共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Reversible thermal denaturation of human FGF-1 induced by low concentrations of guanidine hydrochloride.
下载免费PDF全文

Human acidic fibroblast growth factor (FGF-1) is a powerful mitogen and angiogenic factor with an apparent melting temperature (Tm) in the physiological range. FGF-1 is an example of a protein that is regulated, in part, by stability-based mechanisms. For example, the low Tm of FGF-1 has been postulated to play an important role in the unusual endoplasmic reticulum-independent secretion of this growth factor. Despite the close relationship between function and stability, accurate thermodynamic parameters of unfolding for FGF-1 have been unavailable, presumably due to effects of irreversible thermal denaturation. Here we report the determination of thermodynamic parameters of unfolding (DeltaH, DeltaG, and DeltaCp) for FGF-1 using differential scanning calorimetry (DSC). The thermal denaturation is demonstrated to be two-state and reversible upon the addition of low concentrations of added guanidine hydrochloride (GuHCl). DeltaG values from the DSC studies are in excellent agreement with values from isothermal GuHCl denaturation monitored by fluorescence and circular dichroism (CD) spectroscopy. Furthermore, the results indicate that irreversible denaturation is closely associated with the formation of an unfolding intermediate. GuHCl appears to promote reversible two-state denaturation by initially preventing aggregation of this unfolding intermediate, and at subsequently higher concentrations, by preventing formation of the intermediate. 相似文献
3.
Selective solubilization of red blood cell membrane proteins with guanidine hydrochloride 总被引:3,自引:0,他引:3
T L Steck 《Biochimica et biophysica acta》1972,255(2):553-556
4.
5.
Dissociation and aggregation of D-glyceraldehyde-3-phosphate dehydrogenase during denaturation by guanidine hydrochloride 总被引:2,自引:0,他引:2
S J Liang Y Z Lin J M Zhou C L Tsou P Q Wu Z K Zhou 《Biochimica et biophysica acta》1990,1038(2):240-246
The inactivation of lobster muscle D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) (GAPDH) during guanidine hydrochloride (GdnHCl) denaturation has been compared with its state of aggregation and unfolding, by light scattering and fluorescence measurements. The enzyme first dissociates at low concentrations of GdnHCl, followed by the formation of a highly aggregated state with increasing denaturant concentrations, and eventually by complete unfolding and dissociation to the monomer at concentrations of greater than 2 M GdnHCl. The aggregation and final dissociation correspond roughly with the two stages of fluorescence changes reported previously (Xie, G.-F. and Tsou, C.-L. (1987) Biochim. Biophys. Acta 911, 19-24). Rate measurements show a very rapid inactivation, the extents of which increase with increasing concentrations of GdnHCl. This initial rapid phase of inactivation which takes place before dissociation and unfolding of the molecule is in agreement with the results obtained with other enzymes, that the active site is affected before noticeable conformational changes can be detected for the enzyme molecule as a whole. A scheme for the steps leading to the final denaturation, and dissociation of the enzyme to the inactive and unfolded monomer, is proposed. 相似文献
6.
7.
By comparing changes in enzyme activity with changes in spectral features for stem bromelain (EC.3.4.22.32) in the absence and presence of urea, Guanidine hydrochloride and ethanol; four intermediate states could be identified: two activity-enhanced state obtained in the presence of 5 M urea and 2 M GnHCl, termed X and X', respectively, and a third, similarly active state closely resembling the native protein in the presence of 8-9 M urea, termed Y. The enhanced activity of these states is due to local conformational changes accompanied by increased dynamics in the active site. Further, the enzyme does not lose its activity after substantial tertiary structure changes in 8-9 M urea (Y state), suggesting that active site containing domain is more resistant to chemical denaturation than the other structural domain. This makes stem bromelain and in general cysteine proteases an exception to the hypothesis that active site is the most labile part of enzyme. 相似文献
8.
Interaction of urea and guanidine hydrochloride with lysozyme 总被引:1,自引:0,他引:1
9.
Canavalia ensiformis (jack bean) alpha-urease is a hexameric protein characterized by a complex denaturation mechanism. In previous papers, we have shown that a hydrophobic 8-anilino-1-naphthalenesulfonic acid (ANSA) binding conformer could be populated in a moderate concentration of denaturant. This state was obtained under conditions that had no detectable impact on its tertiary structure, as indicated by fluorescence measurements. In the present study, we further characterized this ANSA-binding state in an attempt to understand urease behavior. Evidence presented here shows that the presence of ANSA was not required for the generation of the conformer and that its affinity for ANSA came from an increase in hydrophobicity leading to aggregation. Circular dichroism investigation of urease revealed that it had periodical secondary structure content similar to Klebsiella aerogenes urease (secondary structures calculated on the basis of crystallographic data). The impact of 0.9 M guanidine hydrochloride (GuHCl) on soluble urease secondary structures was minimal but is compatible with a slight increase in beta-sheet structures. Such modification may indicates that aggregation involves amyloid-like fibril formation. Electron microscopy analysis of urease in the absence of GuHCl revealed the presence of urease hexamers (round shape 13 nm in diameter). These particles disappeared in the presence of moderate denaturant concentration owing to the formation of aggregates and fibril-like structures. The fibrils obtained in 1.5 M GuHCl had an average diameter of 6.5 nm, suggesting that urease hexamers dissociated into smaller oligomeric forms when forming such fibrils. 相似文献
10.
Gajendra S. Naika 《Carbohydrate research》2010,345(11):1627-7345
Low concentrations of urea and GuHCl (2 M) enhanced the activity of endoglucanase (EC 3.1.2.4) from Aspergillus aculeatus by 2.3- and 1.9-fold, respectively. The Km values for controls, in the presence of 2 M urea and GuHCl, were found to be 2.4 ± 0.2 × 10−8 mol L−1, 1.4 ± 0.2 × 10−8 mol L−1, and 1.6 ± 0.2 × 10−8 mol L−1, respectively. The dissociation constant (Kd) showed changes in the affinity of the enzyme for the substrate with increases in the Kcat suggesting an increased turnover number in the presence of urea and GuHCl. Fluorescence studies showed changes in the microenvironment of the protein. The increase in the activity of this intermediate state was due to conformational changes accompanied by increased flexibility at the active site. 相似文献
11.
Spectral and hydrodynamic measurements of thioredoxin from Escherichia coli indicate that the compact globular structure of the native protein is significantly unfolded in the presence of guanidine hydrochloride concentrations in excess of 3.3 M at neutral pH and 25 degrees C. This conformational transition having a midpoint at 2.5 M denaturant is quantitatively reversible and highly cooperative. Stopped-flow measurements of unfolding in 4 M denaturant, observed with tryptophan fluorescence as the spectral probe, reveal a single kinetic phase having a relaxation time of 7.1 +/- 0.2 s. Refolding measurements in 2 M denaturant reveal three kinetic phases having relaxation times of 0.54 +/- 0.23, 14 +/- 6, and 500 +/- 130 s, accounting for 12 +/- 2%, 10 +/- 1%, and 78 +/- 3% of the observed change in tryptophan fluorescence. The dominant slowest phase is generated in the denatured state with a relaxation time of 42 s observed in 4 M denaturant. Both the slowest phase observed in refolding and the generation of the slowest phase in the denatured state have an activation enthalpy of 22 +/- 1 kcal/mol. These features of the slowest phase are compatible with an obligatory peptide isomerization of proline-76 to its cis isomer prior to refolding. 相似文献
12.
The ability of aromatic tryptophyl and tyrosyl side-chain donors to form charge-transfer (CT) complexes with the acceptor 1-methyl-3-carbamidopyridinium chloride has been used to investigate the degree of exposure of these aromatic residues in denaturated proteins. The coplanar geometry of the CT complexes requires that virtually a full ring face of the donor be available for interaction with the acceptor, and the aromatic donor residues of lysozyme, trypsin, chymotrypsin, and the zymogens of the latter two enzymes do not appear to be wholly "exposed" in 6 M guanidine hydrochloride. Comparison of the CT proerties of the proteins with the corresponding properties of model complexes suggests that the incomplete exposure is due at least in part to statistical fluctuations in the continuously mobile, randomly coiled polypeptide chain which result in residues being alternately fully exposed and partly covered. Reduction and alkylation of the disulfide cross-links increase the apparent availability of the aromatic residues but the exposure is still less than that expected from a comparable mixture of tryptophan and tyrosine residues. Previous studies on the exposure of the aromatic residues of lysozyme and trypsin in aqueous salt solutions, when taken together with the present results, further suggest that there are two distinct kinds of surface environment possible on native proteins in solution. Some residues appear to be located in areas of the protein surface which are characterized by relatively fixed or stable local conformations, and have apparent CT association constants closely resembling these of comparable model complexes. Other residues may be located in a region where the protein conformation is flexible or continuously mobile, as evidenced by their smaller apparent association constants. It is probably significant that Trp-62 of lysozyme and Trp-215 of trypsin, both specificity site residues, appear to belong to the class of residues which can be considered as being in a flexible environment on the protein surface. 相似文献
13.
Tryptophan analysis of proteins in 6M guanidine hydrochloride: modification for more general application 总被引:3,自引:0,他引:3
P J Bredderman 《Analytical biochemistry》1974,61(1):298-301
14.
15.
Interaction of non-electrolytes such as urea with proteins especially at lower concentrations is opening-up newer concepts in the understanding of protein stability and folding in proteomics. In this study, the secondary and tertiary structural characteristics and thermal stability of human serum albumin at lower concentrations of urea have been monitored. The protein attains a molten globule like structure at concentration urea below 2 M. This structural state also shows an increase in the alpha-helical content as compared to the native state. At concentrations of urea above 2 M, human serum albumin starts unfolding, resulting in a three-state transition with two mid points of transitions at around 4 M and 7 M urea concentrations. The characteristics of the partially folded intermediates are discussed with respect to the three component system analyses. Preferential hydration dominates over preferential interaction at lower concentration of urea (up to 2.5 M) and at higher concentration, the preferential interaction overtakes preferential hydration in a competitive manner. Formation of structural intermediates at lower concentration of urea is hypothesized as a general phenomenon in proteins and fits in with the observation with preferential interaction parameters by Timasheff and co-workers in the case of lysozyme and ribonuclease at different pH values. 相似文献
16.
The selective solubilization of apo-very low density lipoprotein (apo VLDL) of hen's egg yolk was achieved from intact VLDL with guanidine hydrochloride (GuHCl) or urea. The amount of extracted apoVLDL increased with increase of the reagent concentration. GuHCl was more effective than urea and more than 60% of apoVLDL was solubilized with 6 M GuHCl. Previously we reported the presence of five major apoVLDL components, GPI, ApoA, GPII, ApoB, and ApoC in order of size, and found that GPI and GPII were periodic acid-Schiff staining positive, while ApoA, ApoB, and ApoC were negative. With GuHCl or urea, GPI and GPII were easily solubilized, while ApoA and ApoB could not be extracted. The solubilized apoVLDL was rich in carbohydrates, especially sialic acid, compared with the residual apoVLDL. However, only slight differences in amino acid compositon were found between the soluble and the residual apoVLDL. After the partial removal of apoVLDL with GuHCl or urea, VLDL retained its particulate nature, and no destruction of the lipid core was observed. These results were interpreted as indicating that the release of apoVLDL with GuHCl or urea occurred from the surface of the VLDL particle and that the selectively solubilized apoVLDL fractions, such as GPI and GPII, were weakly bound to lipids on the surface of VLDL, while ApoA and ApoB were tightly associated with the VLDL particle. 相似文献
17.
Production of seven single surface histidine variants of yeast iso-1-cytochrome c allowed measurement of the apparent pK(a), pK(a)(obs), for histidine-heme loop formation for loops of nine to 83 amino acid residues under varying denaturing conditions (2 M to 6 M guanidine hydrochloride, gdnHCl). A linear correlation between pK(a)(obs) and the log of the loop size is expected for a random coil, pK(a)(obs) proportional to k log(n), where k is a scaling factor and n is the number of monomers in the loop. For small loops of nine, 16, and 22 monomers, no dependence of pK(a)(obs) on loop size was observed at any denaturant concentration indicating effects from chain stiffness. For larger loops of 37, 56, 72, and 83 monomers, the dependence of pK(a)(obs) on log(n) was linear and the slope of that dependence decreased with increasing concentration of denaturant. The scaling factor obtained at 5 M and 6 M gdnHCl for the larger loop sizes was approximately -2.0, close to the value of -2.2 expected for a random coil with excluded volume. However, scaling factors obtained under less harsh denaturing conditions (2 M to 4.5 M gdnHCl) deviated strongly from that expected for a random coil, being in the range -3 to -4. The gdnHCl dependence of pK(a)(obs) at each loop size was also evaluated to obtain denaturant m-values. Short loops where chain stiffness dominates had similar m-values of approximately 0.25 kcal/mol M. For larger loops m-values decrease with increasing loop size indicating that less hydrophobic area is sequestered when larger loops form. It is known that the earliest events in protein folding involve the formation of simple loops. The data from these studies provide direct insight into the relative probability with which loops of different sizes will form, as well as the factors which affect loop formation. 相似文献
18.
19.
The intrinsic polymer properties of glycine-rich sequences are evaluated with a set of iso-1-cytochrome c variants with N-terminal inserts of the sequence (GGGGGK)(n) for n = 1-5. The thermodynamics and kinetics of His-heme loop formation are measured as a function of guanidine hydrochloride (GdnHCl) concentration for loop sizes ranging from 22 to 46 residues. The scaling exponent for loop formation, ν(3), evaluated using the Jacobson-Stockmayer equation is near 1.8, at 1.5 and 3.0 M GdnHCl, but it increases to 2.2 in 6.0 M GdnHCl. Previous work on a set of iso-1-cytochrome c variants with (AAAAAK)(n) inserts gave ν(3) = 2.2 for alanine-rich sequences in both 3.0 and 6.0 M GdnHCl. Chain stiffness was evaluated from the relative magnitude of Flory's characteristic ratio, C(n), for alanine-rich versus glycine-rich sequences. In 3.0 M GdnHCl, C(n)(Ala)/C(n)(Gly) is 1.6, decreasing to 1.3 in 6.0 M GdnHCl. The data suggest that solvent-backbone interactions dominate polypeptide conformational properties under good solvent conditions whereas side-chain-dependent properties are more important under poor solvent conditions. The results provide a direct experimental assessment in terms of polymer properties of the distinct roles of Gly versus Ala in the folding code. 相似文献
20.
We have examined the fluorescence properties and acrylamide quenching of calcium-loaded (holo) and calcium-depleted (apo) alpha-lactalbumin (alpha-LA) as a function of guanidine hydrochloride (GDN/HCl) concentration. The spectral changes accompanying increasing GDN/HCl are consistent with protein unfolding and a release of internal fluorescence quenching, which occurs among the three tryptophan residues located in the region of the so-called "tertiary fold." Values for the intrinsic fluorescence emission, the wavelength maximum of the emission, the Stern/Volmer dynamic quench constant, and the static quench constant are consistent with a significant stabilization effect by calcium against protein unfolding. The dynamic quench constant of apo-alpha-LA increases fourfold to its maximum, in the transition from the native state to protein in 1.5 M GDN/HCl. The dynamic quench constant for holo-alpha-LA remains unchanged until exposed to 2.5 M GDN/HCl, but increases by threefold with addition denaturant to 4 M GDN/HCl. The static quench constant of the apo-protein in the native solvent, approximately 0.2 M(-1), declines to zero in 1 M denaturant, where the molten globule folding intermediate is most populated. A more protracted denaturant-dependent decline in the static quench constant occurs for the holo-protein. Sharp increase in the static quenching occurs for apo-alpha-LA and holo-alpha-LA above 1.5 M GDN/HCl and 3.5 M GDN/HCl, respectively. The results for apo-alpha-LA in dilute GDN/HCl suggest that acrylamide can penetrate the protein molecule (as judged by the collision quenching) but is unable to form a stable complex within the quenching domain for the tryptophans (as judged by the absence of the static quench constant). It seems reasonable to suggest that the protein folding intermediate which occurs in dilute denaturant represents a structure in which the tryptophans are, on average, more accessible to collisional quenching but sufficiently compact to prevent formation of a stable, dark equilibrium complex with acrylamide. 相似文献