首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial DNA maintenance and segregation are dependent on the actin cytoskeleton in budding yeast. We found two cytoskeletal proteins among six proteins tightly associated with rat liver mitochondrial DNA: non-muscle myosin heavy chain IIA and β-actin. In human cells, transient gene silencing of MYH9 (encoding non-muscle myosin heavy chain IIA), or the closely related MYH10 gene (encoding non-muscle myosin heavy chain IIB), altered the topology and increased the copy number of mitochondrial DNA; and the latter effect was enhanced when both genes were targeted simultaneously. In contrast, genetic ablation of non-muscle myosin IIB was associated with a 60% decrease in mitochondrial DNA copy number in mouse embryonic fibroblasts, compared to control cells. Gene silencing of β-actin also affected mitochondrial DNA copy number and organization. Protease-protection experiments and iodixanol gradient analysis suggest some β-actin and non-muscle myosin heavy chain IIA reside within human mitochondria and confirm that they are associated with mitochondrial DNA. Collectively, these results strongly implicate the actomyosin cytoskeleton in mammalian mitochondrial DNA maintenance.  相似文献   

2.
Of Mice and Men     
Non-muscle myosin II has diverse functions in cell contractility, morphology, cytokinesis and migration. Mammalian cells have three isoforms of non-muscle myosin II, termed IIA, IIB and IIC, encoded by three different genes. These isoforms share considerable homology and some overlapping functions, yet they exhibit differences in enzymatic properties, subcellular localization, molecular interaction and tissue distribution 1-6. Our studies have focused on the IIA isoform, and they reveal unique regulatory roles in cell-cell adhesion and cell migration that are associated with cross-talk of the actomyosin system with microtubules. In humans, various mutations in the MYH9 gene that encodes the myosin IIA heavy chain cause autosomal dominant disease, whereas in mice, the complete deficiency is embryonic lethal but heterozygous mice are nearly normal. We discuss here the differences between mouse and human phenotypes and how the wealth of mechanistic knowledge about myosin II based on in vitro studies and mouse models can help us understand the molecular and cellular pathophysiology of myosin IIA deficiency in humans.  相似文献   

3.
Cytoplasmic (or non-muscle) myosin II isoforms are widely expressed molecular motors playing essential cellular roles in cytokinesis and cortical tension maintenance. Two of the three human non-muscle myosin II isoforms (IIA and IIB) have been investigated at the protein level. Transient kinetics of non-muscle myosin IIB showed that this motor has a very high actomyosin ADP affinity and slow ADP release. Here we report the kinetic characterization of the non-muscle myosin IIA isoform. Similar to non-muscle myosin IIB, non-muscle myosin IIA shows high ADP affinity and little enhancement of the ADP release rate by actin. The ADP release rate constant, however, is more than an order of magnitude higher than the steady-state ATPase rate. This implies that non-muscle myosin IIA spends only a small fraction of its ATPase cycle time in strongly actin-bound states, which is in contrast to non-muscle myosin IIB. Non-muscle myosin II isoforms thus appear to have distinct enzymatic properties that may be of importance in carrying out their cellular functions.  相似文献   

4.
Myosin II is an actin-binding protein composed of MHC (myosin heavy chain) IIs, RLCs (regulatory light chains) and ELCs (essential light chains). Myosin II expressed in non-muscle tissues plays a central role in cell adhesion, migration and division. The regulation of myosin II activity is known to involve the phosphorylation of RLCs, which increases the Mg2+-ATPase activity of MHC IIs. However, less is known about the details of RLC-MHC II interaction or the loss-of-function phenotypes of non-muscle RLCs in mammalian cells. In the present paper, we investigate three highly conserved non-muscle RLCs of the mouse: MYL (myosin light chain) 12A (referred to as MYL12A), MYL12B and MYL9 (MYL12A/12B/9). Proteomic analysis showed that all three are associated with the MHCs MYH9 (NMHC IIA) and MYH10 (NMHC IIB), as well as the ELC MYL6, in NIH 3T3 fibroblasts. We found that knockdown of MYL12A/12B in NIH 3T3 cells results in striking changes in cell morphology and dynamics. Remarkably, the levels of MYH9, MYH10 and MYL6 were reduced significantly in knockdown fibroblasts. Comprehensive interaction analysis disclosed that MYL12A, MYL12B and MYL9 can all interact with a variety of MHC IIs in diverse cell and tissue types, but do so optimally with non-muscle types of MHC II. Taken together, our study provides direct evidence that normal levels of non-muscle RLCs are essential for maintaining the integrity of myosin II, and indicates that the RLCs are critical for cell structure and dynamics.  相似文献   

5.
Isolation of a non-muscle myosin heavy chain gene from Acanthamoeba   总被引:6,自引:0,他引:6  
We have isolated a non-muscle myosin heavy chain gene from Acanthamoeba castellanii using as a heterologous probe a sarcomeric myosin heavy chain gene from Caenorhabditis elegans. The amoeba genomic clone has been tentatively identified as containing a myosin II heavy chain gene based on hybridization to a 5300-nucleotide RNA species, hybrid selection of a mRNA encoding a 185-kDa polypeptide, specific immunoprecipitation of this polypeptide with antiserum to myosin II, and an exact match between the DNA sequence and a carboxyl-terminal myosin II peptide previously sequenced by protein chemical methods (C?té, G.P., Robinson, E.A., Appella, E., and Korn, E. D. (1984) J. Biol. Chem. 259, 12781-12787). We also sequenced a region of the gene whose deduced amino acid sequence shows strong homology with that region of muscle myosins which is thought to be involved in nucleotide binding. These results indicate that the amoeba genomic clone contains at least 90% of the coding information for the 185-kDa heavy chain polypeptide and that the bulk of the gene contains very little intron DNA. Genomic blots of amoeba DNA probed with a portion of this myosin gene indicate the presence of additional highly related sequences within the amoeba genome.  相似文献   

6.
A high molecular-weight protein from Escherichia coli sharing structural homology at the protein level with a yeast heavy-chain myosin encoded by the MYO1 gene is described. This 180 kD protein (180-HMP) can be enriched in cell fractions following the procedure normally utilized for the purification of non-muscle myosins. In Western blots this protein cross-reacts with a monoclonal antibody against yeast heavy-chain myosin. Moreover, antibodies raised against the 180 kD protein cross-react with the yeast myosin and with a myosin heavy chain from chicken. Recognition by anti-180-HMP antibodies of an overexpressed fragment of yeast myosin encoded by MYO1 allows the localization of one of the shared epitopes to a specific region around the ATP binding site of the yeast myosin heavy chain. The existence of a high molecular-weight protein with structural similarity to myosin in E. coli raises the possibility that such a protein might generate the force required for movement in processes such as nucleoid segregation and cell division.  相似文献   

7.
The chromosomal distribution of murine genes expressed during differentiation of skeletal muscle cells was determined by Southern blot analysis of DNA from mouse-Chinese hamster hybrid cell lines containing incomplete subsets of mouse chromosomes. All detectable myosin heavy chain genes are located on chromosome 11. The gene for the myosin light chain 2 is located on chromosome 7. The skeletal muscle alpha-actin gene and several other actin genes, or pseudogenes, are located on chromosome 3. Additional actin DNA sequences are distributed on other mouse chromosomes.  相似文献   

8.
Fluorescently labeled smooth muscle myosin II is often used to study myosin II dynamics in non-muscle cells. In order to provide more specific tools for tracking non-muscle myosin II in living cytoplasm, fluorescent analogues of non-muscle myosin IIA and IIB were prepared and characterized. In addition, smooth and non-muscle myosin II were labeled with both cy5 and rhodamine so that comparative, dynamic studies may be performed. Non-muscle myosin IIA was purified from bovine platelets, non-muscle myosin IIB from bovine brain, and smooth muscle myosin II from turkey gizzards. After being fluorescently labeled with tetramethylrhodamine-5-iodoacetamide or with a succinimidyl ester of cy5, they retained the following properties: (1) reversible assembly into thick filaments, (2) actin-activatable MgATPase, (3) phosphorylation by myosin light chain kinase, (4) increased MgATPase upon light-chain phosphorylation, (5) interconversion between 6S and 10S conformations, and (6) distribution into endogenous myosin II-containing structures when microinjected into cultured cells. These fluorescent analogues can be used to visualize isoform-specific dynamics of myosin II in living cells. J. Cell. Biochem. 68:389–401, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
10.
Elevated levels of the calcium-binding regulatory protein, S100A4, have been shown to be causative of a metastatic phenotype in models of cancer metastasis and to be associated with reduced patient survival in breast cancer patients. Recombinant S100A4 protein interacts in vitro in a calcium-dependent manner with the heavy chain of non-muscle myosin isoform A at a protein kinase C phosphorylation site. At present, the mechanism of metastasis induction by S100A4 in vivo is almost completely unknown. The binding of S100A4 to a C-terminal recombinant fragment of non-muscle myosin heavy chain in living HeLa cells has now been shown using confocal microscopy, fluorescence lifetime imaging microscopy and time-correlated single-photon counting. The association between S100A4 and non-muscle myosin heavy chain was studied by determining fluorescence resonance energy transfer-derived changes in the fluorescence lifetime of enhanced cyan fluorescent protein fused to S100A4 in the presence of a recombinant fragment of the C-terminal region of non-muscle myosin heavy chain (rNMMHCIIA) fused to enhanced yellow fluorescent protein. There was no interaction between the non-muscle myosin heavy chain fragment and a calcium-binding-deficient mutant of S100A4 protein which has been shown to be defective in the induction of metastasis in model systems in vivo. The results demonstrate, for the first time, not only direct interaction between S100A4 and a target rNMMHCIIA in live mammalian cells, but also that the interaction between S100A4 and the non-muscle myosin heavy chain in vivo could contribute to the mechanism of metastasis induction by a high level of S100A4 protein.  相似文献   

11.
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel phlebovirus in the Bunyaviridae family. Most patients infected by SFTSV present with fever and thrombocytopenia, and up to 30% die due to multiple-organ dysfunction. The mechanisms by which SFTSV enters multiple cell types are unknown. SFTSV contains two species of envelope glycoproteins, Gn (44.2 kDa) and Gc (56 kDa), both of which are encoded by the M segment and are cleaved from a precursor polypeptide (about 116 kDa) in the endoplasmic reticulum (ER). Gn fused with an immunoglobulin Fc tag at its C terminus (Gn-Fc) bound to multiple cells susceptible to the infection of SFTSV and blocked viral infection of human umbilical vein endothelial cells (HUVECs). Immunoprecipitation assays following mass spectrometry analysis showed that Gn binds to nonmuscle myosin heavy chain IIA (NMMHC-IIA), a cellular protein with surface expression in multiple cell types. Small interfering RNA (siRNA) knockdown of NMMHC-IIA, but not the closely related NMMHC-IIB or NMMHC-IIC, reduced SFTSV infection, and NMMHC-IIA specific antibody blocked infection by SFTSV but not other control viruses. Overexpression of NMMHC-IIA in HeLa cells, which show limited susceptivity to SFTSV, markedly enhanced SFTSV infection of the cells. These results show that NMMHC-IIA is critical for the cellular entry of SFTSV. As NMMHC-IIA is essential for the normal functions of platelets and human vascular endothelial cells, it is conceivable that NMMHC-IIA directly contributes to the pathogenesis of SFTSV and may be a useful target for antiviral interventions against the viral infection.  相似文献   

12.
Protein kinase C phosphorylated both the 19/21-kDa regulatory light chains and heavy chains of bovine brain myosin. The major phosphorylation sites of the light chains were on their threonyl residues, while those for myosin light chain kinase were on their seryl residues. Whereas several non-muscle regular myosins have been reported to be phosphorylated by different types of protein kinases at the non-helical small segments at the tail ends of the heavy chains, the phosphorylation sites for protein kinase C were localized on the head portion of the heavy chains of brain myosin. The possible role of phosphorylation of brain myosin by protein kinase C in the regulation of motility of neural cells is discussed.  相似文献   

13.
《The Journal of cell biology》1989,109(6):2895-2903
The actin bundle within each microvillus of the intestinal brush border is laterally tethered to the membrane by bridges composed of the protein complex, 110-kD-calmodulin. Previous studies have shown that avian 110-kD-calmodulin shares many properties with myosins including mechanochemical activity. In the present study, a cDNA molecule encoding 1,000 amino acids of the 110-kD protein has been sequenced, providing direct evidence that this protein is a vertebrate homologue of the tail-less, single-headed myosin I first described in amoeboid cells. The primary structure of the 110-kD protein (or brush border myosin I heavy chain) consists of two domains, an amino-terminal "head" domain and a 35-kD carboxy-terminal "tail" domain. The head domain is homologous to the S1 domain of other known myosins, with highest homology observed between that of Acanthamoeba myosin IB and the S1 domain of the protein encoded by bovine myosin I heavy chain gene (MIHC; Hoshimaru, M., and S. Nakanishi. 1987. J. Biol. Chem. 262:14625- 14632). The carboxy-terminal domain shows no significant homology with any other known myosins except that of the bovine MIHC. This demonstrates that the bovine MIHC gene most probably encodes the heavy chain of bovine brush border myosin I (BBMI). A bacterially expressed fusion protein encoded by the brush border 110-kD cDNA binds calmodulin. Proteolytic removal of the carboxy-terminal domain of the fusion protein results in loss of calmodulin binding activity, a result consistent with previous studies on the domain structure of the 110-kD protein. No hydrophobic sequence is present in the molecule indicating that chicken BBMI heavy chain is probably not an integral membrane protein. Northern blot analysis of various chicken tissue indicates that BBMI heavy chain is preferentially expressed in the intestine.  相似文献   

14.
15.
16.
Calspermin is a heat-stable, acidic calmodulin-binding protein predominantly found in mammalian testis. The cDNA representing the rat form of this protein has been cloned from a rat testis lambda gt11 library. Sequence analysis of two overlapping clones revealed a 232-nucleotide 5'-nontranslated region, 510 nucleotides of open reading frame, a 148-nucleotide 3'-untranslated region, and a poly(A) tail. Authenticity of the clones was confirmed by comparison of a portion of the deduced amino acid sequence with the sequence of a tryptic peptide obtained from the rat testis protein. The lambda gt11 fusion protein was recognized by affinity purified antibodies to pig testis calspermin and bound 125I-calmodulin in a Ca2+-dependent manner. Calspermin cDNA encodes a 169-residue protein with a calculated Mr of 18,735. The putative calmodulin-binding domain is very close to the amino terminus of the protein. This region shows 46% identity with the calmodulin-binding region of rat brain Ca2+/calmodulin-dependent protein kinase II and 32% identity with the equivalent region of chicken smooth muscle myosin light chain kinase. The 5'-nontranslated region reveals significant homology with a portion of the catalytic region of the calmodulin-dependent protein kinase family. Calspermin contains a stretch of 17 contiguous glutamic acid residues in the central region of the molecule. Computer analysis predicts calspermin to be 81% alpha-helix and 14% random coil. Analysis of genomic DNA indicates calspermin to be the product of a unique gene. Northern blot analysis of rat testis RNA reveals a 1.1-kilobase mRNA. This RNA is restricted to testis among several rat tissues examined and could not be identified in total RNA isolated from testes of other mammals. Analysis of cells isolated from rat testis reveals calspermin mRNA to be predominantly expressed in postmeiotic cells indicating that it may be specific to haploid cells.  相似文献   

17.
We report the cDNA-deduced primary structure of the chicken counterpart of the murine dilute gene product, a member of the myosin I family. Comparison of the chicken and mouse sequences reveals a distinct pattern of domains of high and low sequence conservation. An internal deletion of 25 amino acids probably reflects differential mRNA processing. Compared with other myosin heavy chain molecules, sequence similarity is highest with the MYO2 gene product of Saccharomyces cerevisiae. The MYO2 protein, implicated in vectorial vesicle transport, is homologous to the dilute protein over practically its entire length. In addition, the C-terminal domain of the dilute protein is highly similar to a putative glutamic acid decarboxylase sequence cloned from mouse brain. Alternatively, this closely related clone might represent an isoform of the dilute protein derived from a second gene, potentially involved in genetic conditions related to dilute.  相似文献   

18.
A method is described for obtaining brain myosin that shows significant actin activation, after phosphorylation with chicken gizzard myosin light chain kinase. Myosin with this activity could be obtained only via the initial purification of brain actomyosin. The latter complex, isolated by a method similar to that used for smooth muscle, contained actin, myosin, tropomyosin of the non-muscle type and another actin-binding protein of approximately 100,000 daltons. From the presence of a specific myosin light chain kinase and phosphatase in brain tissue it is suggested that the regulation of actin-myosin interaction operates via phosphorylation and dephosphorylation of myosin.  相似文献   

19.
Human myosin heavy chains are encoded by a multigene family consisting of at least 10 members. A gene-specific oligonucleotide has been used to isolate the human beta myosin heavy chain gene from a group of twelve nonoverlapping genomic clones. We have shown that this gene (which is expressed in both cardiac and skeletal muscle) is located 3.6kb upstream of the alpha cardiac myosin gene. We find that DNA sequences located upstream of rat and human alpha cardiac myosin heavy chain genes are very homologous over a 300bp region. Analogous regions of two other myosin genes expressed in different muscles (cardiac and skeletal) show no such homology to each other. While a human skeletal muscle myosin heavy chain gene cluster is located on chromosome 17, we show that the beta and alpha human cardiac myosin heavy chain genes are located on chromosome 14.  相似文献   

20.
Nonmuscle myosin heavy chain IIA (NMMHC IIA, gene code: MYH9) plays a critical role in physiological and pathological functions. A homology model of NMMHC IIA was constructed based on the crystal structure of smooth muscle myosin II. Blebbistatin, a myosin II ATPase inhibitor, had been found to bind to NMMHC IIA with Leu228 as the important amino acid residue and van der Waals contacts as the main force of the interaction. The final complex demonstrated that the destruction of the salt bridge occurred between the Arg204 and Glu427 residues when blebbistatin was present. Molecular dynamic simulation of the complex showed that the binding affinity of blebbistatin to NMMHC IIA was strongly sensitive to the nucleotide binding region and actin binding region. The disturbance of the two regions increased the enhancement of the binding cavity with blebbistatin and resulted in a slightly more expanded conformation in the nucleotide binding region and actin binding region. A combined pharmacophore- and docking-based virtual screening was performed to identify several saponins as potential inhibitors for NMMHC IIA. These findings introduce new insights on the binding mode of blebbistatin and NMMHC IIA and novel leading compounds from natural products for NMMHC IIA-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号