首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibronectin is one of the main components of the extracellular matrix and associates with a variety of other matrix molecules including collagens. We demonstrate that the absence of secreted type VI collagen in cultured primary fibroblasts affects the arrangement of fibronectin in the extracellular matrix. We observed a fine network of collagen VI filaments and fibronectin fibrils in the extracellular matrix of normal murine and human fibroblasts. The two microfibrillar systems did not colocalize, but were interconnected at some discrete sites which could be revealed by immunoelectron microscopy. Direct interaction between collagen VI and fibronectin was also demonstrated by far western assay. When primary fibroblasts from Col6a1 null mutant mice were cultured, collagen VI was not detected in the extracellular matrix and a different pattern of fibronectin organization was observed, with fibrils running parallel to the long axis of the cells. Similarly, an abnormal fibronectin deposition was observed in fibroblasts from a patient affected by Bethlem myopathy, where collagen VI secretion was drastically reduced. The same pattern was also observed in normal fibroblasts after in vivo perturbation of collagen VI-fibronectin interaction with the 3C4 anti-collagen VI monoclonal antibody. Competition experiments with soluble peptides indicated that the organization of fibronectin in the extracellular matrix was impaired by added soluble collagen VI, but not by its triple helical (pepsin-resistant) fragments. These results indicate that collagen VI mediates the three-dimensional organization of fibronectin in the extracellular matrix of cultured fibroblasts.  相似文献   

2.
Three novel collagen VI chains, alpha4(VI), alpha5(VI), and alpha6(VI)   总被引:1,自引:0,他引:1  
We report the identification of three new collagen VI genes at a single locus on human chromosome 3q22.1. The three new genes are COL6A4, COL6A5, and COL6A6 that encode the alpha4(VI), alpha5(VI), and alpha6(VI) chains. In humans, the COL6A4 gene has been disrupted by a chromosome break. Each of the three new collagen chains contains a 336-amino acid triple helix flanked by seven N-terminal von Willebrand factor A-like domains and two (alpha4 and alpha6 chains) or three (alpha5 chain) C-terminal von Willebrand factor A-like domains. In humans, mRNA expression of COL6A5 is restricted to a few tissues, including lung, testis, and colon. In contrast, the COL6A6 gene is expressed in a wide range of fetal and adult tissues, including lung, kidney, liver, spleen, thymus, heart, and skeletal muscle. Antibodies to the alpha6(VI) chain stained the extracellular matrix of human skeletal and cardiac muscle, lung, and the territorial matrix of articular cartilage. In cell transfection and immunoprecipitation experiments, mouse alpha4(VI)N6-C2 chain co-assembled with endogenous alpha1(VI) and alpha2(VI) chains to form trimeric collagen VI molecules that were secreted from the cell. In contrast, alpha5(VI)N5-C1 and alpha6(VI)N6-C2 chains did not assemble with alpha1(VI) and alpha2(VI) chains and accumulated intracellularly. We conclude that the alpha4(VI)N6-C2 chain contains all the elements necessary for trimerization with alpha1(VI) and alpha2(VI). In summary, the discovery of three additional collagen VI chains doubles the collagen VI family and adds a layer of complexity to collagen VI assembly and function in the extracellular matrix.  相似文献   

3.
Collagen VI, a microfibrillar protein found in virtually all connective tissues, is composed of three distinct subunits, alpha1(VI), alpha2(VI), and alpha3(VI), which associate intracellularly to form triple helical heterotrimeric monomers then dimers and tetramers. The secreted tetramers associate end-to-end to form beaded microfibrils. Although the basic steps in assembly and the structure of the tetramers and microfibrils are well defined, details of the interacting protein domains involved in assembly are still poorly understood. To explore the role of the C-terminal globular regions in assembly, alpha3(VI) cDNA expression constructs with C-terminal truncations were stably transfected into SaOS-2 cells. Control alpha3(VI) N6-C5 chains with an intact C-terminal globular region (subdomains C1-C5), and truncated alpha3(VI) N6-C1, N6-C2, N6-C3, and N6-C4 chains, all associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, dimers and tetramers, which were secreted. These data demonstrate that subdomains C2-C5 are not required for monomer, dimer or tetramer assembly, and suggest that the important chain selection interactions involve the C1 subdomains. In contrast to tetramers containing control alpha3(VI) N6-C5 chains, tetramers containing truncated alpha3(VI) chains were unable to associate efficiently end-to-end in the medium and did not form a significant extracellular matrix, demonstrating that the alpha3(VI) C5 domain plays a crucial role in collagen VI microfibril assembly. The alpha3(VI) C5 domain is present in the extracellular matrix of SaOS-2 N6-C5 expressing cells and fibroblasts demonstrating that processing of the C-terminal region of the alpha3(VI) chain is not essential for microfibril formation.  相似文献   

4.
Collagen VI assembly is unique within the collagen superfamily in that the alpha 1(VI), alpha 2(VI), and alpha 3(VI) chains associate intracellularly to form triple helical monomers, and then dimers and tetramers, which are secreted from the cell. Secreted tetramers associate end-to-end to form the distinctive extracellular microfibrils that are found in virtually all connective tissues. Although the precise protein interactions involved in this process are unknown, the N-terminal globular regions, which are composed of multiple copies of von Willebrand factor type A-like domains, are likely to play a critical role in microfibril formation, because they are exposed at both ends of the tetramers. To explore the role of these subdomains in collagen VI intracellular and extracellular assembly, alpha 3(VI) cDNA expression constructs with sequential N-terminal deletions were stably transfected into SaOS-2 cells, producing cell lines that express alpha 3(VI) chains with N-terminal globular domains containing modules N9-N1, N6-N1, N5-N1, N4-N1, N3-N1, or N1, as well as the complete triple helix and C-terminal globular domain (C1-C5). All of these transfected alpha 3(VI) chains were able to associate with endogenous alpha 1(VI) and alpha 2(VI) to form collagen VI monomers, dimers, and tetramers, which were secreted. Importantly, cells that expressed alpha 3(VI) chains containing the N5 subdomain, alpha 3(VI) N9-C5, N6-C5, and N5-C5, formed microfibrils and deposited a collagen VI matrix. In contrast, cells that expressed the shorter alpha 3(VI) chains, N4-C5, N3-C5, and N1-C5, were severely compromised in their ability to form end-to-end tetramer assemblies and failed to deposit a collagen VI matrix. These data demonstrate that the alpha 3(VI) N5 module is critical for microfibril formation, thus identifying a functional role for a specific type A subdomain in collagen VI assembly.  相似文献   

5.
Collagen VI expression was studied in cultured human skin fibroblasts and mouse 3T3 cells using cDNA probes specific for alpha 1(VI), alpha 2(VI), and alpha 3(VI) chains. A 2-3-fold increase of these mRNAs was observed when fibroblasts were grown at increasing densities while only minimal changes occurred for the mRNA levels of collagens I and III, fibronectin, and beta-actin. Changes in mRNA correlated well with an increased production of corresponding proteins as determined by immunological assays. A comparable increase of alpha 1(VI) and alpha 2(VI) but not of alpha 3(VI) chain mRNAs was found for fibroblasts grown in a three-dimensional collagen gel after gel contraction. These conditions resulted, however, in a decrease of steady-state levels of collagens I and III and actin mRNAs. Transformation of 3T3 cells by phorbol ester did not change collagen VI mRNAs but caused a 3-5-fold reduction in mRNA levels for the other extracellular matrix proteins. These data strongly imply different regulatory mechanisms for the expression of collagen VI compared with collagens I and III and fibronectin. The differences may be correlated to changes in cell shape and reflect the requirement for collagen VI as a cell-binding protein.  相似文献   

6.
Tenascin-X (TNX) is an extracellular matrix glycoprotein. We previously demonstrated that TNX-null fibroblasts exhibit decreased cell-matrix and cell-cell adhesion. In this study, we used a differential display technique to determine the genes involved in this process. Differential display analysis of wild-type and TNX-null fibroblasts revealed that mRNA expression level of type VI collagen alpha3 is predominantly decreased in TNX-null fibroblasts. Expression levels of mRNAs of other subunits of type VI collagen, alpha2 and alpha3 chains, were also remarkably decreased in TNX-null fibroblasts. The protein level of alpha3 chain of type VI collagen was also reduced in TNX-null fibroblasts. However, the organization of type VI collagen in the extracellular matrix of TNX-null fibroblasts was similar to that of wild-type fibroblasts. Transient expression of TNX in Balb3T3 cells caused an increase in the level of mRNA of type VI collagen compared with that in vector control and increased the promoter activity of type VI collagen alpha1 subunit gene. In addition, the expression levels of type I collagen and other collagen fibril-associated molecules such as type XII and type XIV collagens, decorin, lumican and fibromodulin in wild-type and TNX-null fibroblasts were compared. It was found that the mRNA expression levels of type I collagen and collagen fibril-associated molecules other than decorin were decreased and that the expression level of decorin was increased in TNX-null fibroblasts. The results suggest the possibility that TNX mediates not only cell-cell and cell-matrix interactions but also fibrillogenesis via collagen fibril-associated molecules.  相似文献   

7.
Treatment of cultured human skin fibroblasts with increasing doses of gamma-interferon produces a distinct reduction of steady-state levels of the alpha 3 chain of collagen VI mRNA by about 60% but not of the alpha 1 and alpha 2 chain mRNAs. A similar decrease was also observed for collagen I and III mRNA while fibronectin mRNA remained at the same level. The decrease in alpha 3(VI) mRNA is accompanied by a reduced synthesis of collagen VI and by a reduced deposition of both collagen VI and fibronectin in urea-insoluble form in the cell matrix. No other gamma-interferon effects were observed for fibronectin biosynthesis. Immunoprecipitation of metabolically labeled collagen VI demonstrated a strongly reduced synthesis (by 65-80%) of intracellular alpha 3(VI) chains with no decrease found for alpha 1(VI) and alpha 2(VI) chains. All three chains were, however, found to be reduced in the culture medium. Pepsin treatment of immunoprecipitated collagen VI showed similar chain ratios for material in the culture medium obtained in the absence or presence of gamma-interferon. It indicates that correctly assembled heterotrimers of the composition [alpha 1(VI) alpha 2(VI) alpha 3(VI)] are formed and secreted also in the absence of an equivalent alpha 3(VI) chain synthesis but at a reduced rate. The data support previous predictions from sequence analyses [Chu et al. (1988) J. Biol. Chem. 263, 18,601-18,606] that collagen VI molecules composed of all three constituent chains are more stable than other assembly alternatives.  相似文献   

8.
9.
Mutations in the genes that code for collagen VI subunits, COL6A1, COL6A2, and COL6A3, are the cause of the dominantly inherited disorder, Bethlem myopathy. Glycine mutations that interrupt the Gly-X-Y repetitive amino acid sequence that forms the characteristic collagen triple helix have been defined in four families; however, the effects of these mutations on collagen VI biosynthesis, assembly, and structure have not been determined. In this study, we examined the consequences of Bethlem myopathy triple helical glycine mutations in the alpha1(VI) and alpha2(VI) chains, as well as engineered alpha3(VI) triple helical glycine mutations. Although the Bethlem myopathy and introduced mutations that are toward the N terminus of the triple helix did not measurably affect collagen VI intracellular monomer, dimer, or tetramer assembly, or secretion, the introduced mutation toward the C terminus of the helix severely impaired association of the mutant alpha3(VI) chain with alpha1(VI) and alpha2(VI). Association of the three chains was not completely prevented, however; and some non-disulfide bonded tetramers were secreted. Examination of the secreted Bethlem myopathy and engineered mutant collagen VI by negative staining electron microscopy revealed the striking finding that in all the cell lines a significant proportion of the tetramers contained a kink in the supercoiled triple helical region. Collagen VI tetramers from all of the mutant cell lines also showed a reduced ability to form microfibrils. These results provide the first evidence of the biosynthetic consequences of collagen VI triple helical glycine mutations and indicate that Bethlem myopathy results not only from the synthesis of reduced amounts of structurally normal protein but also from the presence of mutant collagen VI in the extracellular matrix.  相似文献   

10.
11.
Type VI collagen is a heterotrimer composed of three polypeptide chains, alpha 1(VI), alpha 2(VI), and alpha 3(VI). By immunological screening of an expression cDNA library, human cDNAs specific for each chain were isolated and characterized. Major mRNA species encoding these chains have a size of 4.2 kb (alpha 1), 3.5 kb (alpha 2), and 8.5 kb (alpha 3). The cDNA clones were also used to map the genes on human chromosomes by somatic cell hybrid analysis and in situ hybridization. The alpha 1 (VI) and alpha 2(VI) collagen genes were both located on chromosome 21, in band q223. This represents a third example of a possible physical proximity of two collagen loci. The alpha 3(VI) collagen gene was localized to chromosome 2, in the region 2q37. The alpha 3(VI) collagen gene is the fifth extracellular matrix gene to be localized to 2q, as four other extracellular matrix genes--i.e., the alpha 1(III) and alpha 2(V) collagen genes, the elastin gene, and the fibronectin gene--have been previously mapped to the distal region of the long arm of chromosome 2.  相似文献   

12.
Bethlem myopathy is a mild neuromuscular disorder with proximal muscular weakness and early flexion contractures. It is an autosomal dominant disease due to mutations in type VI collagen genes. We found a T-->C substitution at the +2 position of COL6A1 intron 14 in a family, leading to skipping of exon 14 and an in-frame deletion of 18 amino acids in the triple-helical domain of the alpha1(VI) collagen chain. The deletion included a cysteine residue believed to be involved in the assembly of type VI collagen dimers intracellularly, prior to the protein secretion. Analysis of the affected fibroblasts showed that the shortened alpha1(VI) collagen chains were synthesized but not secreted by the cells and that the amount of type VI collagen microfibrils deposited by the cells was reduced. The results suggest that the clinical phenotype is due to a reduction in the level of type VI collagen in the extracellular matrix.  相似文献   

13.
Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD) sit at opposite ends of a clinical spectrum caused by mutations in the extracellular matrix protein collagen VI. Bethlem myopathy is relatively mild, and patients remain ambulant in adulthood while many UCMD patients lose ambulation by their teenage years and require respiratory interventions. Dominant and recessive mutations are found across the entire clinical spectrum; however, recessive Bethlem myopathy is rare, and our understanding of the molecular pathology is limited. We studied a patient with Bethlem myopathy. Electron microscopy of his muscle biopsy revealed abnormal mitochondria. We identified a homozygous COL6A2 p.D871N amino acid substitution in the C-terminal C2 A-domain. Mutant α2(VI) chains are unable to associate with α1(VI) and α3(VI) and are degraded by the proteasomal pathway. Some collagen VI is assembled, albeit more slowly than normal, and is secreted. These molecules contain the minor α2(VI) C2a splice form that has an alternative C terminus that does include the mutation. Collagen VI tetramers containing the α2(VI) C2a chain do not assemble efficiently into microfibrils and there is a severe collagen VI deficiency in the extracellular matrix. We expressed wild-type and mutant α2(VI) C2 domains in mammalian cells and showed that while wild-type C2 domains are efficiently secreted, the mutant p.D871N domain is retained in the cell. These studies shed new light on the protein domains important for intracellular and extracellular collagen VI assembly and emphasize the importance of molecular investigations for families with collagen VI disorders to ensure accurate diagnosis and genetic counseling.  相似文献   

14.
15.
We have isolated type VI collagen, a transformation-sensitive glycoprotein of the extracellular matrix, in an intact, disulfide-bonded form. The protein contains a 200 kd subunit and two different 140 kd subunits in a stoichiometric ratio. Based on the amount of hydroxyproline and hydroxylysine, the sensitivity to bacterial collagenase and the cross-reactivity with antibodies to pepsin-extracted type VI collagen, we have identified the 200 kd subunit as the alpha 3(VI) chain and the two 140 kd subunits as the alpha 1(VI) and alpha 2(VI) chains. The alpha 3(VI) chain is synthesized by cells in culture as a precursor of 260 kd, while no precursor form of the other two chains could be detected.  相似文献   

16.
Characterization of the precursor form of type VI collagen   总被引:10,自引:0,他引:10  
Well characterized monospecific antisera against pepsin-extracted bovine type VI collagen were used to identify and characterize the intact form of type VI collagen. In immunoblotting experiments the antisera reacted with the pepsin-resistant fragments of the alpha 1(VI) and alpha 3(VI) chains, but not with the fragment of the alpha 2(VI) chain. Extracts obtained from uterus and aorta with 6 M guanidine HCl contained two immunoreactive polypeptides of Mr = 190,000 and 180,000 based on globular protein standards. Cleavage of extracts with pepsin generated the previously characterized pepsin-resistant fragments of alpha 1(VI) and alpha 3(VI), indicating that the higher molecular weight polypeptides represent the intact parent chains, alpha 1(VI) and alpha 3(VI). Digestion of extracts with bacterial collagenase released an Mr = 100,000 noncollagenous fragment from the alpha 1(VI) chain. Thus, intact type VI collagen in tissues contains a relatively short triple helical domain and at least one very large globular domain which is sensitive to pepsin but resistant to collagenase digestion. Immunoblotting revealed a polypeptide of Mr = 240,000, which we suggest represents the pro-alpha 1(VI) chain, in the culture medium of bovine fibroblasts. Bands intermediate in molecular weight between 240,000 and 190,000 were identified in cell layers. These findings establish type VI collagen as a protein with very large nontriple helical domains, a property that undoubtedly plays an important role in its function.  相似文献   

17.
Collagen VI is a non-fibrillar collagen present in the extracellular matrix (ECM) as a complex polymer; the mainly expressed form is composed of α1, α2 and α3 chains; mutations in genes encoding these chains cause myopathies known as Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM). The collagen VI α6 chain is a recently identified component of the ECM of the human skeletal muscle. Here we report that the α6 chain was dramatically reduced in skeletal muscle and muscle cell cultures of genetically characterized UCMD, BM and MM patients, independently of the clinical phenotype, the gene involved and the effect of the mutation on the expression of the “classical” α1α2α3 heterotrimer. By contrast, the collagen VI α6 chain was normally expressed or increased in the muscle of patients affected by other forms of muscular dystrophy, the overexpression matching with areas of increased fibrosis. In vitro treatment with TGF-β1, a potent collagen inducer, promoted the collagen VI α6 chain deposition in the ECM of normal muscle cells, whereas, in cultures derived from collagen VI-related myopathy patients, the collagen VI α6 chain failed to develop a network outside the cells and accumulated in the endoplasmic reticulum. The defect of the α6 chain points to a contribution to the pathogenesis of collagen VI-related disorders.  相似文献   

18.
Twelve of sixteen different cell types including fibroblasts and tumor cells were able to attach and spread on substrates of pepsin-solubilized or intact collagen VI, and on its triple helical domain. Attachment and spreading were independent of soluble mediator proteins (fibronectin, laminin) and collagen VI was distinct from collagens I, IV and V in the cells with which it interacted. Many of the same cells bound and spread on substrates prepared from unfolded alpha 2(VI) and alpha 3(VI) chains but not on the alpha 1(VI) chain. The interactions with the chains were inhibited by low concentrations (10-100 microM) of synthetic RGDS and RGDT but not RGES peptides while the binding of cells to pepsin-solubilized collagen VI was more than 20-fold less sensitive to these peptides. The data indicate that cells have the ability to bind to collagen VI in a specific manner suggesting a similar function for collagen VI in situ.  相似文献   

19.
We recently reported the isolation and sequencing of human cDNA clones corresponding to the alpha 3 chain of type VI collagen (Chu, M.-L., Zhang, R.-Z., Pan, T.-c., Stokes, D., Conway, D., Kuo, H.-J., Glanville, R., Mayer, U., Mann, K., Deutzmann, R., and Timpl, R. (1990) EMBO J. 9, 385-393). The study indicates that the amino-terminal globular domain of the alpha 3(VI) chain consists of nine repetitive subdomains of approximately 200 amino acid residues (N1-N9) and the gene appeared to undergo alternative splicing since some clones lacked regions encoding the N9 and part of the N3 subdomains. In the present study, we report the exon structure for the region encoding the amino-terminal globular domain of the human alpha 3(VI) chain. The nine repetitive subdomains are encoded by 10 exons spanning 26 kilobase pairs of genomic DNA. Eight of the repetitive subdomains (N2-N9) were found to be encoded by separate exons of approximately 600 base pairs each. The only exception is the N1 subdomain which is encoded by two exons of 417 and 146 base pairs. Characterization of the exon/intron structure showed that the cDNA variants were the result of splicing out of exon 9 (encoding the N9 subdomain) and part of exon 3 (encoding the N3 subdomain). Nuclease S1 analysis and the polymerase chain reaction demonstrated that exon 7 (N7 subdomain) was also subject to alternative splicing in normal skin fibroblasts. Examination of these splicing events by nuclease S1 analysis in normal fibroblasts, three different human tumor cell lines, and several human tissues showed that splicing out of exon 9 is much more efficient in normal as compared to tumor cells.  相似文献   

20.
Native supramolecular assemblies containing collagen VI microfibrils and associated extracellular matrix proteins were isolated from Swarm rat chondrosarcoma tissue. Their composition and spatial organization were characterized by electron microscopy and immunological detection of molecular constituents. The small leucine-rich repeat (LRR) proteoglycans biglycan and decorin were bound to the N-terminal region of collagen VI. Chondroadherin, another member of the LRR family, was identified both at the N and C termini of collagen VI. Matrilin-1, -3, and -4 were found in complexes with biglycan or decorin at the N terminus. The interactions between collagen VI, biglycan, decorin, and matrilin-1 were studied in detail and revealed a biglycan/matrilin-1 or decorin/matrilin-1 complex acting as a linkage between collagen VI microfibrils and aggrecan or alternatively collagen II. The complexes between matrilin-1 and biglycan or decorin were also reconstituted in vitro. Colocalization of collagen VI and the different ligands in the pericellular matrix of cultured chondrosarcoma cells supported the physiological relevance of the observed interactions in matrix assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号