首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle-derived ROS and thiol regulation in muscle fatigue.   总被引:2,自引:0,他引:2  
Muscles produce oxidants, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), from a variety of intracellular sources. Oxidants are detectable in muscle at low levels during rest and at higher levels during contractions. RNS depress force production but do not appear to cause fatigue of healthy muscle. In contrast, muscle-derived ROS contribute to fatigue because loss of function can be delayed by ROS-specific antioxidants. Thiol regulation appears to be important in this biology. Fatigue causes oxidation of glutathione, a thiol antioxidant in muscle fibers, and is reversed by thiol-specific reducing agents. N-acetylcysteine (NAC), a drug that supports glutathione synthesis, has been shown to lessen oxidation of cellular constituents and delay muscle fatigue. In humans, NAC pretreatment improves performance of limb and respiratory muscles during fatigue protocols and extends time to task failure during volitional exercise. These findings highlight the importance of ROS and thiol chemistry in fatigue, show the feasibility of thiol-based countermeasures, and identify new directions for mechanistic and translational research.  相似文献   

2.
Infusion of the antioxidant N-acetylcysteine (NAC) reduces fatigability in electrically evoked human muscle contraction, but due to reported adverse reactions, no studies have investigated NAC infusion effects during voluntary exercise in humans. We investigated whether a modified NAC-infusion protocol (125 mg. kg(-1). h(-1) for 15 min, then 25 mg. kg(-1). h(-1)) altered blood redox status and enhanced performance during intense, intermittent exercise. Eight untrained men participated in a counterbalanced, double-blind, crossover study in which they received NAC or saline (control) before and during cycling exercise, which comprised three 45-s bouts and a fourth bout that continued to fatigue, at 130% peak oxygen consumption. Arterialized venous blood was analyzed for glutathione status, hematology, and plasma electrolytes. NAC infusion induced no severe adverse reactions. Exercise decreased the reduced glutathione (P < 0.005) and increased oxidized glutathione concentrations (P < 0.005); NAC attenuated both effects (P < 0.05). NAC increased the rise in plasma K(+) concentration-to-work ratio (P < 0.05), indicating impaired K(+) regulation, although time to fatigue was unchanged (NAC 102 +/- 45 s; saline 107 +/- 53 s). Thus NAC infusion altered blood redox status during intense, intermittent exercise but did not attenuate fatigue.  相似文献   

3.
Stretch-shortening cycle: a powerful model to study normal and fatigued muscle   总被引:11,自引:0,他引:11  
Komi PV 《Journal of biomechanics》2000,33(10):1197-1206
Stretch-shortening cycle (SSC) in human skeletal muscle gives unique possibilities to study normal and fatigued muscle function. The in vivo force measurement systems, buckle transducer technique and optic fiber technique, have revealed that, as compared to a pure concentric action, a non-fatiguing SSC exercise demonstrates considerable performance enhancement with increased force at a given shortening velocity. Characteristic to this phenomenon is very low EMG-activity in the concentric phase of the cycle, but a very pronounced contribution of the short-latency stretch-reflex component. This reflex contributes significantly to force generation during the transition (stretch-shortening) phase in SSC action such as hopping and running. The amplitude of the stretch reflex component - and the subsequent force enhancement - may vary according to the increased stretch-load but also to the level of fatigue. While moderate SSC fatigue may result in slight potentiation, the exhaustive SSC fatigue can dramatically reduce the same reflex contribution. SSC fatigue is a useful model to study the processes of reversible muscle damage and how they interact with muscle mechanics, joint and muscle stiffness. All these parameters and their reduction during SSC fatigue changes stiffness regulation through direct influences on muscle spindle (disfacilitation), and by activating III and IV afferent nerve endings (proprioseptic inhibition). The resulting reduced stretch reflex sensitivity and muscle stiffness deteriorate the force potentiation mechanisms. Recovery of these processes is long lasting and follows the bimodal trend of recovery. Direct mechanical disturbances in the sarcomere structural proteins, such as titin, may also occur as a result of an exhaustive SSC exercise bout.  相似文献   

4.
Reactive oxygen species (ROS) have been linked to oxidation and nuclear efflux of class IIa histone deacetylase 4 (HDAC4) in cardiac muscle. Here we use HDAC-GFP fusion proteins expressed in isolated adult mouse flexor digitorum brevis muscle fibers to study ROS mediation of HDAC localization in skeletal muscle. H(2)O(2) causes nuclear efflux of HDAC4-GFP or HDAC5-GFP, which is blocked by the ROS scavenger N-acetyl-l-cysteine (NAC). Repetitive stimulation with 100-ms trains at 50 Hz, 2/s ("50-Hz trains") increased ROS production and caused HDAC4-GFP or HDAC5-GFP nuclear efflux. During 50-Hz trains, HDAC5-GFP nuclear efflux was completely blocked by NAC, but HDAC4-GFP nuclear efflux was only partially blocked by NAC and partially blocked by the calcium-dependent protein kinase (CaMK) inhibitor KN-62. Thus, during intense activity both ROS and CaMK play roles in nuclear efflux of HDAC4, but only ROS mediates HDAC5 nuclear efflux. The 10-Hz continuous stimulation did not increase the rate of ROS production and did not cause HDAC5-GFP nuclear efflux but promoted HDAC4-GFP nuclear efflux that was sensitive to KN-62 but not NAC and thus mediated by CaMK but not by ROS. Fibers from NOX2 knockout mice lacked ROS production and ROS-dependent nuclear efflux of HDAC5-GFP or HDAC4-GFP during 50-Hz trains but had unmodified Ca(2+) transients. Our results demonstrate that ROS generated by NOX2 could play important roles in muscle remodeling due to intense muscle activity and that the nuclear effluxes of HDAC4 and HDAC5 are differentially regulated by Ca(2+) and ROS during muscle activity.  相似文献   

5.
The production of reactive oxygen species in skeletal muscle is linked with muscle fatigue. This study investigated the effects of the antioxidant compound N-acetylcysteine (NAC) on muscle cysteine, cystine, and glutathione and on time to fatigue during prolonged, submaximal exercise in endurance athletes. Eight men completed a double-blind, crossover study, receiving NAC or placebo before and during cycling for 45 min at 71% peak oxygen consumption (VO2 peak) and then to fatigue at 92% VO2 peak. NAC was intravenously infused at 125 mg.kg(-1).h(-1) for 15 min and then at 25 mg.kg(-1).h(-1) for 20 min before and throughout exercise. Arterialized venous blood was analyzed for NAC, glutathione status, and cysteine concentration. A vastus lateralis biopsy was taken preinfusion, at 45 min of exercise, and at fatigue and was analyzed for NAC, total glutathione (TGSH), reduced glutathione (GSH), cysteine, and cystine. Time to fatigue at 92% VO2 peak was reproducible in preliminary trials (coefficient of variation 5.6 +/- 0.6%) and with NAC was enhanced by 26.3 +/- 9.1% (NAC 6.4 +/- 0.6 min vs. Con 5.3 +/- 0.7 min; P <0.05). NAC increased muscle total and reduced NAC at both 45 min and fatigue (P <0.005). Muscle cysteine and cystine were unchanged during Con, but were elevated above preinfusion levels with NAC (P <0.001). Muscle TGSH (P <0.05) declined and muscle GSH tended to decline (P=0.06) during exercise. Both were greater with NAC (P <0.05). Neither exercise nor NAC affected whole blood TGSH. Whereas blood GSH was decreased and calculated oxidized glutathione increased with exercise (P <0.05), both were unaffected by NAC. In conclusion, NAC improved performance in well-trained individuals, with enhanced muscle cysteine and GSH availability a likely mechanism.  相似文献   

6.
The production of reactive oxygen species in skeletal muscle is linked with muscle fatigue. This study investigated whether the antioxidant compound N-acetylcysteine (NAC) augments time to fatigue during prolonged, submaximal cycling exercise. Seven men completed a double-blind, crossover study, receiving NAC or placebo before and during cycling exercise, comprising 45 min at 70% of peak oxygen consumption (Vo2 peak) and then to fatigue at 90% Vo2 peak. NAC was intravenously infused at 125 mg.kg-1.h-1 for 15 min and then 25 mg.kg-1.h-1 for 20 min before and throughout exercise, which was continued until fatigue. Arterialized venous blood was analyzed for NAC concentration, hematology, and plasma electrolytes. NAC induced no serious adverse reactions and did not affect hematology, acid-base status, or plasma electrolytes. Time to fatigue was reproducible in preliminary trials (coefficient of variation 7.4 +/- 1.2%) and was not augmented by NAC (NAC 14.6 +/- 4.5 min; control 12.8 +/- 5.4 min). However, time to fatigue during NAC trials was correlated with Vo2 peak (r = 0.78; P < 0.05), suggesting that NAC effects on performance may be dependent on training status. The rise in plasma K+ concentration at fatigue was attenuated by NAC (P < 0.05). The ratio of rise in K+ concentration to work and the percentage change in time to fatigue tended to be inversely related (r = -0.71; P < 0.07). Further research is required to clarify a possible training status-dependent effect of NAC on muscle performance and K+ regulation.  相似文献   

7.
Oxidative stress, caused by excess reactive oxygen species (ROS), has been hypothesized to cause or exacerbate skeletal muscle wasting in a number of diseases and chronic conditions. ROS, such as hydrogen peroxide, have the potential to affect signal transduction pathways such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt pathway that regulates protein synthesis. Previous studies have found contradictory outcomes for the effect of ROS on the PI3K/Akt signaling pathway, where oxidative stress can either enhance or inhibit Akt phosphorylation. The apparent contradictions could reflect differences in experimental cell types or types of ROS treatments. We replicate both effects in myotubes of cultured skeletal muscle C2C12 cells, and show that increased oxidative stress can either inhibit or enhance Akt phosphorylation. This differential response could be explained: thiol oxidation of Akt, but not the phosphatases PTEN or PP2A, caused a decline in Akt phosphorylation; whereas the thiol oxidation of Akt, PTEN and PP2A increased Akt phosphorylation. These observations indicate that a more complete understanding of the effects of oxidative stress on a signal transduction pathway comes not only from identifying the proteins susceptible to thiol oxidation, but also their relative sensitivity to ROS.  相似文献   

8.
Seventeen normal subjects performed maximal wrist flexion exercise with continuous monitoring of forearm muscle pH and H2PO4-, measured with 31P nuclear magnetic resonance, and muscle fatigue, expressed as a percentage of decline in maximal developed force. Four minutes of exercise (flexion duration = 1 s) reduced maximal developed force from 100 to 74 +/- 9% and pH from 6.99 +/- 0.04 to 6.17 +/- 0.33 and increased H2PO4- to 927 +/- 401% of resting levels. In all subjects, linear relationships were noted between developed force and pH (r = 0.90 +/- 0.08) and between developed force and H2PO4- (r = -0.89 +/- 0.08). Doubling the contraction duration to 2 s produced more rapid changes in developed force, pH, and H2PO4- but no change in the relationship of force to pH and H2PO4-. Two minutes of submaximal exercise before maximal exercise significantly reduced pH and increased H2PO4-. During subsequent maximal exercise, the relationship between developed force and H2PO4- remained unchanged. In contrast, the relationship between developed force and pH was shifted leftward; muscle pH remained lower throughout maximal exercise, and developed force remained comparable to that noted during control exercise. These observations suggest that muscle fatigue during intense short-term exercise is primarily caused by an increase in intramuscular H2PO4- rather than by a decrease in intramuscular pH.  相似文献   

9.
Exercise-induced respiratory muscle fatigue: implications for performance.   总被引:1,自引:0,他引:1  
It is commonly held that the respiratory system has ample capacity relative to the demand for maximal O(2) and CO(2) transport in healthy humans exercising near sea level. However, this situation may not apply during heavy-intensity, sustained exercise where exercise may encroach on the capacity of the respiratory system. Nerve stimulation techniques have provided objective evidence that the diaphragm and abdominal muscles are susceptible to fatigue with heavy, sustained exercise. The fatigue appears to be due to elevated levels of respiratory muscle work combined with an increased competition for blood flow with limb locomotor muscles. When respiratory muscles are prefatigued using voluntary respiratory maneuvers, time to exhaustion during subsequent exercise is decreased. Partially unloading the respiratory muscles during heavy exercise using low-density gas mixtures or mechanical ventilation can prevent exercise-induced diaphragm fatigue and increase exercise time to exhaustion. Collectively, these findings suggest that respiratory muscle fatigue may be involved in limiting exercise tolerance or that other factors, including alterations in the sensation of dyspnea or mechanical load, may be important. The major consequence of respiratory muscle fatigue is an increased sympathetic vasoconstrictor outflow to working skeletal muscle through a respiratory muscle metaboreflex, thereby reducing limb blood flow and increasing the severity of exercise-induced locomotor muscle fatigue. An increase in limb locomotor muscle fatigue may play a pivotal role in determining exercise tolerance through a direct effect on muscle force output and a feedback effect on effort perception, causing reduced motor output to the working limb muscles.  相似文献   

10.
The observation that muscular exercise is associated with oxidative stress in humans was first reported over 30 years ago. Since this initial report, numerous studies have confirmed that prolonged or high-intensity exercise results in oxidative damage to macromolecules in both blood and skeletal muscle. Although the primary tissue(s) responsible for reactive oxygen species (ROS) production during exercise remains a topic of debate, compelling evidence indicates that muscular activity promotes oxidant production in contracting skeletal muscle fibers. Mitochondria, NADPH oxidase, PLA2-dependent processes, and xanthine oxidase have all been postulated to contribute to contraction-induced ROS production in muscle but the primary site of contraction-induced ROS production in muscle fibers remains unclear. Nonetheless, contraction-induced ROS generation has been shown to play an important physiological function in the regulation of both muscle force production and contraction-induced adaptive responses of muscle fibers to exercise training. Although knowledge in the field of exercise and oxidative stress has grown markedly during the past 30 years, this area continues to expand and there is much more to be learned about the role of ROS as signaling molecules in skeletal muscle.  相似文献   

11.
Regular endurance exercise remodels skeletal muscle, largely through the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). PGC-1α promotes fiber type switching and resistance to fatigue. Intracellular calcium levels might play a role in both adaptive phenomena, yet a role for PGC-1α in the adaptation of calcium handling in skeletal muscle remains unknown. Using mice with transgenic overexpression of PGC-1α, we now investigated the effect of PGC-1α on calcium handling in skeletal muscle. We demonstrate that PGC-1α induces a quantitative reduction in calcium release from the sarcoplasmic reticulum by diminishing the expression of calcium-releasing molecules. Concomitantly, maximal muscle force is reduced in vivo and ex vivo. In addition, PGC-1α overexpression delays calcium clearance from the myoplasm by interfering with multiple mechanisms involved in calcium removal, leading to higher myoplasmic calcium levels following contraction. During prolonged muscle activity, the delayed calcium clearance might facilitate force production in mice overexpressing PGC-1α. Our results reveal a novel role of PGC-1α in altering the contractile properties of skeletal muscle by modulating calcium handling. Importantly, our findings indicate PGC-1α to be both down- as well as upstream of calcium signaling in this tissue. Overall, our findings suggest that in the adaptation to chronic exercise, PGC-1α reduces maximal force, increases resistance to fatigue, and drives fiber type switching partly through remodeling of calcium transients, in addition to promoting slow-type myofibrillar protein expression and adequate energy supply.  相似文献   

12.
Skeletal muscle activity is invariably associated with a decline in force-generating capacity (fatigue). The build-up of metabolic by-products such as intracellular H+ and inorganic phosphate (Pi) has been shown to be one of the potential mechanisms of muscle fatigue. The use of phosphorus magnetic resonance spectroscopy is a repeatable and useful tool to study the effect of pH and Pi on force development. When maximal exercise is preceded by submaximal exercise to reduce the starting muscle pH and increase Pi, the degree of muscle fatigue correlates more strongly with H2PO4- than pH or Pi alone. However, other studies in humans have found that H2PO4- does not always correlate well with fatigue. The use of ramp exercise protocols allow repeatable and sensitive measurement of changes in muscle metabolism in response to endurance training. Chronic electrical stimulation in dogs and endurance training in humans results in reduced pH and Pi changes at the same exercise intensities. This means that the effect of pH and Pi in depressing force development is reduced, which could partially explain the increased fatigue resistance seen following endurance training.  相似文献   

13.
A high-performance liquid chromatographic assay was developed for the quantitative determination of the sulfur-containing amino acids N-acetyl- -cysteine (NAC) and -cysteine (Cys) in rat plasma. The thiols were separated by reverse-phase ion-pair chromatography, and the column eluent was continuously mixed with an iodoplatinate-containing solution. The substitution of sulfur of the thiol compound with iodide was quantitatively determined by measuring changes in the absorption at 500 nm. The low-molecular-weight disulfides and mixed disulfide conjugates of thiols with proteins were entirely reduced to the original reduced compounds by dithiothreitol. By reducing these two types of disulfides separately during sample pretreatment, the reduced, protein-unbound, and total thiol concentrations could also be determined. Validation testing was performed, and no problems were encountered. The limit of detection was approximately 20 pmol of thiol on the column. The present method was used to measure the plasma concentrations of NAC and Cys in the rat after a bolus intravenous administration of NAC, focusing on disulfide formation. The binding of NAC to protein through mixed disulfide formation proceeds in a time-dependent and reversible manner. Moreover, this “stable” covalent binding might limit total drug elimination, while the unbound NAC is rapidly eliminated. Consequently, the analytical method described in this study is very useful for the determination of plasma NAC and Cys, including disulfide conjugates derived from them.  相似文献   

14.
Anabolic androgenic steroids are used in the sport context to enhance muscle mass and strength and to increase muscle fatigue resistance. Since muscle fatigue has been related to oxidative stress caused by an exercise-linked reactive oxygen species (ROS) production, we investigated the potential effects of a treatment with the anabolic androgenic steroid stanozolol against oxidative damage induced on rat skeletal muscle mitochondria by an acute bout of exhaustive exercise. Mitochondrial ROS generation with complex I- and complex II-linked substrates was increased in exercised control rats, whereas it remained unchanged in the steroid-treated animals. Stanozolol treatment markedly reduced the extent of exercise-induced oxidative damage to mitochondrial proteins, as indicated by the lower levels of the specific markers of protein oxidation, glycoxidation, and lipoxidation, and the preservation of the activity of the superoxide-sensitive enzyme aconitase. This effect was not due to an enhancement of antioxidant enzyme activities. Acute exercise provoked changes in mitochondrial membrane fatty acid composition characterized by an increased content in docosahexaenoic acid. In contrast, the postexercise mitochondrial fatty acid composition was not altered in stanozolol-treated rats. Our results suggest that stanozolol protects against acute exercise-induced oxidative stress by reducing mitochondrial ROS production, in association with a preservation of mitochondrial membrane properties.  相似文献   

15.
Locomotor muscle fatigue, defined as an exercise-induced reduction in maximal voluntary force, occurs during prolonged exercise, but its effects on cardiorespiratory responses and exercise performance are unknown. In this investigation, a significant reduction in locomotor muscle force (-18%, P < 0.05) was isolated from the metabolic stress usually associated with fatiguing exercise using a 100-drop-jumps protocol consisting of one jump every 20 s from a 40-cm-high platform. The effect of this treatment on time to exhaustion during high-intensity constant-power cycling was measured in study 1 (n = 10). In study 2 (n = 14), test duration (871 +/- 280 s) was matched between fatigue and control condition (rest). In study 1, locomotor muscle fatigue caused a significant curtailment in time to exhaustion (636 +/- 278 s) compared with control (750 +/- 281 s) (P = 0.003) and increased cardiac output. Breathing frequency was significantly higher in the fatigue condition in both studies despite similar oxygen consumption and blood lactate accumulation. In study 2, high-intensity cycling did not induce further fatigue to eccentrically-fatigued locomotor muscles. In both studies, there was a significant increase in heart rate in the fatigue condition, and perceived exertion was significantly increased in study 2 compared with control. These results suggest that locomotor muscle fatigue has a significant influence on cardiorespiratory responses and exercise performance during high-intensity cycling independently from metabolic stress. These effects seem to be mediated by the increased central motor command and perception of effort required to exercise with weaker locomotor muscles.  相似文献   

16.
Diseases that result in muscle weakness, e.g., heart failure, are characterized by elevated sphingomyelinase (SMase) activity. In intact muscle, SMase increases oxidants that contribute to diminished muscle force. However, the source of oxidants, specific processes of muscle contraction that are dysfunctional, and biochemical changes underlying the weakness elicited by SMase remain unknown. We tested three hypotheses: 1) SMase-induced depression of muscle force is mediated by mitochondrial reactive oxygen species (ROS), 2) SMase depresses force and calcium sensitivity of the contractile apparatus, and 3) SMase promotes oxidation and phosphorylation of myofibrillar proteins. Our experiments included intact muscle bundles, permeabilized single fibers, and isolated myofibrillar proteins. The mitochondrial-targeted antioxidant d-Arg-2',6'-dimethyl-Tyr-Lys-Phe-NH(2), decreased cytosolic oxidants and protected intact muscle bundles from weakness stimulated by SMase. SMase depressed maximal calcium-activated force by 20% in permeabilized single fibers (in kN/m(2): control 117 ± 6; SMase 93 ± 8; P < 0.05). Calcium sensitivity of permeabilized single fibers decreased from 5.98 ± 0.03 (control) to 5.91 ± 0.02 (SMase; P < 0.05). Myofibrillar protein nitrotyrosines, carbonyls, and phosphorylation were unaltered by SMase. Our study shows that the fall in specific force of intact muscle elicited by SMase is mediated by mitochondrial ROS and can be attributed largely to dysfunction of the contractile apparatus.  相似文献   

17.
Evidence in healthy animals and humans is accumulating that the muscle mechanoreceptors play an important role in mediating sympathetic activation during exercise, especially rhythmic exercise. Furthermore, muscle mechanoreceptors appear to be sensitized acutely during exercise by metabolic by-products, although the identity of these by-products remains unknown. The purpose of this study was to determine whether the metabolic by-products 1) prostaglandins and/or 2) adenosine sensitize muscle mechanoreceptor control of muscle sympathetic nerve activity (MSNA) in normal humans during rhythmic exercise. MSNA was recorded using microneurography. Muscle mechanoreceptors were activated by low-level rhythmic forearm exercise for 3 min. In 16 healthy humans, intra-arterial indomethacin was infused into the exercising arm to inhibit synthesis of cyclooxygenase products. In 18 healthy humans, intra-arterial aminophylline was infused into the exercising arm to block adenosine receptors. During saline control, MSNA increased significantly during exercise. Inhibition of cyclooxygenase during exercise dramatically and virtually completely eliminated the reflex sympathetic activation. Inhibition of adenosine receptors with aminophylline had no effect on the sympathetic activation during muscle mechanoreceptor stimulation. In conclusion, muscle mechanoreceptors are sensitized by cyclooxygenase products, but not by adenosine, during 3 min of low-level rhythmic handgrip exercise in healthy humans. Further studies of other metabolic by-products and of patients with enhanced muscle mechanoreceptor sensitivity, such as patients with heart failure, are warranted.  相似文献   

18.
Membrane excitability is a critical regulatory step in skeletal muscle contraction and is modulated by local ionic concentrations, conductances, ion transporter activities, temperature, and humoral factors. Intense fatiguing contractions induce cellular K(+) efflux and Na(+) and Cl(-) influx, causing pronounced perturbations in extracellular (interstitial) and intracellular K(+) and Na(+) concentrations. Muscle interstitial K(+) concentration may increase 1- to 2-fold to 11-13 mM and intracellular K(+) concentration fall by 1.3- to 1.7-fold; interstitial Na(+) concentration may decline by 10 mM and intracellular Na(+) concentration rise by 1.5- to 2.0-fold. Muscle Cl(-) concentration changes reported with muscle contractions are less consistent, with reports of both unchanged and increased intracellular Cl(-) concentrations, depending on contraction type and the muscles studied. When considered together, these ionic changes depolarize sarcolemmal and t-tubular membranes to depress tetanic force and are thus likely to contribute to fatigue. Interestingly, less severe local ionic changes can also augment subtetanic force, suggesting that they may potentiate muscle contractility early in exercise. Increased Na(+)-K(+)-ATPase activity during exercise stabilizes Na(+) and K(+) concentration gradients and membrane excitability and thus protects against fatigue. However, during intense contraction some Na(+)-K(+) pumps are inactivated and together with further ionic disturbances, likely precipitate muscle fatigue.  相似文献   

19.
The space flight or simulated gravitational unloading lead to the muscle atrophy, slow-to-fast transformation of muscle fibers and myofibrillar damages both in humans and animals (1, 7, 13, 17). This process could be prevented by the exercise training during space flight (1), (partly) by periodic weight support during unloading (13). It has been demonstrated in these studies that there is some level of force production necessary for the maintenance of skeletal muscle properties. It is known that adaptation to the physical training frequently induces augmentation in cross-sectional area (CSA) of muscle fibers (MF), transformation of fibers, augmentation of mitochondrial volume density, and increase in absolute volume of myofibrillas. Numerous observations suggest importance of gravitational loading in regulating muscle mass. The centrifuging is believed to be useful for preventing muscle functional and structural losses under microgravity. But there are few studies designed to investigate effect of artificial gravity on the skeletal musculature (2, 7). Our objective was to investigate structural adaptation in slow-twitch soleus muscle (percentage of connective tissue and central nuclei, fiber size, myosin heavy chain isotope, myofibrillar proteins and mitochondria volume density) after 19 and 33 days of hypergravity.  相似文献   

20.
Although evidence exists that a critical limiting temperature during exercise leads to premature fatigue secondary to a reduced central nervous system (CNS) drive to skeletal muscle, other thermoregulatory models may provide alternative explanations for limitations to exercise and heat stress in humans. This paper considers a number of mammalian species and their thermoregulatory strategies which deal with physical work and survival in hot environments. The critical limiting temperature hypothesis as the cause of premature fatigue is discussed in relation to the evidence for a CNS down-regulation of skeletal muscle drive. However, recent studies suggest that exercise duration or the point of fatigue is determined by a mechanism of anticipatory regulation for the avoidance of catastrophe. Evidence is offered that premature fatigue in the heat is not limited by a critical limiting temperature per se, but rather the rate at which core temperature rises so that the organism can anticipate the point of termination and avoid a catastrophic outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号