首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changes in wall structure of two penicillinase-negative strains of Bacillus licheniformis on addition of penicillin were studied. After addition of penicillin to give a concentration of 1 unit/ml, exponentially growing cells of strain 749 c/72 doubled once and then stopped. Strain 749c/72/IIIg was more resistant and continued growing, but synthesis appeared to become uncontrolled over the surface, producing localized wall thickening at the expense of elongation, and leading to distorted cells and growth in twisted and coiled chains, with an accompanying drop in growth rate. The continued growth can be explained by the existence of a less sensitive transpeptidase, but there is no obvious explanation for the uncontrolled synthesis. The effect of penicillin could be reversed by addition of penicillinase in both strains, although there appeared to be a persistent effect of penicillin which also produced distorted cells for a few generations and inhibited cell separation. The changes in wall structure produced by penicillin and penicillinase appeared all over the cell surface, suggesting that wall synthesis occurred all over the cell. Also a separate process for cross-wall synthesis is suggested since this appeared less sensitive than wall synthesis.  相似文献   

2.
At neutral pH, the rate of penicillinase synthesis by staphylococci declines gradually after removal of free inducer, while at pH 5.4 enzyme formation is generally linear for an extended period. Linear synthesis of penicillinase was observed at neutral pH in nonsaturating concentrations (1 μg/ml) of actinomycin D. The rate of enzyme synthesis, corrected for inhibition of growth caused by the antibiotic, was relatively independent of the time of actinomycin addition. The lag preceding linear enzyme formation increased with the interval between induction and the addition of actinomycin. The findings are consistent with the concept that, at neutral pH, “operons” activated by induction are rapidly repressed, while at pH 5.4, this process is delayed.

At a concentration of 4 μg/ml, actinomycin D blocked penicillinase messenger synthesis and also elicited a short-lived acceleration of the increase of penicillinase activity in uninduced and, late after induction, in induced cultures. This effect did not require a functional genomic repressor mechanism since it occurred also in a penicillinase-constitutive strain. It required protein synthesis and could not be attributed to a greater enzyme stability in the presence of actinomycin. The results suggest enhanced penicillinase translation after addition of actinomycin D.

  相似文献   

3.
Rapid polymerization of actin filament barbed ends generates protrusive forces at the cell edge, leading to cell migration. Two important regulators of free barbed ends, cofilin and Arp2/3, have been shown to work in synergy (net effect greater than additive). To explore this synergy, we model the dynamics of F-actin at the leading edge, motivated by data from EGF-stimulated mammary carcinoma cells. We study how synergy depends on the localized rates and relative timing of cofilin and Arp2/3 activation at the cell edge. The model incorporates diffusion of cofilin, membrane protrusion, F-actin capping, aging, and severing by cofilin and branch nucleation by Arp2/3 (but not G-actin recycling). In a well-mixed system, cofilin and Arp2/3 can each generate a large pulse of barbed ends on their own, but have little synergy; high synergy occurs only at low activation rates, when few barbed ends are produced. In the full spatially distributed model, both synergy and barbed-end production are significant over a range of activation rates. Furthermore, barbed-end production is greatest when Arp2/3 activation is delayed relative to cofilin. Our model supports a direct role for cofilin-mediated actin polymerization in stimulated cell migration, including chemotaxis and cancer invasion.  相似文献   

4.
Rapid polymerization of actin filament barbed ends generates protrusive forces at the cell edge, leading to cell migration. Two important regulators of free barbed ends, cofilin and Arp2/3, have been shown to work in synergy (net effect greater than additive). To explore this synergy, we model the dynamics of F-actin at the leading edge, motivated by data from EGF-stimulated mammary carcinoma cells. We study how synergy depends on the localized rates and relative timing of cofilin and Arp2/3 activation at the cell edge. The model incorporates diffusion of cofilin, membrane protrusion, F-actin capping, aging, and severing by cofilin and branch nucleation by Arp2/3 (but not G-actin recycling). In a well-mixed system, cofilin and Arp2/3 can each generate a large pulse of barbed ends on their own, but have little synergy; high synergy occurs only at low activation rates, when few barbed ends are produced. In the full spatially distributed model, both synergy and barbed-end production are significant over a range of activation rates. Furthermore, barbed-end production is greatest when Arp2/3 activation is delayed relative to cofilin. Our model supports a direct role for cofilin-mediated actin polymerization in stimulated cell migration, including chemotaxis and cancer invasion.  相似文献   

5.
We have discovered several novel features exhibited by microtubules (MTs) in migrating newt lung epithelial cells by time-lapse imaging of fluorescently labeled, microinjected tubulin. These cells exhibit leading edge ruffling and retrograde flow in the lamella and lamellipodia. The plus ends of lamella MTs persist in growth perpendicular to the leading edge until they reach the base of the lamellipodium, where they oscillate between short phases of growth and shortening. Occasionally “pioneering” MTs grow into the lamellipodium, where microtubule bending and reorientation parallel to the leading edge is associated with retrograde flow. MTs parallel to the leading edge exhibit significantly different dynamics from MTs perpendicular to the cell edge. Both parallel MTs and photoactivated fluorescent marks on perpendicular MTs move rearward at the 0.4 μm/min rate of retrograde flow in the lamella. MT rearward transport persists when MT dynamic instability is inhibited by 100-nM nocodazole but is blocked by inhibition of actomyosin by cytochalasin D or 2,3-butanedione–2-monoxime. Rearward flow appears to cause MT buckling and breaking in the lamella. 80% of free minus ends produced by breakage are stable; the others shorten and pause, leading to MT treadmilling. Free minus ends of unknown origin also depolymerize into the field of view at the lamella. Analysis of MT dynamics at the centrosome shows that these minus ends do not arise by centrosomal ejection and that ~80% of the MTs in the lamella are not centrosome bound. We propose that actomyosin-based retrograde flow of MTs causes MT breakage, forming quasi-stable noncentrosomal MTs whose turnover is regulated primarily at their minus ends.  相似文献   

6.
The growth of Bacillus subtilis mutant betaA177 can be inhibited under special conditions in which not enough autolytic enzymes are produced for optimal growth. Electron microscopy studies show that during growth inhibition there is localized thickening of the cell wall at positions where cells bend. A model is proposed to explain this result. Rapid growth can be restored by adding lysozyme or a B. subtilis autolysin mixture to a growth-inhibited betaA177 culture. Such addition reduces the localized wall thickening and causes other changes in surface morphology which are described and discussed. Septum formation seems to be relatively less inhibited than cell elongation when lytic enzyme levels are reduced. Measurements were made demonstrating that walls at ends of cells are morphologically different from walls at sides of cells in cultures of betaA177 growing at 51 C.  相似文献   

7.
Protoplasis of Bacillus licheniformis 749/C (a mutant constitutive for penicillinase production) continued to synthesize and release penicillinase in hypertonic growth medium in the presence of trypsin and chymotrypsin at 25 mug each per ml. When the protoplasts were stripped of about half of their membrane-bound penicillinase by pretreatment at pH 9.5 or with a higher level of trypsin, penicillinase activity no longer increased in the presence of the proteases. This effect was immediately eliminated after addition of soybean trypsin inhibitor. These proteases do not significantly inhibit general protein synthesis. Stripped protoplasts of strain 749/C and of uninduced strain 749 (unable to synthesize penicillinase) were incubated with 50 mug of chymotrypsin per ml, and the supernatent fluids were examined immunochemically for peptides derived from the penicillinase chain. Such fargments were found only with the protoplasts capable of synthesizing penicillinase (strain 749/C). The direct detection of the products of protease degradation of a susceptible form of penicillinase provides strong evidence that, in stripped protoplasts of B. licheniformis 749/C, penicillinase synthesis continues in the presence of trypsin or chymotrypsin and that, in these modified membranes, the protease is able to act on an early form of the enzyme that has not yet attained the protease-resistant conformation characteristic of the membrane-bound and exopenicillinases. This finding is discussed in terms of the current models of penicillinase secretion.  相似文献   

8.
Cultures of the inducible penicillinase-producing strain 749 of Bacillus licheniformis, induced with small amounts of benzylpenicillin, synthesized penicillinase at a high rate for a short period, after which the rate of synthesis slowly declined. During the period of active synthesis, the rate of secretion, as a fraction of the level of cell-bound penicillinase (which is originally high), gradually decreased to a constant level. Chloramphenicol, at a concentration (40 mug/ml) which completely inhibited synthesis of penicillinase, partially inhibited secretion if added during the period of active synthesis. During the phase of reduced synthesis, chloramphenicol was without effect on secretion. Penicillinase secretion, by actively growing cultures of the constitutive penicillinase-producing mutant 749/C, was inhibited by 75% immediately after addition of chloramphenicol. The secretion of part of the penicillinase released during active growth is probably dependent on synthesis of penicillinase, but part of the secreted penicillinase can be released in the absence of synthesis. Protoplasts were obtained from which periplasmic penicillinase has been removed, and these protoplasts were capable of substantial growth and penicillinase synthesis without lysis. At pH 7.5, there was no net incorporation of penicillinase into the cell membrane; the enzyme released was almost entirely of the exo form and was roughly equivalent to the amount of new enzyme formed. At pH 6.0, there was some incorporation of penicillinase into the plasma membrane, and approximately half of the extracellular penicillinase was in the exo form; the remainder perhaps represented membrane fragments. In the presence of chloramphenicol, a small amount of penicillinase was released at pH 7.5 as the exo form; at pH 6.0, practically none was released. We suggest that, with the removal from protoplasts of the periplasmic penicillinase-containing particles, a restriction on secretion has been lifted.  相似文献   

9.
In earlier studies of the membrane-bound penicillinase of Bacillus licheniformis 749/C, the enzyme present in the vesicles that were released during protoplast formation and the enzyme retained in the plasma membrane of protoplasts appeared to differ (i) in their behavior on gel permeation chromatography in the presence or absence of deoxycholate and (ii) in their tendency to convert to the hydrophilic exoenzyme (Sargent and Lampen, 1970). We have now shown that these vesicle preparations contain a soluble, heat-sensitive enzyme(s) that is released along with the vesicles during protoplast formation. The enzyme will convert the vesicle penicillinase to a form that resembles exopenicillinase, and this conversion can be inhibited by deoxycholate under certain circumstances. Sedimentation of such vesicle preparations at 100,000 X g produces vesicles which contain penicillinase that behaves as the plasma membrane enzyme obtained from protoplasts. Exopenicillinases released by growing cells at pH 6.5 and by washed cells or protoplasts at pH 9.0 have the same NH2-terminal residues (lysine and some glutamic acid); in addition, the various release systems show a parallel sensitivity to inhibition by deoxycholate, quinacrine, chloroquine, and o-phenanthroline. The formation of exopenicillinase (by cleavage of the membrane-bound enzyme) may well be dependent on the action of the releasing enzyme.  相似文献   

10.
The distribution of alkaline phosphatase and nuclease activity between cells and medium was examined in one strain of Bacillus licheniformis and four strains of B. subtilis. Over 95% of both activities was found in the medium of the B. licheniformis culture, but in the B. subtilis cultures the amount of enzyme activity found in the medium varied with the strain and the enzyme considered. B. licheniformis 749 and its penicillinase magnoconstitutive mutant 749/C were grown in continuous culture with phosphorous as the growth-limiting factor, and the kinetics of penicillinase formation and secretion were examined. Nutrient arrest halted secretion (usually after a lag of about 30 min) in both the inducible and constitutive strains. Chloramphenicol did not eliminate secretion, but under certain circumstances reduced its rate. In the inducible strain treated with a low level of inducer, the rate of secretion was more affected by the rate of synthesis than by the level of cell-bound enzyme. During induction, the onset of accretion of cell-bound penicillinase and secretion of the exoenzyme were nearly simultaneous. It seems unlikely that a long-lived, membrane- or cell-bound intermediate is mandatory in the secretion of the three enzymes by Bacillus species. In the case of penicillinase secretion, there are at least two different phases. When penicillinase synthesis is proceeding rapidly, the rate of secretion is five to six times greater at equivalent concentrations of membrane-bound penicillinase than it is when penicillinase synthesis is reduced. The data require that any membrane-bound intermediate in the formation of exoenzyme be much shorter-lived in cells with a high rate of synthesis than in cells with a low rate. Either there are two separate routes for the secretion of penicillinase or the characteristics of the process vary substantially between the early stages and the declining phase of induction.  相似文献   

11.
The Eocene Nanjemoy Formation crops out on the Maryland and Virginia Coastal Plain, along the eastern coast of the United States. This formation is composed of sands, silts and clays and is divided into the Potapaco and Woodstock members. Remains of fishes, reptiles, birds, mammals, molluscs, fruits and seeds are common in the Potapaco Member, in addition to vertebrate coprolites. Here, we present an analysis of more than 2000 coprolites from the Fisher/Sullivan Site in Virginia. The chemical composition (phosphatic) and the type of inclusions (fish bones) indicate that only scats of carnivorous animals were preserved. The analysed specimens were grouped into six morphotypes: (1) the cylindrical morphotype is a cylinder with rounded ends; (2) the segmented morphotype is a cylinder segmented with rounded ends, and occasionally one end is concave; (3) the oval morphotype represents a bean‐shaped coprolite; (4) the scroll morphotype is cylindrical to conical in lateral view and has coils seen only at the ends; (5) the folded morphotype is a spiral that is concentrically folded; and (6) the sinuous morphotype is serpentine, with rounded ends. Coprophagy‐related scrape traces occur in different morphotypes and represent both invertebrate burrows and bite traces made by fishes. The mineralogical and chemical analyses indicate an early precipitation of phosphate and pyrite minerals, probably induced by the microbial community. All coprolites at the Fisher/Sullivan Site were produced by fishes: carcharhiniform sharks for the scroll morphotype and lamniform sharks, probably the genus Carcharias, for the folded morphotype; the oval, cylindrical and segmented morphotypes were likely produced by actinopterygian fishes.  相似文献   

12.
John Imsande 《Genetics》1973,75(1):1-17
5-methyltryptophan (5MT) induces penicillinase synthesis in Staphylococcus aureus. The analog is incorporated into protein by both wild-type and tryptophan-starved cells. Since normal penicillinase repressor appears to contain tryptophan even though penicillinase itself does not, it is concluded that 5MT induces penicillinase synthesis by becoming incorporated into the penicillinase repressor and thereby inactivating the repressor. Thus biochemical data support the existence of a penicillinase repressor and indicate that penicillinase synthesis is regulated by negative control and not by positive control.-In the absence of exogenous tryptophan, staphylococcal penicillinase induction can be inhibited by 7-azatryptophan (7azaT). Because 7azaT is incorporated into protein by tryptophan-starved cells, it is concluded that 7azaT blocks penicillinase induction by inactivating a penicillinase regulatory protein into which the analog has been incorporated. Incorporation of 7azaT does not appear to inactivate the operator binding site or the effector binding site on the penicillinase repressor. Therefore, it appears that 7azaT blocks penicillinase induction by inactivating the penicillinase antirepressor, a protein required for inactivation of the penicillinase repressor and, hence, required for penicillinase induction.  相似文献   

13.
Electron microscopy studies show that walls from ends of Bacillus subtilis cells are more resistant to autolytic degradation that walls from sides of the same cells. This observation suggests that these two parts of the cell are structurally different. A method is available for the isolation of walls from ends of cells.  相似文献   

14.
Regulation of Penicillinase Synthesis: Evidence for a Unified Model   总被引:7,自引:3,他引:4       下载免费PDF全文
The kinetics of penicillinase induction in Bacillus cereus 569 was investigated. An increase in the rate of penicillinase synthesis was demonstrated within 30 sec of the addition of inducer (benzylpenicillin); however, the maximum induced rate of penicillinase synthesis was not attained until at least 30 min after the addition of inducer. In contrast to earlier claims, a quantitative estimate showed that the penicillinase messenger ribonucleic acid (mRNA) half-life is approximately 2 min. These findings strongly suggest that the rate of synthesis of penicillinase mRNA increases continuously during most of the 30-min latent period. A model for the regulation of penicillinase synthesis in three gram-positive organisms is presented which is consistent with a nondiffusible inducer, a short-lived mRNA, a relatively long latent period (i.e., an apparently slow inactivation of penicillinase repressor), and the existence of at least two regulatory genes.  相似文献   

15.
Summary The extracellular production of alkalophilic Bacillus penicillinase by Escherichia coli HB101 carrying pEAP31 was dependent on the cultivation temperature. Extracellular production occurred only above 26°C. The penicillinase produced by the organism grown at lower temperatures accumulated in the periplasm of the cells. At high temperature, the penicillinase accumulated transiently in the periplasm and then was released gradually from the cells. The penicillinase that accumulated in the periplasm of the organism grown at low temperature could also be released by shifting to a high temperature.  相似文献   

16.
扁圆封印木(相似种)茎干的解剖特征   总被引:2,自引:1,他引:1  
贵州省水城矿区晚二叠世煤核中扁圆封印木(相似种Sigillaria cf.brardiiBrongn.)茎干的主要解剖特征如下:管状中柱,具多边形薄壁细胞组成的髓。初生木质部成环带状,外缘呈规则的齿槽状,向心式发育。次生木质部显束状特征,横切面管胞为方圆至长方形,纵切面为梯状壁增厚,并具流苏纹。射线1—2列细胞宽,数个至十余个细胞高。叶迹起源于初生木质部外缘的槽中,中始式,但以向心发育为主。  相似文献   

17.
The uptake of iron and the formation of penicillinase was examined in cultures of wild-type Staphylococcus aureus. Uptake of iron was about twice as great at pH 4.7 as at pH 7.4 At pH 4.7, increase in iron uptake in the range of 1.0 to 4.0 μg per mg of bacterial protein was associated with a progressive increase in the rate of penicillinase formation, but a direct correlation between cellular iron content and rate of enzyme formation was not demonstrated. Addition of iron to deferrated medium enhanced penicillinase formation at pH 6.5 to 7.4 two- to fourfold in cultures induced with benzylpenicillin and in uninduced cultures. To demonstrate an effect on the uninduced cells, it was necessary to increase iron uptake by preliminary incubation of cells with iron in buffer. Calcium and certain other ions depressed iron uptake at acidic and at neutral pH, and, presumably as a result of this action, depressed the formation of penicillinase. Iron did not enhance penicillinase formation at pH 4.7 by two penicillinase constitutive mutants nor by wild-type cells undergoing induction at pH 6.5 by cephalosporin C or methicillin. After removal of cephalosporin C or methicillin during an early phase of induction, residual synthesis of enzyme was increased by prior uptake of iron. The results are considered compatible with the concept that uptake of iron, especially at acidic pH, interferes with the formation or function of penicillinase repressor.  相似文献   

18.
The stem specimens of Sigillaria cf. brardii were collected from the coal balls of Upper Permian in Shuicheng Coal Mines in Guizhou Province. The main anatomical characteristics of Sigillaria cf. brardii are described as follows: The stem is siphonostelic, with pith composed entirely of polygonal parenchyma cells, there are secondary walls in some pith cell cavities these secondary walls show the characters of cell division. Surrounding the pith is the continuous cylindrical primary xylem which consists entirely of tracheids. The outermost, and part are the protoxylem elements show spiral secondary thickenings. In cross section, the outer edge of exarch primary xylem appears regularly sinuous, with trace of mesarch leaf originating from the furrows. The centripetal metaxylem is characterized by scalariform wall thickenings on the tracheids, and delicated strands of secondary wall materials extending between abjacent bars, these structures are called fimbris, or williamson striations, and are characteristic in lepidodendrids. The secondary xylem consists of tracheids and vascular rays. The tracheids, too, have scalariform wall thickenings and fimbris. The rays are one-to twocell width and several to more than ten cells in height.  相似文献   

19.
The membrane penicillinase of Bacillus licheniformis 749/C is a phospholipoprotein which differs from the exoenzyme in that it has an additional sequence of 24 amino acid residues and a phosphatidylserine at the NH2 terminus. In exponential-phase cultures, the conversion of membrane penicillinase to exoenzyme occurs at neutral and alkaline pH. An enzyme that will cleave the membrane penicillinase to yield the exoenzyme is present (in small amounts) in exponential-phase cells and is released during their conversion to protoplasts. The enzyme is found in the filtrate of a stationary-phase culture of the uninduced penicillinase-inducible strain 749 and has been purified to apparent homogeneity from this source. The protease has an approximate molecular weight of 21,500 and requires Ca2+ ions for stabilization. It has a pH optimum of 7.0 to 9.5 for hydrolysis of casein and for the cleavage of membrane penicillinase. Both activities are inhibited by diisopropylfluorophosphate; hence, the enzyme is a serine protease. This enzyme may be entirely responsible for the formation of exopenicillinase by this organism, since the other neutral and alkaline proteases of strain 749 have little, if any, activity in releasing exopenicillinase. The enzyme has been termed penicillinase-releasing protease.  相似文献   

20.
Motility is associated with the ability to extend F-actin-rich protrusions and depends on free barbed ends as new actin polymerization sites. To understand the function and regulation of different proteins involved in the process of generating barbed ends, e.g., cofilin and Arp2/3, fixed cell approaches have been used to determine the relative barbed end concentration in cells. The major disadvantages of these approaches are permeabilization and fixation of cells. In this work, we describe a new live-cell time-lapse microscopy assay to determine the increase of barbed ends after cell stimulation that does not use permeabilization and provides a better time resolution. We established a metastatic carcinoma cell line (MTLn3) stably expressing GFP-beta-actin at physiological levels. Stimulation of MTLn3 cells with epidermal growth factor (EGF) causes rapid and transient lamellipod protrusion along with an increase in actin polymerization at the leading edge, which can be followed in live cell experiments. By measuring the increase of F-actin at the leading edge vs. time, we were able to determine the relative increase of barbed ends after stimulation with a high temporal resolution. The F-actin as well as the barbed end concentration agrees well with published data for this cell line. Using this newly developed assay, a decrease in lamellipod extension and a large reduction of barbed ends was documented after microinjecting an anti-cofilin function blocking antibody. This assay has a high potential for applications where rapid changes in the dynamic filament population are to be measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号