首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assembly of the dolichol-linked oligosaccharide precursor (Glc(3) Man(9) GlcNAc(2) ) is highly conserved among eukaryotes. In contrast to yeast and mammals, little is known about the biosynthesis of dolichol-linked oligosaccharides and the transfer to asparagine residues of nascent polypeptides in plants. To understand the biological function of these processes in plants we characterized the Arabidopsis thaliana homolog of yeast ALG10, the α1,2-glucosyltransferase that transfers the terminal glucose residue to the lipid-linked precursor. Expression of an Arabidopsis ALG10-GFP fusion protein in Nicotiana benthamiana leaf epidermal cells revealed a reticular distribution pattern resembling endoplasmic reticulum (ER) localization. Analysis of lipid-linked oligosaccharides showed that Arabidopsis ALG10 can complement the yeast Δalg10 mutant strain. A homozygous Arabidopsis T-DNA insertion mutant (alg10-1) accumulated mainly lipid-linked Glc(2) Man(9) GlcNAc(2) and displayed a severe protein underglycosylation defect. Phenotypic analysis of alg10-1 showed that mutant plants have altered leaf size when grown in soil. Moreover, the inactivation of ALG10 in Arabidopsis resulted in the activation of the unfolded protein response, increased salt sensitivity and suppression of the phenotype of α-glucosidase I-deficient plants. In summary, these data show that Arabidopsis ALG10 is an ER-resident α1,2-glucosyltransferase that is required for lipid-linked oligosaccharide biosynthesis and subsequently for normal leaf development and abiotic stress response.  相似文献   

2.
N-glycans are synthesized in both yeast and mammals through the ordered assembly of a lipid-linked core Glc(3)Man(9)GlcNAc(2) structure that is subsequently transferred to a nascent protein in the endoplasmic reticulum. Once folded, glycoproteins are then shuttled to the Golgi, where additional but divergent processing occurs in mammals and fungi. We cloned the Pichia pastoris homolog of the ALG3 gene, which encodes the enzyme that converts Man(5)GlcNAc(2)-Dol-PP to Man(6)GlcNAc(2)-Dol-PP. Deletion of this gene in an och1 mutant background resulted in the secretion of glycoproteins with a predicted Man(5)GlcNAc(2) structure that could be trimmed to Man(3)GlcNAc(2) by in vitro alpha-1,2-mannosidase treatment. However, several larger glycans ranging from Hex(6)GlcNAc(2) to Hex(12)GlcNAc(2) were also observed that were recalcitrant to an array of mannosidase digests. These results contrast the far simpler glycan profile found in Saccharomyces cerevisiae alg3-1 och1, indicating diverging Golgi processing in these two closely related yeasts. Finally, analysis of the P. pastoris alg3 deletion mutant in the presence and absence of the outer chain initiating Och1p alpha-1,6-mannosyltransferase activity suggests that the PpOch1p has a broader substrate specificity compared to its S. cerevisiae counterpart.  相似文献   

3.
The modification of proteins at asparagine residues with oligosaccharides (N-glycans) plays critical roles in diverse cell functions. N-glycans originate from a common lipid-linked oligosaccharide (LLO) precursor whose synthesis is initiated by the Dol-P-dependent GlcNAc-1-P transferase (GPT) encoded by an essential ALG7 gene. To identify cellular processes affected by ALG7 and N-glycosylation, we replaced the genomic copy of ALG7 with its hypomorphic allele in two genetically distinct haploid yeast cells. We show that ALG7 knockdown gave rise to an unexpected phenotype of mitochondrial dysfunction. The alg7 mutants did not grow on glycerol and DNA arrays revealed the absence of mitochondrial genes' expression. Accordingly, the alg7 mutants displayed no detectable mtDNA and respiratory activity. Both mutants exhibited diminished abundance of LLO and under-glycosylation of carboxypeptidase Y (CPY). Moreover, another N-glycosylation mutant with a LLO defect, alg6, was respiratory deficient. Collectively, our studies provide evidence that the dysregulation of N-glycosylation in haploid yeast cells leads to mitochondrial dysfunction.  相似文献   

4.
ER resident glycoproteins, including ectopically expressed recombinant glycoproteins, carry so-called high-mannose type N-glycans, which can be at different stages of processing. The presence of heterogeneous high-mannose type glycans on ER-retained therapeutic proteins is undesirable for specific therapeutic applications. Previously, we described an Arabidopsis alg3-2 glycosylation mutant in which aberrant Man5GlcNAc2 mannose type N-glycans are transferred to proteins. Here we show that the alg3-2 mutation reduces the N-glycan heterogeneity on ER resident glycoproteins in seeds. We compared the properties of a scFv-Fc, with a KDEL ER retention tag (MBP10) that was expressed in seeds of wild type and alg3-2 plants. N-glycans on these antibodies from mutant seeds were predominantly of the intermediate Man5GlcNAc2 compared to Man8GlcNAc2 and Man7GlcNAc2 isoforms on MBP10 from wild-type seeds. The presence of aberrant N-glycans on MBP10 did not seem to affect MBP10 dimerisation nor binding of MBP10 to its antigen. In alg3-2 the fraction of underglycosylated MBP10 protein forms was higher than in wild type. Interestingly, the expression of MBP10 resulted also in underglycosylation of other, endogenous glycoproteins.  相似文献   

5.
The initial lipid-linked oligosaccharide Glc(3)Man(9)GlcNAc(2)-dolichyl pyrophosphate (Dol-PP) for N-glycan is synthesized and assembled at the membrane of the endoplasmic reticulum (ER) and subsequently transferred to a nascent polypeptide by the oligosaccharide transferase complex. We have identified an ALG3 homolog (HpALG3) coding for a dolichyl-phosphate-mannose dependent alpha-1,3-mannosyltransferase in the methylotrophic yeast Hansenula polymorpha. The detailed analysis of glycan structure by linkage-specific mannosidase digestion showed that HpALG3 is responsible for the conversion of Man5GlcNAc(2)-Dol-PP to Man(6)GlcNAc(2)-Dol-PP, the first step to attach a mannose to the lipid-linked oligosaccharide in the ER. The N-glycosylation pathway of H. polymorpha has been remodeled by deleting the HpALG3 gene in the Hpoch1 null mutant strain blocked in the yeast-specific outer mannose chain synthesis and by introducing an ER-targeted Aspergillus saitoi alpha-1,2-mannosidase gene. This glycoengineered H. polymorpha strain produced glycoproteins mainly containing trimannosyl core N-glycan (Man(3)GlcNAc(2)), which is the common core backbone of various human-type N-glycans. The results demonstrate the high potential of H. polymorpha to be developed as an efficient expression system for the production of glycoproteins with humanized glycans.  相似文献   

6.
Yarrowia lipolytica is a dimorphic yeast that efficiently secretes various heterologous proteins and is classified as "generally recognized as safe." Therefore, it is an attractive protein production host. However, yeasts modify glycoproteins with non-human high mannose-type N-glycans. These structures reduce the protein half-life in vivo and can be immunogenic in man. Here, we describe how we genetically engineered N-glycan biosynthesis in Yarrowia lipolytica so that it produces Man(3)GlcNAc(2) structures on its glycoproteins. We obtained unprecedented levels of homogeneity of this glycanstructure. This is the ideal starting point for building human-like sugars. Disruption of the ALG3 gene resulted in modification of proteins mainly with Man(5)GlcNAc(2) and GlcMan(5)GlcNAc(2) glycans, and to a lesser extent with Glc(2)Man(5)GlcNAc(2) glycans. To avoid underoccupancy of glycosylation sites, we concomitantly overexpressed ALG6. We also explored several approaches to remove the terminal glucose residues, which hamper further humanization of N-glycosylation; overexpression of the heterodimeric Apergillus niger glucosidase II proved to be the most effective approach. Finally, we overexpressed an α-1,2-mannosidase to obtain Man(3)GlcNAc(2) structures, which are substrates for the synthesis of complex-type glycans. The final Yarrowia lipolytica strain produces proteins glycosylated with the trimannosyl core N-glycan (Man(3)GlcNAc(2)), which is the common core of all complex-type N-glycans. All these glycans can be constructed on the obtained trimannosyl N-glycan using either in vivo or in vitro modification with the appropriate glycosyltransferases. The results demonstrate the high potential of Yarrowia lipolytica to be developed as an efficient expression system for the production of glycoproteins with humanized glycans.  相似文献   

7.
In many invertebrates and plants, the N-glycosylation profile is dominated by truncated paucimannosidic N-glycans, i.e. glycans consisting of a simple trimannosylchitobiosyl core often modified by core fucose residues. Even though they lack antennal N-acetylglucosamine residues, the biosynthesis of these glycans requires the sequential action of GlcNAc transferase I, Golgi mannosidase II, and, finally, beta-N-acetylglucosaminidases. In Drosophila, the recently characterized enzyme encoded by the fused lobes (fdl) gene specifically removes the non-reducing N-acetylglucosamine residue from the alpha1,3-antenna of N-glycans. In the present study, we examined the products of five beta-N-acetylhexosaminidase genes from Caenorhabditis elegans (hex-1 to hex-5, corresponding to reading frames T14F9.3, C14C11.3, Y39A1C.4, Y51F10.5, and Y70D2A.2) in addition to three from Arabidopsis thaliana (AtHEX1, AtHEX2, and AtHEX3, corresponding to reading frames At1g65590, At3g55260, and At1g05590). Based on homology, the Caenorhabditis HEX-1 and all three Arabidopsis enzymes are members of the same sub-family as the aforementioned Drosophila fused lobes enzyme but either act as chitotriosidases or non-specifically remove N-acetylglucosamine from both N-glycan antennae. The other four Caenorhabditis enzymes are members of a distinct sub-family; nevertheless, two of these enzymes displayed the same alpha1,3-antennal specificity as the fused lobes enzyme. Furthermore, a deletion of part of the Caenorhabditis hex-2 gene drastically reduces the native N-glycan-specific hexosaminidase activity in mutant worm extracts and results in a shift in the N-glycan profile, which is a demonstration of its in vivo enzymatic relevance. Based on these data, it is hypothesized that the genetic origin of paucimannosidic glycans in nematodes, plants, and insects involves highly divergent members of the same hexosaminidase gene family.  相似文献   

8.
Asn-linked glycans, or the glycan code, carry crucial information for protein folding, transport, sorting, and degradation. The biochemical pathway for generating such a code is highly conserved in eukaryotic organisms and consists of ordered assembly of a lipid-linked tetradeccasaccharide. Most of our current knowledge on glycan biosynthesis was obtained from studies of yeast asparagine-linked glycosylation (alg) mutants. By contrast, little is known about biosynthesis and biological functions of N-glycans in plants. Here, we show that loss-of-function mutations in the Arabidopsis thaliana homolog of the yeast ALG12 result in transfer of incompletely assembled glycans to polypeptides. This metabolic defect significantly compromises the endoplasmic reticulum–associated degradation of bri1-9 and bri1-5, two defective transmembrane receptors for brassinosteroids. Consequently, overaccumulated bri1-9 or bri1-5 proteins saturate the quality control systems that retain the two mutated receptors in the endoplasmic reticulum and can thus leak out of the folding compartment, resulting in phenotypic suppression of the two bri1 mutants. Our results strongly suggest that the complete assembly of the lipid-linked glycans is essential for successful quality control of defective glycoproteins in Arabidopsis.  相似文献   

9.
N-Glycosylation is essential for protein stability, activity and characteristics, and is often needed to deliver pharmaceutical glycoproteins to target cells. A paucimannosidic structure, Man3GlcNAc2 (M3), has been reported to enable cellular uptake of glycoproteins through the mannose receptor (MR) in humans, and such uptake has been exploited for the treatment of certain diseases. However, M3 is generally produced at a very low level in plants. In this study, a cell culture was established from an Arabidopsis alg3 mutant plant lacking asparagine-linked glycosylation 3 (ALG3) enzyme activity. Arabidopsis alg3 cell culture produced glycoproteins with predominantly M3 and GlcNAc-terminal structures, while the amount of plant-specific N-glycans was very low. Pharmaceutical glycoproteins with these characteristics would be valuable for cellular delivery through the MR, and safe for human therapy.  相似文献   

10.
The complex asparagine-linked glycans of plant glycoproteins, characterized by the presence of beta 1-->2 xylose and alpha 1-->3 fucose residues, are derived from typical mannose9(N-acetylglucosamine)2 (Man9GlcNAc2) N-linked glycans through the activity of a series of glycosidases and glycosyl transferases in the Golgi apparatus. By screening leaf extracts with an antiserum against complex glycans, we isolated a mutant of Arabidopsis thaliana that is blocked in the conversion of high-manne to complex glycans. In callus tissues derived from the mutant plants, all glycans bind to concanavalin A. These glycans can be released by treatment with endoglycosidase H, and the majority has the same size as Man5GlcNAc1 glycans. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, the mutant cells synthesize Man9GlcNAc2 and Man8GlcNAc2 glycans, suggesting that the biochemical lesion in the mutant is not in the biosynthesis of high-mannose glycans in the endoplasmic reticulum but in their modification in the Golgi. Direct enzyme assays of cell extracts show that the mutant cells lack N-acetyl glucosaminyl transferase I, the first enzyme in the pathway of complex glycan biosynthesis. The mutant plants are able to complete their development normally under several environmental conditions, suggesting that complex glycans are not essential for normal developmental processes. By crossing the complex-glycan-deficient strain of A. thaliana with a transgenic strain that expresses the glycoprotein phytohemagglutinin, we obtained a unique strain that synthesizes phytohemagglutinin with two high-mannose glycans, instead of one high-mannose and one complex glycan.  相似文献   

11.
The yeast Saccharomyces cerevisiae temperature-sensitive lethal mutant alg1-1, has been previously shown to lack the activity necessary for the addition of the first mannose residue in the synthesis of lipid-linked precursor oligosaccharide. The gene ALG1 has been cloned by complementation of the temperature-sensitive mutation alg1-1 with a total genomic DNA library. The original DNA fragment isolated was 11,300 base pairs and has been subcloned to a 1,500-base pair fragment which is still capable of complementing alg1-1. The gene ALG1 has been mapped on chromosome II at a distance of 2.1 map units from LYS2. The ALG1 gene product has been shown to catalyze the transfer of a mannosyl residue from GDP-mannose to the lipid-linked acceptor GlcNAc2, yielding Man beta 1-4GlcNAc2-lipid, in lysates from Escherichia coli transformants. This result proves that ALG1 is the structural gene for the first mannosyltransferase in lipid-linked oligosaccharide assembly.  相似文献   

12.
Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
The Saccharomyces cerevisiae alg3-1 mutant is descilbed as defectivein the biosynthesis of dolichol-linked oligosaccharides (Huffakerand Robbins, Proc. Natl. Acad. Sci. USA, 80, 7466–7470,1983). Man5GlcNAc2-PP-Dol accumulates in alg3 cells and EndoH resistant carbohydrates are transferred to protein by theoligosaccharyltransferase complex. In this study, we describethe cloning of the ALG3 locus by complementation of the temperaturesensitive growth defect of the alg3 stt3 double mutant. Theisolated ALG3 gene complements both the defect in the biosynthesisof lipidlinked oligosaccharides of the alg3-mutant and the underglycosylationof secretory proteins. The inactivation of the nonessentialALG3 gene results in the accumulation of lipid-linked Man5GlcNAc2and protein-bound carbohydrates which are completely Endo Hresistant. The ALG3 locus encodes a potential ER-transmembraneprotein of 458 amino acids (53 kDa) with a C-terminal KKXX-retrievalsequence. lipid-linked oligosaccharide N-glycosylation synthetic lethality  相似文献   

13.
The initial steps in N-linked glycosylation involve the synthesis of a lipid-linked core oligosaccharide followed by the transfer of the core glycan to nascent polypeptides in the endoplasmic reticulum (ER). Here, we describe alg11, a new yeast glycosylation mutant that is defective in the last step of the synthesis of the Man(5)GlcNAc(2)-PP-dolichol core oligosaccharide on the cytosolic face of the ER. A deletion of the ALG11 gene leads to poor growth and temperature-sensitive lethality. In an alg11 lesion, both Man(3)GlcNAc(2)-PP-dolichol and Man(4)GlcNAc(2)-PP-dolichol are translocated into the ER lumen as substrates for the Man-P-dolichol-dependent sugar transferases in this compartment. This leads to a unique family of oligosaccharide structures lacking one or both of the lower arm alpha1,2-linked Man residues. The former are elongated to mannan, whereas the latter are poor substrates for outerchain initiation by Ochlp (Nakayama, K.-I., Nakanishi-Shindo, Y., Tanaka, A., Haga-Toda, Y., and Jigami, Y. (1997) FEBS Lett. 412, 547-550) and accumulate largely as truncated biosynthetic end products. The ALG11 gene is predicted to encode a 63.1-kDa membrane protein that by indirect immunofluorescence resides in the ER. The Alg11 protein is highly conserved, with homologs in fission yeast, worms, flies, and plants. In addition to these Alg11-related proteins, Alg11p is also similar to Alg2p, a protein that regulates the addition of the third mannose to the core oligosaccharide. All of these Alg11-related proteins share a 23-amino acid sequence that is found in over 60 proteins from bacteria to man whose function is in sugar metabolism, implicating this sequence as a potential sugar nucleotide binding motif.  相似文献   

14.
The zygomycete fungus Rhizomucor pusillus secretes an aspartic proteinase (MPP) that contains asparagine ( N )-linked oligosaccharides at two sites. Mutant strain 1116 defective in N -glycosylation secretes MPP with truncated oligo-saccharide chains. Lipid-linked oligosaccharides in mutant 1116 were labeled with [6-(3)H]glucosamine and [2-(3)H]mannose, prepared by cycles of solvent extraction, and analyzed by gel filtration chromatography on a Bio-Gel P-4 column after mild acid-hydrolysis. Mutant 1116 accumulated an intermediate, Man(1)GlcNAc(2)-dolichol pyrophosphate (PP-Dol), whereas wild-type strain F27 synthesized the fully assembled oligosaccharide precursor Glc(3)Man(9)GlcNAc(2)-PP-Dol. Consistent with this, alg2 encoding a mannosyltransferase in the lipid-linked oligosaccharide biosynthetic pathway in mutant 1116 had a 5 bp insertion that generated a stop codon in the middle of the coding sequence. Transformation of mutant 1116 with the intact alg2 gene on a pUC19-derived plasmid generated transformants that contained multicopies of alg2 at the alg2 locus. Glycosylation of the total proteins in the transformants was recovered to the same level as in strain F27, as determined with peroxidase-concanavalin A. These transformants produced MPP mainly with the same N -linked oligosaccharides as that produced by strain F27, but still with truncated oligosaccharides in small amounts. All of these data show that Alg2 is an alpha-1,3 or alpha-1,6 mannosyltransferase that elongates Man(1)GlcNAc(2)-PP-Dol to Man(2)GlcNAc(2)-PP-Dol. The slower growth of mutant 1116 was significantly recovered on introduction of alg2. The viability of the alg2 mutants of the zygomycete R.pusillus makes a contrast with the lethal effect of ALG2 mutations in the yeast Saccharomyces cerevisiae.  相似文献   

15.
Glycoproteins derived from Hansenula polymorpha can not be used for therapeutic purposes due to their high-mannose type asparagine-linked (N-linked) glycans, which result in immune reactions and poor pharmacokinetic behaviors in human body. Previously, we reported that the trimannosyl core N-linked glycans (Man3GlcNAc2) intermediate can be generated in endoplasmic reticulum in HpALG3 and HpALG11 double-mutant H. polymorpha. Here, we describe the further modification of the glycosylation pathway in this double-defect strain to express glycoproteins with complex human-like glycans. After eliminating the impact of HpOCH1, three glycosyltransferases were introduced into this triple-mutant strain. When human β-1,2-N-acetylglucosaminyltransferase I (hGnTI) was efficiently targeted in early Golgi, more than 95 % glycans attached to the glycoproteins were added one N-acetylglucosamine (GlcNAc). With subsequently introduction of rat β-1,2-N-acetylglucosaminyltransferase II (rGnTII) and human β-1,4-galactosyltransferase I (hGalTI), several glycoengineered strains can produce glycoproteins bearing glycans with terminal N-acetylglucosamine or galactose. The expression of glycoproteins with glycan Gal2GlcNAc2Man3GlcNAc2 represents a significant step toward the ability to express fully humanized glycoproteins in H. polymorpha. Furthermore, several shake-flask and bioreactor fermentation experiments indicated that, although the cells do display a reduction in growth rate, the glycoengineered strains are still suitable for high-density fermentation.  相似文献   

16.
Arabidopsis N-glycosylation mutants with enhanced salt sensitivity show reduced immunoreactivity of complex N-glycans. Among them, hybrid glycosylation 1 (hgl1) alleles lacking Golgi α-mannosidase II are unique, because their glycoprotein N-glycans are hardly labeled by anti-complex glycan antibodies, even though they carry β1,2-xylose and α1,3-fucose epitopes. To dissect the contribution of xylose and core fucose residues to plant stress responses and immunogenic potential, we prepared Arabidopsis hgl1 xylT double and hgl1 fucTa fucTb triple mutants by crossing previously established T-DNA insertion lines and verified them by mass spectrometry analyses. Root growth assays revealed that hgl1 fucTa fucTb but not hgl1 xylT plants are more salt-sensitive than hgl1, hinting at the importance of core fucose modification and masking of xylose residues. Detailed immunoblot analyses with anti-β1,2-xylose and anti-α1,3-fucose rabbit immunoglobulin G antibodies as well as cross-reactive carbohydrate determinant-specific human immunoglobulin E antibodies (present in sera of allergy patients) showed that xylose-specific reactivity of hgl1 N-glycans is indeed reduced. Based on three-dimensional modeling of plant N-glycans, we propose that xylose residues are tilted by 30° because of untrimmed mannoses in hgl1 mutants. Glycosidase treatments of protein extracts restored immunoreactivity of hgl1 N-glycans supporting these models. Furthermore, among allergy patient sera, untrimmed mannoses persisting on the α1,6-arm of hgl1 N-glycans were inhibitory to immunoreaction with core fucoses to various degrees. In summary, incompletely trimmed glycoprotein N-glycans conformationally prevent xylose and, to lesser extent, core fucose accessibility. Thus, in addition to N-acetylglucosaminyltransferase I, Golgi α-mannosidase II emerges as a so far unrecognized target for lowering the immunogenic potential of plant-derived glycoproteins.  相似文献   

17.
As an initial step to develop plants as systems to produce enzymes for the treatment of lysosomal storage disorders, Arabidopsis thaliana wild-type (Col-0) plants were transformed with a construct to express human alpha-l-iduronidase (IDUA; EC 3.2.1.76) in seeds using the promoter and other regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene. IDUA protein was easily detected on Western blots of extracts from the T(2) seeds, and extracts contained IDUA activity as high as 2.9 nmol 4-methylumbelliferone (4 MU)/min/mg total soluble protein (TSP), corresponding to approximately 0.06 microg IDUA/mg TSP. The purified protein reacted with an antibody specific for xylose-containing plant complex glycans, indicating its transit through the Golgi complex. In an attempt to avoid maturation of the N-linked glycans of IDUA, the same IDUA transgene was introduced into the Arabidopsis cgl background, which is deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101), the first enzyme in the pathway of complex glycan biosynthesis. IDUA activity and protein levels were significantly higher in transgenic cgl vs. wild-type seeds (e.g. maximum levels were 820 nmol 4 MU/min/mg TSP, or 18 microg IDUA/mg TSP). Affinity-purified IDUA derived from cgl mutant seeds showed a markedly reduced reaction with the antibody specific for plant complex glycans, despite transit of the protein to the apoplast. Furthermore, gel mobility changes indicated that a greater proportion of its N-linked glycans were susceptible to digestion by Streptomyces endoglycosidase H, as compared to IDUA derived from seeds of wild-type Arabidopsis plants. The combined results indicate that IDUA produced in cgl mutant seeds contains glycans primarily in the high-mannose form. This work clearly supports the viability of using plants for the production of human therapeutics with high-mannose glycans.  相似文献   

18.
In this study, we show that introduction of human N-acetylglucosaminyltransferase (GnT)-III gene into tobacco plants leads to highly efficient synthesis of bisected N-glycans. Enzymatically released N-glycans from leaf glycoproteins of wild-type and transgenic GnT-III plants were profiled by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in native form. After labeling with 2-aminobenzamide, profiling was performed using normal-phase high-performance liquid chromatography with fluorescence detection, and glycans were structurally characterized by MALDI-TOF/TOF-MS and reverse-phase nano-liquid chromatography-MS/MS. These analyses revealed that most of the complex-type N-glycans in the plants expressing GnT-III were bisected and carried at least two terminal N-acetylglucosamine (GlcNAc) residues in contrast to wild-type plants, where a considerable proportion of N-glycans did not contain GlcNAc residues at the nonreducing end. Moreover, we have shown that the majority of N-glycans of an antibody produced in a plant expressing GnT-III is also bisected. This might improve the efficacy of therapeutic antibodies produced in this type of transgenic plant.  相似文献   

19.
Trichomonas vaginalis, the protist that causes vaginal itching, has a huge genome with numerous gene duplications. Recently we found that Trichomonas has numerous genes encoding putative dolichyl-phosphate-glucose (Dol-P-Glc) synthases (encoded by ALG5 genes) despite the fact that Trichomonas lacks the glycosyltransferases (encoded by ALG6, ALG8, and ALG10 genes) that use Dol-P-Glc to glucosylate dolichyl-PP-linked glycans. In addition, Trichomonas does not have a canonical DPM1 gene, encoding a dolichyl-P-mannose (Dol-P-Man) synthase. Here we show Trichomonas membranes have roughly 300 times the Dol-P-Glc synthase activity of Saccharomyces cerevisiae membranes and about one-fifth the Dol-P-Man synthase activity of Saccharomyces membranes. Endogenous Dol-P-hexoses of Trichomonas are relatively abundant and contain 16 isoprene units. Five paralogous Trichomonas ALG5 gene products have Dol-P-Glc synthase activity when expressed as recombinant proteins, and these Trichomonas Alg5s correct a carboxypeptidase N glycosylation defect in a Saccharomyces alg5 mutant in vivo. A recombinant Trichomonas Dpm1, which is deeply divergent in its sequence, has Dol-P-Man synthase activity. When radiolabeled Dol-P-Glc is incubated with Trichomonas membranes, Glc is incorporated into reducing and nonreducing sugars of O-glycans of endogenous glycoproteins. To our knowledge, this is the first demonstration of Dol-P-Glc as a sugar donor for O-glycans on glycoproteins.  相似文献   

20.
Animal cells contain many glycoproteins, i.e. , proteins with covalently liked sugar chains. The major glycans of glycoproteins can be classified into two groups, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Development of sensitive methods for the analyses of glycan structures have revealed a new type of glycosidic linkage to the peptide portion, the O-mannosyl linkage, in mammals, which used to be considered specific to yeast. O-Mannosylation is present in a limited number of glycoproteins of brain, nerve, and skeletal muscle. Recently O-mannosylation has been shown to be important in muscle and brain development. Glycobiology of O-mannosyl glycans is expected to produce remarkable advances in the understanding and treatment of congenital muscular dystrophies. In this article, I describe the structure, biosynthesis, and pathology of O-mannosyl glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号