首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MAL protein is the only integral membrane protein identified as being an essential component of the machinery necessary for apical transport in the canine MDCK cell line, a paradigm of polarized epithelial cells. To characterize the range of human epithelia that use MAL-mediated pathways of transport, we performed an immunohistochemical survey of normal tissues using a monoclonal antibody (MAb) specific for the MAL protein. For comparison, different types of carcinoma were also analyzed. MAL, with a characteristic strong supranuclear granular distribution, was detected in specific types of normal epithelial cells throughout the respiratory system, the gastrointestinal and genitourinary tracts, and in exocrine and endocrine glands. Absorptive cells (e.g., enterocytes), and many different types of specialized secretory cells, either organized in discrete clusters (e.g., endocrine cells in the pancreas), gathered together in an endocrine gland (e.g., thyroid), interspersed with other cells in glands (e.g., parietal cells), or dispersed singly among other cells (e.g., type 2 pneumocytes) were positive for MAL. We also analyzed a series of epithelial renal and thyroid tumors and found alterations dependent on the particular histological type of tumor. These results open potential applications of the anti-MAL antibody for the characterization of neoplastic tissue.  相似文献   

2.
The interaction between seminalplasmin, an antimicrobial protein from bull semen, and lipid bilayers has been investigated. The fluorescence of the single tryptophan residue of the protein was measured. In the presence of phosphatidylcholine or phosphatidic acid bilayer vesicles the fluoresence maximum was shifted to shorter wavelengths, indicating transfer of the tryptophan to a more apolar environment. Circular dichroism spectra show an increased -helical content for the protein in the presence of lipid. Quenching experiments clearly show the incorporation of the protein with the tryptophan localized near the bilayer surface. The shift of the tryptophan fluorescence emission was used to monitor the lipid phase transition in phosphatidylcholine membranes.Abbreviations TEMPOL 2,2,6,6-Tetramethyl-4-hydroxy-piperidine-1-oxyl - DMPC 1,2-Dimyristoylphosphatidylcholine - DMPA 1,2-Dimyristoylphosphatidic acid - SL 5 2-(3-Carboxypropyl)-4,4-dimethyl-2-tridecyl-3-oxazolidinoxyl - SL 12 2-(10-Carboxydecyl)-4,4-dimethyl-2-hexyl-3-oxazolinoxyl  相似文献   

3.
MAL2, an integral membrane protein of the MAL family, is an essential component of the machinery necessary for the indirect transcytotic route of apical transport in human hepatoma HepG2 cells. To characterize the range of human epithelia that use MAL2-mediated pathways of transport, we carried out an immunohistochemical survey of normal tissues using a monoclonal antibody specific to the MAL2 protein. MAL2 expression was detected in specific types of normal epithelial cells throughout the respiratory system, the gastrointestinal and genitourinary tracts, in exocrine and endocrine glands, and in hepatocytes. Many different types of specialized secretory cells, either organized in discrete clusters (e.g., endocrine cells in the pancreas) or in endocrine glands (e.g., prostate), were also positive for MAL2. In addition to epithelial cells, peripheral neurons, mast cells, and dendritic cells were found to express MAL2. For comparison with normal epithelial tissue, different types of renal carcinoma were also analyzed, revealing alterations in MAL2 expression/distribution dependent on the particular histological type of the tumor. Our results allow the prediction of the existence of MAL2-based trafficking pathways in specific cell types and suggest applications of the anti-MAL2 antibody for the characterization of neoplastic tissue.  相似文献   

4.
Polarized transport of lipids and proteins to the apical and basolateral membrane subdomains is essential for the functioning of epithelial cells. Apical transport is mediated by a direct route from the Golgi and an indirect route, referred to as transcytosis, involving the transport of the protein to the basolateral membrane followed by its internalization and subsequent transcellular transport to the apical subdomain. MAL and MAL2 have been demonstrated to be essential components of the machinery for the direct and indirect routes, respectively. Herein, we review the range of expression of MAL and MAL2 in normal human tissue and compare it with that of neoplastic tissue. Our analysis provides insight into the potential use of MAL- and MAL2-mediated pathways in many types of epithelial cells as well as in nonepithelial cells. In addition, the specific alterations in MAL and/or MAL2 expression observed in specific types of carcinoma provides a basis to understand the loss of the polarized phenotype that frequently accompanies the neoplastic transformation process. This points out potential applications of MAL and MAL2 as markers for tumor characterization.  相似文献   

5.
The cell envelope of mycobacteria is a complex multilaminar structure that protects the cell from stresses encountered in the environment, and plays an important role against the bactericidal activity of immune system cells. The outermost layer of the mycobacterial envelope typically contains species-specific glycolipids. Depending on the mycobacterial species, the major glycolipid localized at the surface can be either a phenolglycolipid or a peptidoglycolipid (GPL). Currently, the mechanism of how these glycolipids are addressed to the cell surface is not understood. In this study, by using a transposon library of Mycobacterium smegmatis and a simple dye assay, six genes involved in GPLs synthesis have been characterized. All of these genes are clustered in a single genomic region of approximately 60 kb. We show by biochemical analyses that two non-ribosomal peptide synthetases, a polyketide synthase, a methyltransferase and a member of the MmpL family are required for the biosynthesis of the GPLs backbone. Furthermore, we demonstrate that a small integral membrane protein of 272 amino acids named Gap (gap: GPL addressing protein) is specifically required for the transport of the GPLs to the cell surface. This protein is predicted to contain six transmembrane segments and possesses homologues across the mycobacterial genus, thus delineating a new protein family. This Gap family represents a new paradigm for the transport of small molecules across the mycobacterial envelope, a critical determinant of mycobacterial virulence.  相似文献   

6.
Transcytosis is used alone (e.g., hepatoma HepG2 cells) or in combination with a direct pathway from the Golgi (e.g., epithelial MDCK cells) as an indirect route for targeting proteins to the apical surface. The raft-associated MAL protein is an essential element of the machinery for the direct route in MDCK cells. Herein, we present the functional characterization of MAL2, a member of the MAL protein family, in polarized HepG2 cells. MAL2 resided selectively in rafts and is predominantly distributed in a compartment localized beneath the subapical F-actin cytoskeleton. MAL2 greatly colocalized in subapical endosome structures with transcytosing molecules en route to the apical surface. Depletion of endogenous MAL2 drastically blocked transcytotic transport of exogenous polymeric immunoglobulin receptor and endogenous glycosylphosphatidylinositol-anchored protein CD59 to the apical membrane. MAL2 depletion did not affect the internalization of these molecules but produced their accumulation in perinuclear endosome elements that were accessible to transferrin. Normal transcytosis persisted in cells that expressed exogenous MAL2 designed to resist the depletion treatment. MAL2 is therefore essential for transcytosis in HepG2 cells.  相似文献   

7.
Cline K  McCaffery M 《The EMBO journal》2007,26(13):3039-3049
Tat systems transport completely folded proteins across ion-tight membranes. Three membrane proteins comprise the Tat machinery in most systems. In thylakoids, cpTatC and Hcf106 mediate precursor recognition, whereas Tha4 facilitates translocation. We used chimeric precursor proteins with unstructured peptides and folded domains to test predictions of competing translocation models. Two models invoke protein-conducting channels, whereas another model proposes that cpTatC pulls substrates through a patch of Tha4 on the lipid bilayer. The thylakoid system transported unstructured peptide substrates alone or when fused to folded domains. However, larger substrates stalled before completion, some with amino- and carboxyl-folded domains on opposite sides of the membrane. The length of the precursor that resulted in translocation arrest (20 to 30 nm) exceeded that expected for a single 'pull' mechanism, suggesting that a sustained driving force rather than a single pull moves the protein across the bilayer. Three different methods showed that stalled substrates were not stuck in a channel or even associated with Tat machinery. This finding favors the Tha4 patch model for translocation.  相似文献   

8.
Proteolytic processing of surfactant protein C (SP-C) proprotein in multivesicular bodies of alveolar type II cells results in a 35-residue mature peptide, consisting of a transmembrane domain and a 10-residue extramembrane domain. SP-C mature peptide is stored in lamellar bodies (a lysosomal-like organelle) and secreted with surfactant phospholipids into the alveolar space. This study was designed to identify the peptide domain of SP-C required for sorting and secretion of this integral membrane peptide. Deletion analyses in transiently transfected PC12 cells and isolated mouse type II cells suggested the extramembrane domain of mature SP-C was cytosolic and sufficient for sorting to the regulated secretory pathway. Intratracheal injection of adenovirus encoding SP-C mature peptide resulted in secretion into the alveolar space of wild type mice but not SP-C (-/-) mice. SP-C secretion in null mice was restored by the addition of the N-terminal propeptide. The cytosolic domain, consisting of the N- terminal propeptide and extramembrane domain of mature SP-C peptide, supported secretion of the transmembrane domain of platelet-derived growth factor receptor. Collectively, these studies indicate that the N-terminal propeptide of SP-C is required for intracellular sorting and secretion of SP-C.  相似文献   

9.
An N-ethylmaleimide (NEM)-sensitive fusion protein (NSF) has recently been purified on the basis of its ability to restore transport to NEM-inactivated Golgi membranes in a cell-free transport system. NSF is a peripheral membrane protein required for the fusion of transport vesicles. We now report the existence of two novel components that together bind NSF to Golgi membranes in a saturable manner. These components were detected by examining the requirements for reassociation of purified NSF with Golgi membranes in vitro. One component is an integral membrane receptor that is heat sensitive, but resistant to Na2CO3 extraction and to all proteases tested. The second component is a cytosolic factor that is sensitive to both proteases and heat. This soluble NSF attachment protein (SNAP) is largely resistant to NEM and is further distinguished from NSF by chromatography. SNAP appears to act stoichiometrically in promoting a high-affinity interaction between NSF and the membrane receptor. Because NSF promotes vesicle fusion, it seems likely that these two new factors that allow NSF to bind to the membrane are also part of the fusion machinery.  相似文献   

10.
Addition of low concentrations of acetylcholine or carbamylcholine to solutions bathing a black lipid membrane into which electroplax acetylcholinesterase has been incorporated elicits a dramatic increase in the membrane conductance. This change is prevented or reversed by addition of neostigmine or atropine to the system. The magnitude of the conductance increase of the acetylcholinesterase-treated membrane is proportional to the fourth power of the carbamylcholine concentration and, at constant carbamylcholine concentration, to the fourth power of the enzyme concentration in the medium.  相似文献   

11.
Shun Kumano 《FEBS letters》2010,584(13):2872-2876
Prestin is the motor protein of cochlear outer hair cells and is essential for mammalian hearing. The present study aimed to clarify the structure of prestin by atomic force microscopy (AFM). Prestin was purified from Chinese hamster ovary cells which had been modified to stably express prestin, and then reconstituted into an artificial lipid bilayer. Immunofluorescence staining with anti-prestin antibody showed that the cytoplasmic side of prestin was possibly face up in the reconstituted lipid bilayer. AFM observation indicated that the cytoplasmic surface of prestin was ring-like with a diameter of about 11 nm.  相似文献   

12.
We have identified and characterized a COOH-terminal motor domain-type kinesin superfamily protein (KIFC), KIFC3, in the kidney. KIFC3 is a minus end-directed microtubule motor protein, therefore it accumulates in regions where minus ends of microtubules assemble. In polarized epithelial cells, KIFC3 is localized on membrane organelles immediately beneath the apical plasma membrane of renal tubular epithelial cells in vivo and polarized MDCK II cells in vitro. Flotation assay, coupled with detergent extraction, demonstrated that KIFC3 is associated with Triton X-100-insoluble membrane organelles, and that it overlaps with apically transported TGN-derived vesicles. This was confirmed by immunoprecipitation and by GST pulldown experiments showing the specific colocalization of KIFC3 and annexin XIIIb, a previously characterized membrane protein for apically transported vesicles (Lafont, F., S. Lecat, P. Verkade, and K. Simons. 1998. J. Cell Biol. 142:1413-1427). Furthermore, we proved that the apical transport of both influenza hemagglutinin and annexin XIIIb was partially inhibited or accelerated by overexpression of motor-domainless (dominant negative) or full-length KIFC3, respectively. Absence of cytoplasmic dynein on these annexin XIIIb-associated vesicles and distinct distribution of the two motors on the EM level verified the existence of KIFC3-driven transport in epithelial cells.  相似文献   

13.
Katzmann DJ  Babst M  Emr SD 《Cell》2001,106(2):145-155
The multivesicular body (MVB) pathway is responsible for both the biosynthetic delivery of lysosomal hydrolases and the downregulation of numerous activated cell surface receptors which are degraded in the lysosome. We demonstrate that ubiquitination serves as a signal for sorting into the MVB pathway. In addition, we characterize a 350 kDa complex, ESCRT-I (composed of Vps23, Vps28, and Vps37), that recognizes ubiquitinated MVB cargo and whose function is required for sorting into MVB vesicles. This recognition event depends on a conserved UBC-like domain in Vps23. We propose that ESCRT-I represents a conserved component of the endosomal sorting machinery that functions in both yeast and mammalian cells to couple ubiquitin modification to protein sorting and receptor downregulation in the MVB pathway.  相似文献   

14.
The MAL (MAL/VIP17) proteolipid is a nonglycosylated integral membrane protein expressed in a restricted pattern of cell types, including T lymphocytes, myelin-forming cells, and polarized epithelial cells. Transport of the influenza virus hemagglutinin (HA) to the apical surface of epithelial Madin-Darby canine kidney (MDCK) cells appears to be mediated by a pathway involving glycolipid- and cholesterol- enriched membranes (GEMs). In MDCK cells, MAL has been proposed previously as being an element of the protein machinery for the GEM-dependent apical transport pathway. Using an antisense oligonucleotide-based strategy and a newly generated monoclonal antibody to canine MAL, herein we have approached the effect of MAL depletion on HA transport in MDCK cells. We have found that MAL depletion diminishes the presence of HA in GEMs, reduces the rate of HA transport to the cell surface, inhibits the delivery of HA to the apical surface, and produces partial missorting of HA to the basolateral membrane. These effects were corrected by ectopic expression of MAL in MDCK cells whose endogenous MAL protein was depleted. Our results indicate that MAL is necessary for both normal apical transport and accurate sorting of HA.  相似文献   

15.
Abstract

Recent developments in the understanding of molecular diffusion phenomena in membranes are reviewed. Both model bilayers and biological membranes are considered in respect of lateral diffusion, rotational diffusion and transverse diffusion (flip-flop). For model systems, particular attention is paid to recent data obtained using surface-specific techniques such as sum frequency generation vibrational spectroscopy on supported lipid bilayers, and fluorescence correlation spectroscopy on giant unilamellar vesicles, both of which have yielded new insights into the intrinsic rates of diffusion and the energetic barriers to processes such as lipid flip-flop. Advances in single-molecule and many-molecule fluorescence methodologies have enabled the observation of processes such as anomalous diffusion for some membrane species in biological membranes. These are discussed in terms of new models for the role of membrane interactions with the cytoskeleton, the effects of molecular crowding in membranes, and the formation of lipid rafts. The diffusion of peptides, proteins and lipids is considered, particularly in relation to the means by which antimicrobial peptide activity may be rationalized in terms of membrane poration and lipid flip-flop.  相似文献   

16.
Recent developments in the understanding of molecular diffusion phenomena in membranes are reviewed. Both model bilayers and biological membranes are considered in respect of lateral diffusion, rotational diffusion and transverse diffusion (flip-flop). For model systems, particular attention is paid to recent data obtained using surface-specific techniques such as sum frequency generation vibrational spectroscopy on supported lipid bilayers, and fluorescence correlation spectroscopy on giant unilamellar vesicles, both of which have yielded new insights into the intrinsic rates of diffusion and the energetic barriers to processes such as lipid flip-flop. Advances in single-molecule and many-molecule fluorescence methodologies have enabled the observation of processes such as anomalous diffusion for some membrane species in biological membranes. These are discussed in terms of new models for the role of membrane interactions with the cytoskeleton, the effects of molecular crowding in membranes, and the formation of lipid rafts. The diffusion of peptides, proteins and lipids is considered, particularly in relation to the means by which antimicrobial peptide activity may be rationalized in terms of membrane poration and lipid flip-flop.  相似文献   

17.
Cytochrome P-450 and NADPH cytochrome P-450 reductase were incorporated into large unilamellar lipid vesicles (200–300 nm in diameter) removing octylglucoside from mixed micelles by dialysis. The large size of the protein-containing liposomes guarantees a negligibly small vesicle tumbling. Such large vesicles are better suited for studies of protein rotation in reconstituted membranes than vesicles prepared by use of bile salts. At present the octylglucoside reconstituted monooxygenase system seems to be the most appropriate model for studying protein-protein and protein-lipid interactions in liver microsomes due to the similarity with respect to the main structural and functional properties, including size.  相似文献   

18.
Ion channels were incorporated into planar lipid bilayers following fusion of vesicles from the membrane of an insulin-secreting beta-cell line, HIT T15. The channel was completely blocked by 0.5 mM ATP. The channel retained the same ATP-dependence, voltage-sensitivity and single channel conductance as the ATP-regulated K+ channel that found in isolated membrane patches.  相似文献   

19.
U Tepass  C Theres  E Knust 《Cell》1990,61(5):787-799
We describe the molecular characterization of the Drosophila gene crumbs, which encodes an integral membrane protein with 30 EGF-like repeats in the extracellular part and exhibits a striking expression pattern. The protein is exclusively localized on the apical membranes of epithelial cells and concentrated at the borders between cells. Mutations in crumbs lead to severe disruptions in the organization of ectodermally derived epithelia and in some cases to cell death in these tissues. The structure and the expression pattern of the protein and the phenotype of mutations indicate a function of crumbs during the development of epithelia, possibly for the establishment and/or maintenance of cell polarity.  相似文献   

20.
Interleukin-6 mRNA is unstable and degraded with a half-life of 30 min. Instability determinants can entirely be attributed to the 3' untranslated region. By grafting segments of this region to stable green fluorescent protein mRNA and subsequent scanning mutagenesis, we have identified two conserved elements, which together account for most of the instability. The first corresponds to a short noncanonical AU-rich element. The other, 80 nucleotides further 5', comprises a sequence predicted to form a stem-loop structure. Neither element alone was sufficient to confer full instability, suggesting that they might cooperate. Overexpression of myc-tagged AUF1 p37 and p42 isoforms as well as suppression of endogenous AUF1 by RNA interference stabilized interleukin-6 mRNA. Both effects required the AU-rich instability element. Similarly, the proteasome inhibitor MG132 stabilized interleukin-6 mRNA probably through an increase of AUF1 levels. The mRNA coimmunoprecipitated specifically with myc-tagged AUF1 p37 and p42 in cell extracts but only when the AU-rich instability element was present. These results indicate that AUF1 binds to the AU-rich element in vivo and promotes IL-6 mRNA degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号