首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the cold unfolding of myoglobin with Fourier transform infrared spectroscopy and compared it with pressure and heat unfolding. Because protein aggregation is a phenomenon with medical as well as biotechnological implications, we were interested in both the structural changes as well as the aggregation behavior of the respective unfolded states. The cold- and pressure-induced unfolding both yield a partially unfolded state characterized by a persistent amount of secondary structure, in which a stable core of G and H helices is preserved. In this respect the cold- and pressure-unfolded states show a resemblance with an early folding intermediate of myoglobin. In contrast, the heat unfolding results in the formation of the infrared bands typical of intermolecular antiparallel beta-sheet aggregation. This implies a transformation of alpha-helix into intermolecular beta-sheet. H/2H-exchange data suggest that the helices are first unfolded and then form intermolecular beta-sheets. The pressure and cold unfolded states do not give rise to the intermolecular aggregation bands that are typical for the infrared spectra of many heat-unfolded proteins. This suggests that the pathways of the cold and pressure unfolding are substantially different from that of the heat unfolding. After return to ambient conditions the cold- or pressure-treated proteins adopt a partially refolded conformation. This aggregates at a lower temperature (32 degrees C) than the native state (74 degrees C).  相似文献   

2.
Lin SY  Wei YS  Hsieh TF  Li MJ 《Biopolymers》2004,75(5):393-402
We used Fourier transform infrared (FTIR) microspectroscopy to investigate pressure-induced conformational changes in secondary structure of fibrinogen (FBG). Solid state FBG was compressed on a KBr pellet (1KBr method) or between two KBr pellets (2KBr method). The peak positions of the original and second-derivative ir spectra of compressed FBG samples prepared by the 1KBr method were similar to FBG sample without pressure. When FBG was prepared by the 2KBr method and pressure was increased up to 400 kg/cm(2), peaks at 1625 (intermolecular beta-sheet) and 1611 (beta-sheet aggregates structure and/or the side-chain absorption of the tyrosine residues) cm(-1) were enhanced. The peaks near 1661 (beta-sheet) and 1652 (alpha-helix) cm(-1) also exhibited a marked change with pressure. A linear correlation was found between the peak intensity ratio of 1611/1652 cm(-1) (r = 0.9879) or 1625/1652 cm(-1) (r = 0.9752) and applied pressure. The curve-fitted compositional changes in secondary structure of FBG also indicate that the composition of the alpha-helix structure (1657-1659 cm(-1)) was gradually reduced with the increase in compression pressure, but the composition of the beta-sheet structure (1681, 1629, and 1609 cm(-1)) gradually increased. This indicates that pressure-induced conformational changes in FBG include not only transformations from alpha-helix to beta-sheet structure, but also unfolding and denaturation of FBG and the formation of aggregates.  相似文献   

3.
Sarcoplasmic reticulum Ca2+-ATPase structure and organization in the membrane has been studied by infrared spectroscopy by decomposition of the amide I band. Besides the component bands assignable to secondary structure elements such as alpha-helix, beta-sheet, etc...., two unusual bands, one at 1,645 cm(-1) in H2O buffer and the other at 1,625 cm(-1) in D2O buffer are present. By perturbing the protein using temperature and limited proteolysis, the band at 1,645 cm(-1) is tentatively assigned to alpha-helical segments located in the cytoplasmic domain and coupled to beta-sheet structure, whereas the band at 1,625 cm(-1) arises probably from monomer-monomer contacts in the native oligomeric protein. The secondary structure obtained is 33% alpha-helical segments in the transmembrane plus stalk domain; 20% alpha-helix and 22% beta-sheet in the cytoplasmic domain plus 19% turns and 6% unordered structure. Thermal unfolding of Ca2+-ATPase is a complex process that cannot be described as a two-state denaturation. The results obtained are compatible with the idea that the protein is an oligomer at room temperature. The loss of the 1,625 cm(-1) band upon heating would be consistent with a disruption of the oligomers in a process that later gives rise to aggregates (appearance of the 1,618 cm(-1) band). This picture would also be compatible with early results suggesting that processes governing Ca2+ accumulation and ATPase activity are uncoupled at temperatures above 37 degrees C, so that while ATPase activity proceeds at high rates, Ca2+ accumulation is inhibited.  相似文献   

4.
A Dong  P Huang  W S Caughey 《Biochemistry》1990,29(13):3303-3308
Infrared spectra have been obtained for 12 globular proteins in aqueous solution at 20 degrees C. The proteins studied, which vary widely in the relative amounts of different secondary structures present, include myoglobin, hemoglobin, immunoglobulin G, concanavalin A, lysozyme, cytochrome c, alpha-chymotrypsin, trypsin, ribonuclease A, alcohol dehydrogenase, beta 2-microglobulin, and human class I major histocompatibility complex antigen A2. Criteria for evaluating how successfully the spectra due to liquid and gaseous water are subtracted from the observed spectrum in the amide I region were developed. Comparisons of second-derivative amide I spectra with available crystal structure data provide both qualitative and quantitative support for assignments of infrared bands to secondary structures. Band frequency assignments assigned to alpha-helix, beta-sheet, unordered, and turn structures are highly consistent among all proteins and agree closely with predictions from theory. alpha-Helix and unordered structures can each be assigned to only one band whereas multiple bands are associated with beta-sheets and turns. These findings demonstrate a method of analysis of second-derivative amide I spectra whereby the frequencies of bands due to different secondary structures can be obtained. Furthermore, the band intensities obtained provide a useful method for estimating the relative amounts of different structures.  相似文献   

5.
Beware of proteins in DMSO   总被引:6,自引:0,他引:6  
The effect on the secondary structure of representative alpha-helical, beta-sheet and disordered proteins by varying concentrations of dimethyl sulphoxide (DMSO) in 2H2O has been investigated by Fourier transform infrared spectroscopy. Significant perturbations of protein secondary structure are induced by DMSO and DMSO/2H2O mixtures. For highly structured proteins, such as myoglobin and concanavalin A, the infrared spectra point to a progressive destabilisation of the secondary structure until at moderate DMSO concentrations (around 0.33 mol fraction) intermolecular beta-sheet formation and aggregation are induced, as indicated by the appearance of a strong band at 1621 cm-1. This is a direct consequence of the disruption of intramolecular peptide group interactions by DMSO (partial unfolding). At higher DMSO concentrations (above 0.75 mol fraction), such aggregates are dissociated by disruption of the intermolecular C = O...2H-N deuterium bonds. The presence of a single amide I band at 1662 cm-1 corresponding to free amide C = O groups indicates that at high concentrations and in pure DMSO the proteins are completely unfolded, lacking any secondary structure. While low concentrations of DMSO showed no detectable effect upon the gross secondary structure of myoglobin and concanavalin A, the thermal stability of both proteins was markedly reduced. In alpha-casein, a highly unstructured protein, the situation is one of direct competition. The amide I maximum in 2H2O, at 1645 cm-1, is typical of unordered proteins with C = O groups deuterium-bonded predominantly to 2H2O. Addition of DMSO disrupts such interactions by competing with the peptide C = O group for the deuterium bond donor capacity of the 2H2O, and so progressively increases the amide I maximum until it stabilizes at 1663 cm-1, a position indicative of free C = O groups.  相似文献   

6.
Pressure can restrain the heat-induced aggregation and dissociate the heat-induced aggregates. We investigated the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by Fourier transform infrared spectroscopy. The results suggest that the alpha-helical structure collapses at the beginning of heat-induced aggregation, then the rearrangement of structure from partially unfolded structure to the intermolecular beta-sheet takes place through the activated state. We determined the activation volume for the heat-induced aggregation (DeltaV( not equal)=+92+/-8 ml mol(-1)) and the partial molar volume difference between native state and heat-induced aggregates (DeltaV(N-->HA)=+32 ml mol(-1)). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular beta-sheet is unfavorable under high pressure. We also determined the free energy profile of ESA. This energy profile explains the restriction of the formation of heat-induced aggregates by pressure. These results explain the structural differences between heat-induced aggregates with intermolecular beta-sheet and pressure-induced aggregates without intermolecular beta-sheet.  相似文献   

7.
We have demonstrated that globular proteins, such as hen egg lysozyme in phosphate buffered saline at room temperature, lose native structural stability and activity when adsorbed onto well-defined homogeneous solid surfaces. This structural loss is evident by alpha-helix to turns/random during the first 30 min and followed by a slow alpha-helix to beta-sheet transition. Increase in intramolecular and intermolecular beta-sheet content suggests conformational rearrangement and aggregation between different protein molecules, respectively. Amide I band attenuated total reflection/Fourier transformed infrared (ATR/FTIR) spectroscopy was used to quantify the secondary structure content of lysozyme adsorbed on six different self-assembled alkanethiol monolayer surfaces with -CH3, -OPh, -CF3, -CN, -OCH3, and -OH exposed functional end groups. Activity measurements of adsorbed lysozyme were in good agreement with the structural perturbations. Both surface chemistry (type of functional groups, wettability) and adsorbate concentration (i.e., lateral interactions) are responsible for the observed structural changes during adsorption. A kinetic model is proposed to describe secondary structural changes that occur in two dynamic phases. The results presented in this article demonstrate the utility of the ATR/FTIR spectroscopic technique for in situ characterization of protein secondary structures during adsorption on flat surfaces.  相似文献   

8.
Protein hydration plays a crucial role in almost all aspects of biomolecular processes. In this research, we studied the hydration/dehydration-induced infrared amide I band-shift by using poly-L-lysine and bovine pancreas ribonuclease A as model polypeptides. It was found that a 1-4 cm(-1) shift could be clearly distinguished for all regular secondary structures during protein thermal unfolding. This shift was proven to be due to backbone hydration but not from experimental error, temperature effect or possible incomplete hydrogen/deuterium exchange of the samples. Moreover, we also found that protein aggregation was closely associated with the backbone hydration/dehydration status of proteins. In conditions favoring aggregation, a significant shift to a higher wavenumber of the band from the intermolecular beta-sheet structures in aggregates was observed. The present study suggested that the changes of the amounts of regular secondary structures could be monitored by the intensity changes, while the changes of the hydration status could be monitored by the shift of the infrared bands.  相似文献   

9.
The thermal stability of three superoxide dismutases (SODs) with different metal ions (Mn, Cu/Zn, Fe) in the solid state was studied by a Fourier transform infrared (FT-IR) microspectroscopy combined with thermal analyzer. The IR spectra showed a maximum peak at 1652 cm(-1) for all the native SODs in the amide I band, suggesting a predominant random coil with less alpha-helix structures. By heating each sample, a shoulder at 1631 cm(-1) in the amide I band gradually appeared from 45 degrees C for Fe SOD and from 50 degrees C for Mn SOD but another shoulder at 1639 cm(-1) appeared from 50 degrees C for Cu/Zn SOD. The peak at 1631 cm(-1) is due to the intermolecular beta-sheet structure, but the peak at 1639 cm(-1) corresponds to the major intramolecular beta-sheet with less random coil structure. This reveals that in the first heating process the transformation from random coil/alpha-helix structure to beta-sheet structure initiated from around 45-50 degrees C. There was about 16-22% compositional change resulting from that transformation. However, both additional shoulders stood there and did not restore to their original spectra even with cooling to room temperature, suggesting the denaturation and irreversible properties of the solid SODs after heating. The thermal-dependent denaturation and irreversibility of Mn SOD, Cu/Zn SOD and Fe SOD were clearly evidenced by the increase in intramolecular and intermolecular beta-sheet structure.  相似文献   

10.
The amyloidogenic prefibrillar partially denatured intermediate of human lysozyme, prepared by heating the native protein to 57 degrees C at pH 2.0, was studied using Raman optical activity (ROA). A positive band in the room temperature ROA spectrum of the native protein at approximately 1345 cm(-1), assigned to a hydrated form of alpha-helix, is not present in that of the prefibrillar intermediate, where a new strong positive band at approximately 1318 cm(-1) appears instead that is assigned to the poly(l-proline) II (PPII)-helical conformation. A sharp negative band at approximately 1241 cm(-1) in the native protein, assigned to beta-strand, shows little change in the ROA spectrum of the prefibrillar intermediate. The disappearance of a positive ROA band at approximately 1551 cm(-1) assigned to vibrations of tryptophan side-chains indicates that major conformational changes have occurred among the five tryptophan residues present in human lysozyme, four of which are located in the alpha-domain. The various ROA data suggest that a substantial loss of tertiary structure has occurred in the prefibrillar intermediate and that this is located more in the alpha-domain than in the beta-domain. There is no evidence for any increase in beta-structure. The ROA spectrum of hen lysozyme, which does not form amyloid fibrils so readily, remains much more native-like on heating to 57 degrees C at pH 2.0. The thermal behaviour of the alanine-rich alpha-helical peptide AK21 in aqueous solution was found to be similar to that of human lysozyme. Hydrated alpha-helix therefore appears to readily undergo a conformational change to PPII structure on heating, which may be a key step in the conversion of alpha-helix into beta-sheet in the formation of amyloid fibrils in human lysozyme. Since it is extended, flexible, lacks intrachain hydrogen bonds and is fully hydrated in aqueous solution, PPII helix has the appropriate characteristics to be implicated as a critical conformational element in many conformational diseases. Disorder of the PPII type may be a sine qua non for the formation of regular fibrils; whereas the more dynamic disorder of the random coil may lead only to amorphous aggregates.  相似文献   

11.
The interactions of partially unfolded proteins provide insight into protein folding and protein aggregation. In this work, we studied partially unfolded hen egg lysozyme interactions in solutions containing up to 7 M guanidinium chloride (GdnHCl). The osmotic second virial coefficient (B(22)) of lysozyme was measured using static light scattering in GdnHCl aqueous solutions at 20 degrees C and pH 4.5. B(22) is positive in all solutions, indicating repulsive protein-protein interactions. At low GdnHCl concentrations, B(22) decreases with rising ionic strength: in the absence of GdnHCl, B(22) is 1.1 x 10(-3) mLmol/g(2), decreasing to 3.0 x 10(-5) mLmol/g(2) in the presence of 1 M GdnHCl. Lysozyme unfolds in solutions at GdnHCl concentrations higher than 3 M. Under such conditions, B(22) increases with ionic strength, reaching 8.0 x 10(-4) mLmol/g(2) at 6.5 M GdnHCl. Protein-protein hydrodynamic interactions were evaluated from concentration-dependent diffusivity measurements, obtained from dynamic light scattering. At moderate GdnHCl concentrations, lysozyme interparticle interactions are least repulsive and hydrodynamic interactions are least attractive. The lysozyme hydrodynamic radius was calculated from infinite-dilution diffusivity and did not change significantly during protein unfolding. Our results contribute toward better understanding of protein interactions of partially unfolded states in the presence of a denaturant; they may be helpful for the design of protein refolding processes that avoid protein aggregation.  相似文献   

12.
We have applied two-dimensional infrared (2D IR) and betanu correlation spectroscopy to in-situ IR spectroscopy of pulmonary surfactant proteins SP-B and SP-C in lipid-protein monolayers at the air-water interface. For both SP-B and SP-C, a statistical windowed autocorrelation method identified two separate surface pressure regions that contained maximum amide I intensity changes: 4-25 mN/m and 25-40 mN/m. For SP-C, 2D IR and betanu correlation analyses of these regions indicated that SP-C adopts a variety of secondary structure conformations, including alpha-helix, beta-sheet, and an intermolecular aggregation of extended beta-sheet structure. The main alpha-helix band split into two peaks at high surface pressures, indicative of two different helix conformations. At low surface pressures, all conformations of the SP-C molecule reacted identically to increasing surface pressure and reoriented in phase with each other. Above 25 mN/m, however, the increasing surface pressure selectively affected the coexisting protein conformations, leading to an independent reorientation of the protein conformations. The asynchronous 2D IR spectrum of SP-B showed the presence of two alpha-helix components, consistent with two separate populations of alpha-helix in SP-B-a hydrophobic fraction associated with the lipid chains and a hydrophilic fraction parallel to the membrane surface. The distribution of correlation intensity between the two alpha-helix cross peaks indicated that the more hydrophobic helix fraction predominates at low surface pressures whereas the more hydrophilic helix fraction predominates at high surface pressures. The different SP-B secondary structures reacted identically to increasing surface pressure, leading to a reorientation of all SP-B subunits in phase with one another.  相似文献   

13.
Lin SY  Hsieh TF  Wei YS 《Peptides》2005,26(4):543-549
The secondary structure of PGAIPG (Pro-Gly-Ala-IIe-Pro-Gly), a repeated hexapeptide of tropoelastin, in buffer solution of different pH was determined by using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The thermal-dependent structural change of PGAIPG in aqueous solution or in solid state was also examined by thermal FTIR microspectroscopy. The conformation of PGAIPG in aqueous solution exhibited a pH-dependent structural characterization. A predominant peak at 1614 cm(-1) (aggregated beta-sheet) with a shoulder near 1560 cm(-1) (beta-sheet) appeared in pH 5.5-8.5 buffer solutions. A new broad shoulder at 1651 cm(-1) (random coil and/or alpha-helix) with 1614 cm(-1) was observed in the pH 4.5 buffer solution. However, the broad shoulder at 1651 cm(-1) was converted to a maximum peak at 1679 cm(-1) (beta-turn/antiparallel beta-sheet) when the pH shifted from 4.5 to 3.5, but the original pronounced peak at 1614 cm(-1) became a shoulder. Once the pH was lowered to 2.5, the IR spectrum of PGAIPG was dominated by major absorption at 1679 cm(-1) with a minor peak at 1552 cm(-1) (alpha-helix/random coil). The result indicates that the pH was a predominant factor to transform PGAIPG structure from aggregated beta-sheet (pH 8.5) to beta-turn/intermolecular antiparallel beta-sheet (pH 2.5). Moreover, a partial conformation of PGAIPG with minor alpha-helix/random coil structures was also explored in the lower pH buffer solution. There was no thermal-dependent structural change for solid-state PGAIPG. The thermal-induced formation of aggregated beta-sheet for PGAIPG in aqueous solution was found from 28 to 30 degrees C, however, which might be correlated with the formation of an opaque gel that turned from clear solution. The formation of aggregated beta-sheet structure for PGAIPG beyond 30 degrees C might be due to the intermolecular hydrogen bonded interaction between the hydrophobic PGAIPG fragments induced by coacervation.  相似文献   

14.
Alpha1-proteinase inhibitor (alpha1Pi) and ovalbumin are both members of the serpin superfamily. They share about a 30% sequence identity and exhibit great similarity in their three-dimensional structures. However, no apparent functional relationship has been found between the two proteins. Unlike alpha1Pi, ovalbumin shows no inhibitory effect to serine proteases. To see whether or not a conformational factor(s) may contribute to the functional difference, we carried out comparative analysis of the two proteins' secondary structure, thermal stability, and H-D exchange using FT-IR and CD spectroscopy. FT-IR analysis reveals significant differences in the amide I spectral patterns of the two proteins. Upon thermal denaturation, both proteins exhibit a strong low-wavenumber beta-sheet band at 1624 cm(-1) and a weak high-wavenumber beta-sheet band at 1694 cm(-1), indicative of intermolecular aggregate formation. However, the midpoint of the thermal-induced transition of alpha1Pi (approximately 55 degrees C) is 18 degrees C lower than that of ovalbumin (approximately 73 degrees C). The thermal stability analysis provides new insight into the structural changes associated with denaturation. The result of H-D exchange explains some puzzling spectral differences between the two proteins in D2O reported previously.  相似文献   

15.
Fourier transform infrared and laser Raman spectroscopies were used to study the effects of dodecylpyridinium bromide on the conformation of haemoglobin, myoglobin, bovine serum albumin, ribonuclease, ovalbumin, lysozyme, trypsin and beta-lactoglobulin in aqueous solution. Addition of the cationic detergent caused a decrease in alpha-helix conformation in highly helical proteins. At low detergent concentrations stabilization of beta-sheet conformation was observed.  相似文献   

16.
A two-phase sequential dynamic change in the secondary structure of hen egg lysozyme (Lys) adsorbed on solid substrates was observed. The first phase involved fast conversion of alpha-helix to random/turns (within the first minute or at very low coverage or high substrate wettability) with no perceptible change in beta-sheet content. The second phase (1-1200 min), however, involved a relatively slow conversion from alpha-helix to beta-sheet without a noticeable change in random/turns. An important finding of this work is that the concentration of lysozyme in the adsorbed state has a substantial effect on the fractional content of secondary structures. Attenuated total reflection Fourier transform infrared (ATR/FTIR) spectroscopy, along with a newly-developed optimization algorithm for predicting the content of secondary structure motifs, was used to correlate the secondary structure and the amount of adsorbed lysozyme with the surface wettability of six different flat nanoporous substrates. Although three independent variables, surface wettability, solution concentration and time for adsorption, were used to follow the fractional structural changes of lysozyme, the results were all normalized onto a single plot with the amount adsorbed as the universal independent variable. Consequently, lateral interactions among proteins likely drive the transition process. Direct intermolecular force adhesion measurements between lysozyme and different functionalized self-assembled alkanethiol monolayers confirm that hydrophobic surfaces interact strongly with proteins. The lysozyme-unfolding pathway during early adsorption appears to be similar to that predicted by published molecular modeling results.  相似文献   

17.
The effect of pressure on the conformational structure of amyloid beta (1-40) peptide (A beta(1-40)), exacerbated with or without temperature, was determined by Fourier transform infrared (FT-IR) microspectroscopy. The result indicates the shift of the maximum peak of amide I band of intact solid A beta(1-40) from 1655 cm(-1) (alpha-helix) to 1647-1643 cm(-1) (random coil) with the increase of the mechanical pressure. A new peak at 1634 cm(-1) assigned to beta-antiparallel sheet structure was also evident. Furthermore, the peak at 1540 cm(- 1) also shifted to 1527 (1529) cm(-1) in amide II band. The former was assigned to the combination of alpha-helix and random coil structures, and the latter was due to beta-sheet structure. Changes in the composition of each component in the deconvoluted and curve-fitted amide I band of the compressed A beta(1-40) samples were obtained from 33% to 22% for alpha-helix/random coil structures and from 47% to 57% for beta-sheet structure with the increase of pressure, respectively. This demonstrates that pressure might induce the conformational transition from alpha-helix to random coil and to beta- sheet structure. The structural transformation of the compressed A beta(1-40) samples was synergistically influenced by the combined effects of pressure and temperature. The thermal-induced formation of beta-sheet structure was significantly dependent on the pressures applied. The smaller the pressure applied the faster the beta-sheet structure transformed. The thermal-dependent transition temperatures of solid A beta(1-40) prepared by different pressures were near 55-60 degrees C.  相似文献   

18.
The secondary structure of protein kinase C alpha (PKC alpha) has been studied using infrared spectroscopy in the presence of both H(2)O and D(2)O buffers. In the absence of ligands at 20 degrees C, it was shown that beta-sheet is the major component, representing about 44% of the total structure, whereas the alpha-helix amounts to 22%. The addition of Ca(2+) produced only small changes in the secondary structure at 20 degrees C with the beta-sheet increasing up to 48%. On the other hand, the other ligands, such as phorbol 12-myristate 13-acetate (PMA), ATP, and phospholipids, did not produce any significant change. When the thermal unfolding of PKC alpha was studied after heating to 75 degrees C, the presence of the ligands affected the unfolding process. PKC alpha was better preserved from thermal denaturation in the presence of Ca(2+), the aggregated beta-sheet at 1618 cm(-1) decreasing from 19% in the absence of this ligand to 13% in its presence. Protection was also afforded by the presence of PMA or phospholipids. A two-dimensional correlation study of the denaturation of PKC alpha in the presence of these different ligands also showed differences among them. Synchronous 2D-IR correlation showed that the main change occurred at 1616-1619 cm(-1), this component being assigned to the intermolecular aggregated beta-sheet of the denaturated protein. This increase was mainly correlated with the change in the alpha-helix component in all cases except in the presence of a mixture of ligands including Ca(2+), ATP, PMA, and phospholipids, when the intermolecular aggregation of beta-sheet was correlated with the change in the beta-sheet component. In addition, the asynchronous 2D-IR correlation study of PKC alpha showed that the aggregated beta-sheet increased after changes in other components. It was interesting that alpha-helix changed before the beta-sheet in the control experiment and in the presence of Ca(2+), while the order of change was reversed when PMA was added.  相似文献   

19.
We have developed a statistical mechanics algorithm, TANGO, to predict protein aggregation. TANGO is based on the physico-chemical principles of beta-sheet formation, extended by the assumption that the core regions of an aggregate are fully buried. Our algorithm accurately predicts the aggregation of a data set of 179 peptides compiled from the literature as well as of a new set of 71 peptides derived from human disease-related proteins, including prion protein, lysozyme and beta2-microglobulin. TANGO also correctly predicts pathogenic as well as protective mutations of the Alzheimer beta-peptide, human lysozyme and transthyretin, and discriminates between beta-sheet propensity and aggregation. Our results confirm the model of intermolecular beta-sheet formation as a widespread underlying mechanism of protein aggregation. Furthermore, the algorithm opens the door to a fully automated, sequence-based design strategy to improve the aggregation properties of proteins of scientific or industrial interest.  相似文献   

20.
During the course of the transmissible spongiform encephalopathy diseases, a protease-resistant ordered aggregate of scrapie prion protein (PrP(Sc)) accumulates in affected animals. From mechanistic and therapeutic points of view, it is relevant to determine the extent to which PrP(Sc) formation and aggregation are reversible. PrP(Sc) solubilized with 5 m guanidine hydrochloride (GdnHCl) was unfolded to a predominantly random coil conformation. Upon dilution of GdnHCl, PrP refolded into a conformation that was high in alpha-helix as measured by CD spectroscopy, similar to the normal cellular isoform of PrP (PrP(C)). This provided evidence that PrP(Sc) can be induced to revert to a PrP(C)-like conformation with a strong denaturant. To examine the reversibility of PrP(Sc) formation and aggregation under more physiological conditions, PrP(Sc) aggregates were washed and resuspended in buffers lacking GdnHCl and monitored over time for the appearance of soluble PrP. No dissociation of PrP from the PrP(Sc) aggregates was detected in aqueous buffers at pH 6 and 7.5. The effective solubility of PrP was <0.7 nm. Treatment of PrP(Sc) with proteinase K (PK) before the analysis did not enhance the dissociation of PrP from the PrP(Sc) aggregates. Treatment with 2.5 m GdnHCl, which partially and reversibly unfolds PrP(Sc), caused only limited dissociation of PrP from the aggregates. The PrP that dissociated from the aggregates over time was entirely PK-sensitive, like PrP(C), whereas all of the aggregated PrP was partially PK-resistant. PrP also dissociated from aggregates of protease-resistant PrP generated in a cell-free conversion reaction, but only if treated with GdnHCl. Overall, the results suggest that PrP aggregation is not appreciably reversible under physiological conditions, but dissociation and refolding can be enhanced by treatments with GdnHCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号