 cells were adopted as an alternative model to HepG2 cells, with the implicit assumption that Huh-7 cells were superior in some respects of lipoprotein metabolism, including VLDL secretion. In this study we addressed the hypothesis that the spectrum of apoB100 lipoprotein particles secreted by Huh-7 cells more closely resembles the native state in human liver. We find that Huh-7 cells resemble HepG2 cells in the effects of exogenous lipids, microsomal triglyceride transfer protein (MTP)-inhibition, and proteasome inhibitors of apoB100 secretion, recovery, and degradation. In contrast to HepG2 cells, however, MEK-ERK inhibition does not correct the defect in VLDL secretion. Huh-7 cells do not appear to offer any advantages over HepG2 cells as a general model of human apoB100-lipoprotein metabolism.  相似文献   

6.
Despite numerous studies demonstrating that microsomal triglyceride transfer protein (MTP) activity is critical to apoB secretion, there is still controversy as to whether MTP directly facilitates the translocation of apoB across the membrane of the endoplasmic reticulum (ER) through either the recruitment of lipids and/or chaperone activity. In the present study, a specific inhibitor of MTP (BMS 197636) was utilized in HepG2 cells to investigate whether a direct relationship exists between the translocation of apoB across the ER membrane and the lipid-transferring activity of MTP. Inhibition of MTP (with 10 and 50 nmol/L of the inhibitor) did not significantly affect the translocation of newly synthesized apoB (P = 0.77) or the translocational efficiency of the steady-state apoB mass (P = 0.45), despite a 49% decrease in apoB secretion and increased proteosomal degradation. These results compared well with subcellular fractionation experiments which showed no significant change in the fraction of apoB accumulated in the lumen of isolated microsomes in MTP-treated cells (P = 0.35). In summary, MTP lipid transfer activity does not appear to influence translocational status of apoB, but its inhibition is associated with an increased susceptibility to proteasome-mediated degradation and reduced assembly and secretion of apoB lipoprotein particles.  相似文献   

7.
The assembly and secretion of very low density lipoproteins (VLDL) require microsomal triglyceride transfer protein (MTP). Recent evidence also suggests a role for the low density lipoprotein (LDL) receptor in this process. However, the relative importance of MTP in the two steps of VLDL assembly and the specific role of the LDL receptor still remain unclear. To further investigate the role of MTP and the LDL receptor in VLDL assembly, we bred mice harboring "floxed" Mttp alleles (Mttpflox/flox) and a Cre transgene on a low-density lipoprotein receptor-deficient background to generate mice with double deficiency in the liver (Ldlr-/- MttpDelta/Delta). In contrast to the plasma of Ldlr+/+ MttpDelta/Delta mice, the plasma of Ldlr-/- MttpDelta/Delta mice contained apoB100. Accordingly, Ldlr-/- MttpDelta/Delta but not Ldlr+/+ MttpDelta/Delta hepatocytes secreted apoB100-containing lipoprotein particles. The secreted lipoproteins were of LDL and HDL sizes but no VLDL-sized lipoproteins could be detected. These findings indicate that hepatic LDL receptors function as "gatekeepers" targeting dense apoB100-containing lipoproteins for degradation. In addition, these results suggest that very low levels of MTP are insufficient to mediate the second step but sufficient for the first step of VLDL assembly.  相似文献   

8.
Studies of truncated apoB peptides in human subjects with familial hypobetalipoproteinemia, as well as of puromycin-generated spectra of nascent apoB peptides in rat and hamster liver, suggest that a minimum size is required for N-terminal fragments of apoB to be efficiently assembled into full-sized VLDL. We report here results of experiments undertaken to examine this phenomenon in greater detail by expressing individual carboxyl-truncated human apoB constructs in McArdle cells. Thus, apoB-29, -32, -37, -42, -47, -53, -70 and full length apoB-100 were transiently expressed in rat McA-RH7777 hepatoma cells, or human apoB-31 and apoB-53 were stably expressed in the same cells, and the secreted VLDL particles were characterized by kinetic gradient ultracentrifugal flotation. Calibration with rat plasma VLDL subfractions showed that about 90 and 50%, respectively, of lipoprotein particles containing endogenous rat B-100 and B-48 floated between fractions 2;-8 of the 11-fraction gradient. This corresponds to the normal VLDL diameter range of about 47 to 28 nm, with the remaining half of rat B-48 recovered as HDL particles in the 1.1 g/ml range. In contrast, regardless of their size, only 2;-5% of any of the truncated human apoB peptides expressed in these cells was recovered in the VLDL region of the gradient. The remaining 95+% of the lipoproteins were found as high density particles; as previously found in other systems the densities of the latter were inversely related to their peptide chain-length. Furthermore, transiently expressed full-length human apoB-100 was inefficiently secreted as VLDL by these cells, with the remainder appearing as LDL-sized particles. Thus, although we showed that McA-RH7777 cells secreted endogenous rat apoB as normal-sized VLDL, we found them unsuitable for our original purpose of using human apoB fragments to further define effects of apoB size on VLDL assembly. These cells appeared unable to efficiently use any size of human apoB for that process. Pulse-labeled untransfected McA-RH7777 cells chased in the presence of puromycin did, however, show a sharp decline in VLDL assembly efficiency for endogenous nascent rat apoB peptides shorter than B-48, similar to that originally found in normal rat liver.  相似文献   

9.
The microsomal triglyceride transfer protein (MTP) is essential for the synthesis and secretion of apolipoprotein B (apoB)-containing lipoproteins. We investigated the role the MTP -493G/T gene polymorphism in determining the apoB-100 secretion pattern and LDL heterogeneity in healthy human subjects. Groups of carriers of the T and the G variants (n = 6 each) were recruited from a cohort of healthy 50-yr-old men. Kinetic studies were performed by endogenous [(2)H(3)]leucine labeling of apoB and subsequent quantification of the stable isotope incorporation. apoB production rates, metabolic conversions, and eliminations were calculated by multicompartmental modeling (SAAM-II). LDL subfraction distribution was analyzed in the entire cohort (n = 377). Carriers of the MTP -493T allele had lower plasma LDL apoB and lower concentration of large LDL particles [LDL-I: 136 +/- 57 (TT) vs. 175 +/- 55 (GG) mg/l, P < 0.01]. Kinetic modeling suggested that MTP -493T homozygotes had a 60% lower direct production rate of intermediate-density lipoprotein (IDL) plus LDL compared with homozygotes for the G allele (P < 0.05). No differences were seen in production rates of large and small VLDL, nor were there any differences in metabolic conversion or elimination rates of apoB between the genotype groups. This study shows that a polymorphism in the MTP gene affects the spectrum of endogenous apoB-containing lipoprotein particles produced in humans. Reduced direct production of LDL plus IDL appears to be related to lower plasma concentrations of large LDL particles.  相似文献   

10.
NADPH-dependent erythrose reductases (ERs) in erythritol-producing fungi, Trichosporonoides megachiliensis SNG-42, catalyze the reduction of D-erythrose. We previously characterized the biochemical properties of three isozymes of ERs (ER-I, ER-II, and ER-III). Using internal amino acid sequences of ER-III and ER-I with peptide mapping, we cloned three cDNAs (er1, 1121-bp (AB191474); er2, 1077-bp (AB191475); er3, 1119-bp (AB191476)). The er3 cDNA encoded a polypeptide 36,044 Da, and its deduced amino acid sequence was same as that of the native ER-III. The three recombinant enzymes expressed in Escherichia coli were purified to homogeneity. The recombinant enzymes of ER1, ER2, and ER3 showed similar electrophoretic properties to that of the native ER-I, ER-II, and ER-III on SDS- and Native- but not on IEF-PAGE. All three recombinant enzymes showed substrate specificity towards C-4 and C-3 aldehydes similar to that of the native ER-III. These results strongly suggest that cloned er1, er2, and er3 cDNAs encode erythrose reductases.  相似文献   

11.
Hepatic apolipoprotein B100 (apoB100) associates with lipids to form dense lipoprotein particles in the endoplasmic reticulum (ER) and is further lipidated to very low density lipoproteins (VLDL). Because the VLDL diameter can exceed 200 nm, classical ER-derived vesicles may be unable to accommodate VLDLs. Using hepatic membranes and cytosol to reconstitute ER budding, apoB100-containing vesicles sedimented distinct from those harboring more typical cargo but contained Sec23. Moreover, ER exit of apoB was inhibited by dominant-negative Sar1. Budding required Sar1 regardless of whether oleic acid (OA) was added to stimulate apoB lipidation; therefore, either large apoB100-lipoproteins reside in secretory vesicles, or full lipidation occurs post-ER. Using membranes from cells incubated in the presence or absence of OA, we determined that apoB100-lipoproteins in ER vesicles had not become lipidated to VLDLs. VLDL particles resided in the Golgi, but not the ER, after fractionation of OA-treated cells. We conclude that apoB100-lipoproteins exit the ER in COPII vesicles, but under conditions favorable for VLDL formation final lipid loading occurs post-ER.  相似文献   

12.
The major protein component in secreted very low density lipoproteins (VLDL) is apoB, and it is established that these particles can reach sizes approaching 100 nm. We previously employed a cell-free system to investigate the nature of the vesicles in which this large cargo exits the endoplasmic reticulum (ER) (Gusarova, V., Brodsky, J. L., and Fisher, E. A. (2003) J. Biol. Chem. 278, 48051-48058). We found that apoB-containing lipoproteins exit the ER as dense lipid-protein complexes regardless of the final sizes of the particles and that further expansion occurs via post-ER lipidation. Here, we focused on maturation in the Golgi apparatus. In three separate approaches, we found that VLDL maturation (as assessed by changes in buoyant density) was associated with conformational changes in apoB. In addition, as the size of VLDL expanded, apoE concentrated in a subclass of Golgi microsomes or Golgi-derived vesicles that co-migrated with apoB-containing microsomes or vesicles, respectively. A relationship between apoB and apoE was further confirmed in co-localization studies by immunoelectron microscopy. These combined results are consistent with previous suggestions that apoE is required for VLDL maturation. To our surprise, however, we observed robust secretion of mature VLDL when apoE synthesis was inhibited in either rat hepatoma cells or apoE(-/-) mouse primary hepatocytes. We conclude that VLDL maturation in the Golgi involves apoB conformational changes and that the expansion of the lipoprotein does not require apoE; rather, the increase in VLDL surface area favors apoE binding.  相似文献   

13.
In this study, we explored the paradox that in suckling rats the serum concentration of LDL is high although the liver secretes only minimal quantities of VLDL, the presumed precursor of LDL. Freshly isolated hepatocytes and hepatocytes in primary culture obtained from adult (90 days old) and suckling (17 days old) rats were used to investigate the synthesis and secretion of apolipoprotein B (apoB) and lipids as well as the density profile of secreted apoB-containing lipoproteins. Furthermore, the effects of dexamethasone and oleate on apoB biogenesis were investigated in primary cultures of hepatocytes from adult and suckling rats. Hepatocytes from suckling rats were unable to assemble mature VLDL but secreted apoB as primordial lipoprotein particles in the LDL-HDL density range. Intracellular degradation of apoB was also reduced in hepatocytes from suckling rats compared with that in hepatocytes from adults. The immaturity in VLDL assembly and apoB degradation of hepatocytes from suckling rats could be overcome by treating the cultures with dexamethasone plus oleate or dexamethasone alone. The lower microsomal triacylglycerol transfer protein (MTP) mRNA concentrations in hepatocytes from suckling rats in comparison with hepatocytes from adult rats were not reflected in lower MTP activity levels. Furthermore, dexamethasone plus oleate treatment had no effect on MTP activity although VLDL assembly and secretion were clearly stimulated. We conclude that, during the suckling period of the rat, serum LDL is directly produced by the liver. This is a result of impaired hepatic VLDL assembly, which is a consequence of low triglyceride synthesis and an inefficient mobilization of bulk lipids in the second step of VLDL assembly.  相似文献   

14.
Multispecific antigen-binding fragments (Fab) from rabbit antisera against rat very low density lipoproteins (VLDL) and Fab against rat low density lipoproteins that were monospecific for the B apoprotein were conjugated to horseradish peroxidase. Conjugates were incubated with 6-mum frozen sections from fresh and perfusion-fixed livers and with tissue chopper sections (40 mum thick) from perfusion-fixed livers. In the light microscope, specific reaction product was present in all hepatocytes of experimental sections as intense brown to black spots whose locations corresponded to the distribution of the Golgi apparatus: along the bile canaliculi, near the nuclei, and between the nuclei and bile canaliculi. Perfusion fixation with formaldehyde produced satisfactory ultrastructural preservation with retention of lipoprotein antigenic determinants. In the electron microscope, patches of cisternae and ribosomes of the rough endoplasmic reticulum (ER) and particularly its smooth-surfaced ends, vesicles located between the rough ER and the Golgi apparatus, the Golgi apparatus and its secretory vesicles and VLDL particles in the space of Disse all bore reaction product. The tubules and vesicles of typical hepatocyte smooth ER did not contain reaction product, nor did the osmiophilic particles contained therin. The localization obtained in this study together with other evidence suggests a sequence for the biosynthesis of VLDL that differs in some respects from that proposed by others: (a) the triglyceride-rich particle originates in smooth ER where triglycerides are synthesized; (b) at the junction of the smooth and rough ER the particle receives apoproteins synthesized in the rough ER; (c) specialized tubules transport the particle, now a nascent lipoprotein, to the Golgi apparatus where concentration occurs in secretory vesicles; (d) secretory vesicles move to the sinusoidal surface where the particles are secreted into the space of Disse by fusion of the vesicular membrane with the plasma membrane of the hepatocyte.  相似文献   

15.
Microsomal triglyceride transfer protein (MTP) is required for the assembly and secretion of apolipoprotein (apo) B-containing lipoproteins. Previously, we demonstrated that the N-terminal 1,000 residues of apoB (apoB:1000) are necessary for the initiation of apoB-containing lipoprotein assembly in rat hepatoma McA-RH7777 cells and that these particles are phospholipid (PL) rich. To determine if the PL transfer activity of MTP is sufficient for the assembly and secretion of primordial apoB:1000-containing lipoproteins, we employed microRNA-based short hairpin RNAs (miR-shRNAs) to silence Mttp gene expression in parental and apoB:1000-expressing McA-RH7777 cells. This approach led to 98% reduction in MTP protein levels in both cell types. Metabolic labeling studies demonstrated a drastic 90–95% decrease in the secretion of rat endogenous apoB100-containing lipoproteins in MTP-deficient McA-RH7777 cells compared with cells transfected with negative control miR-shRNA. A similar reduction was observed in the secretion of rat endogenous apoB48 under the experimental conditions employed. In contrast, MTP absence had no significant effect on the synthesis, lipidation, and secretion of human apoB:1000-containing particles. These results provide strong evidence in support of the concept that in McA-RH7777 cells, acquisition of PL by apoB:1000 and initiation of apoB-containing lipoprotein assembly, a process distinct from the conventional first-step assembly of HDL-sized apoB-containing particles, do not require MTP. This study indicates that, in hepatocytes, a factor(s) other than MTP mediates the formation of the PL-rich primordial apoB:1000-containing initiation complex.  相似文献   

16.
Human serum lipoproteins are currently defined according to their density as well as according to their electrophoretic mobility. They can be fractionated into discrete subspecies which exhibit variations in their structure and function. Capillary electrophoresis has been suggested to be a potential analytical strategy in understanding metabolic lipoprotein heterogeneity. In a sample of 35 normolipidemic subjects, we analyzed ceramide-labeled serum lipoproteins by capillary isotachophoresis linked to laser-induced fluorescent detection. Capillary isotachophoresis showed advantage to be an automated, rapid (6 min) and reproducible (CV < 7%) separation mode, on-line monitoring lipoprotein subfractions according to net charge. HDL were separated into three subfractions: i) the fast migrating HDL correlated positively with serum apoA-I (P < 0.05) and negatively with triglyceride (P < 0.01) concentrations, ii) the intermediate migrating HDL involved in HDL-cholesterol delivery and inversely related to LDL particles concentration (P < 0.001), and iii) the slow migrating prebeta(1)HDL. Triglyceride level was significantly associated with two fractions: i) the VLDL fraction correlated positively with apoE serum concentration (P < 0.01), and ii) the IDL fraction closely and positively associated with apoC-III-containing lipoprotein level (P < 0.001). Two LDL subfractions were positively related to LDL-cholesterol (0.05 相似文献   

17.
Although the evidence linking apoA-IV expression and triglyceride (TG)-rich lipoprotein assembly and secretion is compelling, the intracellular mechanisms by which apoA-IV could modulate these processes remain poorly understood. We therefore examined the functional impact of apoA-IV expression on endogenous apoB, TG, and VLDL secretion in stably transfected McA-RH7777 rat hepatoma cells. Expression of apoA-IV modified with the endoplasmic reticulum (ER) retention signal KDEL (apoA-IV-KDEL) dramatically decreased both the rate and efficiency of endogenous apoB secretion, suggesting a presecretory interaction between apoA-IV-KDEL and apoB or apoB-containing lipoproteins. Expression of native apoA-IV using either a constitutive or tetracycline-inducible promoter delayed the initial rate of apoB secretion and reduced the final secretion efficiency by ~40%. However, whereas apoA-IV-KDEL reduced TG secretion by 75%, expression of native apoA-IV caused a 20-35% increase in TG secretion, accompanied by a ~55% increase in VLDL-associated apoB, an increase in the TG:phospholipid ratio of secreted d < 1.006 lipoproteins, and a 10.1 nm increase in peak VLDL(1) particle diameter. Native apoA-IV expression had a negligible impact on expression of the MTP gene. These data suggest that by interacting with apoB in the secretory pathway, apoA-IV alters the trafficking kinetics of apoB-containing TG-rich lipoproteins through cellular lipidation compartments, which in turn, enhances particle expansion and increases TG secretion.  相似文献   

18.
Apolipoprotein (apo) B is an obligatory component of very low density lipoprotein (VLDL), and its cotranslational and posttranslational modifications are important in VLDL synthesis, secretion, and hepatic lipid homeostasis. ApoB100 contains 25 cysteine residues and eight disulfide bonds. Although these disulfide bonds were suggested to be important in maintaining apoB100 function, neither the specific oxidoreductase involved nor the direct role of these disulfide bonds in apoB100-lipidation is known. Here we used RNA knockdown to evaluate both MTP-dependent and -independent roles of PDI1 in apoB100 synthesis and lipidation in McA-RH7777 cells. Pdi1 knockdown did not elicit any discernible detrimental effect under normal, unstressed conditions. However, it decreased apoB100 synthesis with attenuated MTP activity, delayed apoB100 oxidative folding, and reduced apoB100 lipidation, leading to defective VLDL secretion. The oxidative folding–impaired apoB100 was secreted mainly associated with LDL instead of VLDL particles from PDI1-deficient cells, a phenotype that was fully rescued by overexpression of wild-type but not a catalytically inactive PDI1 that fully restored MTP activity. Further, we demonstrate that PDI1 directly interacts with apoB100 via its redox-active CXXC motifs and assists in the oxidative folding of apoB100. Taken together, these findings reveal an unsuspected, yet key role for PDI1 in oxidative folding of apoB100 and VLDL assembly.  相似文献   

19.
20.
Conventional knockout of the microsomal triglyceride transfer protein large subunit (lMTP) gene is embryonic lethal in the homozygous state in mice. We have produced a conditional lMTP knockout mouse by inserting loxP sequences flanking exons 5 and 6 by gene targeting. Homozygous floxed mice were born live with normal plasma lipids. Intravenous injection of an adenovirus harboring Cre recombinase (AdCre1) produced deletion of exons 5 and 6 and disappearance of lMTP mRNA and immunoreactive protein in a liver-specific manner. There was also disappearance of plasma apolipoprotein (apo) B-100 and marked reduction in apoB-48 levels. Wild-type mice showed no response, and heterozygous mice, an intermediate response, to AdCre1. Wild-type mice doubled their plasma cholesterol level following a high cholesterol diet. This hypercholesterolemia was abolished in AdCre1-treated lMTP-/- mice, the result of a complete absence of very low/intermediate/low density lipoproteins and a slight reduction in high density lipoprotein. Heterozygous mice showed an intermediate lipoprotein phenotype. The rate of accumulation of plasma triglyceride following Triton WR1339 treatment in lMTP-/- mice was <10% that in wild-type animals, indicating a failure of triglyceride-rich lipoprotein production. Pulse-chase experiments using hepatocytes isolated from wild-type and lMTP-/- mice revealed a failure of apoB secretion in lMTP-/- animals. Therefore, the liver-specific inactivation of the lMTP gene completely abrogates apoB-100 and very low/intermediate/low density lipoprotein production. These conditional knockout mice are a useful in vivo model for studying the role of MTP in apoB biosynthesis and the biogenesis of apoB-containing lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号