首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F G Biddle  D A Jones  B A Eales 《Génome》2001,44(5):872-882
Left-right direction of paw usage in the mouse depends on the genotype and the directional nature of the test. There are two phenotypic classes; in some strains, direction of paw usage is learned or conditioned by the direction of the initial test chamber and the experience of reaching and, in other strains, paw usage is a constitutive behaviour not affected by previous experience. We report the evidence for locus heterogeneity in the cause of constitutive versus experience-conditioned paw usage from a phenotypic analysis of F1 hybrid generations from the experience-conditioned C57BL/6J, C3H/HeHa, and SWV strains and the constitutive CDS/Lay and DBA/2J strains. The F1 hybrids between strains of different phenotypic classes provide evidence of locus heterogeneity. Constitutive paw usage in CDS/Lay is phenotypically dominant to experience-conditioned behaviour in both C57BL/6J and SWV. However, constitutive paw usage in DBA/2J is phenotypically recessive to experience-conditioned behaviour in C57BL/6J and dominant to experience-conditioned behaviour in SWV. Among the experience-conditioned strains, C57BL/6J is highly lateralized but SWV is only weakly lateralized. Our data suggest a model in which C57BL/6J may have a "strong" allele that identifies a functional difference between the constitutive paw usage of CDS/Lay and DBA/2J. DBA/2J may have a loss-of-function mutation at the same locus that is recessive to the strong C57BL/6J allele. SWV may have a "weak" allele and the (SWV x D2)F1 compound heterozygote may be below a threshold for detectability of experience-conditioned behaviour, making the constitutive behaviour of DBA/2J appear to be dominant to the experience-conditioned behaviour of SWV. CDS/Lay may have a dominant allele at a second locus that suppresses experience-conditioned behaviour in all F1 hybrids.  相似文献   

2.

Background

Biogenic amines are implicated in reinforcing associative learning. Octopamine (OA) is considered the invertebrate counterpart of noradrenaline and several studies in insects converge on the idea that OA mediates the reward in appetitive conditioning. However, it is possible to assume that OA could have a different role in an aversive conditioning.

Methodology/Principal Findings

Here we pharmacologically studied the participation of OA in two learning processes in the crab Chasmagnathus granulatus, one appetitive and one aversive. It is shown that the aversive memory is impaired by an OA injection applied immediately or 30 minutes after the last training trial. By contrast, the appetitive memory is blocked by OA antagonists epinastine and mianserine, but enhanced by OA when injected together with the supply of a minimum amount of reinforcement. Finally, double-learning experiments in which crabs are given the aversive and the appetitive learning either successively or simultaneously allow us to study the interaction between both types of learning and analyze the presumed action of OA. We found that the appetitive training offered immediately, but not one hour, after an aversive training has an amnesic effect on the aversive memory, mimicking the effect and the kinetic of an OA injection.

Conclusions/Significance

Our results demonstrate that the role of OA is divergent in two memory processes of opposite signs: on the one hand it would mediate the reinforcement in appetitive learning, and on the other hand it has a deleterious effect over aversive memory consolidation.  相似文献   

3.
Short-term (90 s) effects of the complex acoustic signal (CAS) with ultrasonic components on the development of defensive conditioned reflex of two-way active avoidance in a shuttle-box were studied in female Wistar rats. The learning ability of rats was measured on a scale designed in our laboratory. It was shown that CAS stimulation triggered an audiogenic seizure of different strength in 59% of animals. The CAS was extremely stressful for Wistar rats: it prevented the active avoidance learning in early terms after its application (the first training session in 4 or 6 days). This effect did not depend on the presence or intensity of audiogenic seizures during CAS. In the second training session in 9 days (the first session was in 4 days), learning was impaired as compared to control without CAS. However, during repeated training procedure 1.5 months after the CAS (the first session in 6 days), rats rapidly reached the criterion of learning (10 consecutive avoidance reactions). On the other hand, if the CAS was presented with different time lags (immediately, in 3 or in 45 days) after the first training session, the ability of animals to learn during the second session was not impaired both in early and late terms after exposure to the stressor. The results suggest that exposure to CAS prevents development of short-term memory but does not affect consolidation process and long-term memory.  相似文献   

4.
Dynamics of a memory trace: effects of sleep on consolidation   总被引:2,自引:0,他引:2  
BACKGROUND: There is evidence that sleep is important for memory consolidation, but the underlying neuronal changes are not well understood. We studied the effect of sleep modulation on memory and on neuronal activity in a memory system of the domestic chick brain after the learning process of imprinting. Neurons in this system become, through imprinting, selectively responsive to a training (imprinting) stimulus and so possess the properties of a memory trace. RESULTS: The proportion of neurons responsive to the training stimulus reaches a maximum the day after training. We demonstrate that sleep is necessary for this maximum to be achieved, that sleep stabilizes the initially unstable, selective responses of neurons to the imprinting stimulus, and that for sleep to be effective, it must occur during a particular period of time after training. During this period, there is a time-dependent increase in EEG activity in the 5-6 Hz band, that is, in the lower range of the theta bandwidth. The effects of sleep disturbance on consolidation cannot be attributed to fatigue or to stress. CONCLUSIONS: We establish that long-term trace consolidation requires sleep within a restricted period shortly after learning. Undisturbed sleep is necessary for the stabilization of long-term memory, measured at the behavioral and neuronal levels, and of long-term but not short-term neuronal responsiveness to the training stimulus.  相似文献   

5.
Are children superior to adults in consolidating procedural memory? This notion has been tied to "critical," early life periods of increased brain plasticity. Here, using a motor sequence learning task, we show, in experiment 1, that a) the rate of learning during a training session, b) the gains accrued, without additional practice, within a 24 hours post-training interval (delayed consolidation gains), and c) the long-term retention of these gains, were as effective in 9, 12 and 17-year-olds and comparable to those reported for adults. However, a follow-up experiment showed that the establishment of a memory trace for the trained sequence of movements was significantly more susceptible to interference by a subsequent motor learning experience (practicing a reversed movement sequence) in the 17-year-olds compared to the 9 and 12-year-olds. Unlike the 17-year-olds, the younger age-groups showed significant delayed gains even after interference training. Altogether, our results indicate the existence of an effective consolidation phase in motor learning both before and after adolescence, with no childhood advantage in the learning or retention of a motor skill. However, the ability to co-consolidate different, successive motor experiences, demonstrated in both the 9 and 12-year-olds, diminishes after puberty, suggesting that a more selective memory consolidation process takes over from the childhood one. Only the adult consolidation process is gated by a recency effect, and in situations of multiple, clashing, experiences occurring within a short time-interval, adults may less effectively establish in memory experiences superseded by newer ones.  相似文献   

6.
Motor skill memory is first encoded online in a fragile form during practice and then converted into a stable form by offline consolidation, which is the behavioral stage critical for successful learning. Praise, a social reward, is thought to boost motor skill learning by increasing motivation, which leads to increased practice. However, the effect of praise on consolidation is unknown. Here, we tested the hypothesis that praise following motor training directly facilitates skill consolidation. Forty-eight healthy participants were trained on a sequential finger-tapping task. Immediately after training, participants were divided into three groups according to whether they received praise for their own training performance, praise for another participant''s performance, or no praise. Participants who received praise for their own performance showed a significantly higher rate of offline improvement relative to other participants when performing a surprise recall test of the learned sequence. On the other hand, the average performance of the novel sequence and randomly-ordered tapping did not differ between the three experimental groups. These results are the first to indicate that praise-related improvements in motor skill memory are not due to a feedback-incentive mechanism, but instead involve direct effects on the offline consolidation process.  相似文献   

7.
Learned bird song is influenced by inherited predispositions. The canary is a model system for the interaction of genes and learning on behaviour, especially because some strains have undergone artificial selection for song. In this study, roller canaries (bred for low-pitched songs) and border canaries (whose song is higher pitched, similar to the wild-type) were interbred and backcrossed to produce 58 males that sorted into seven genetically distinct groups. All males were tutored with the same set of songs, which included both low- and high-pitched syllables. Individuals were consistent within genetic groups but differed between groups in the proportion of low- versus high-pitched syllables they learned and sang. Both sex-linked and autosomal factors affected song learning and song production, in an additive manner. Dominant Z-chromosome factors facilitated high-pitched syllable learning and production, whereas the sex-linked alleles associated with the switch to low-pitched syllables under artificial selection were largely recessive. With respect to autosomal effects, the most surprising result is that males in the same genetic group had almost identical repertoires. This result challenges two common preconceptions: that genetic changes at different loci lead to distinct phenotypic changes, and that genetic predispositions affect learning in simple and general ways. Rather, different combinations of genetic changes can be associated with the same phenotypic effect; and predispositions can be remarkably specific, such as a tendency to learn and sing one song element rather than another.  相似文献   

8.
Zebrafish have become a useful model for studying behavior and cognitive functions. Recent studies have shown that zebrafish have natural color preference and the ability to form associative memories with visual perception. It is well known that visual perception enhances memory recall in humans, and we suggest that a similar phenomenon occurs in zebrafish. This study proposes that adding a visual perception component to a conventional reward method would enhance memory recall in zebrafish. We found that zebrafish showed greater preference for red cellophane over yellow in the training session but could not remember the preferred place in the memory test. However, the test memory recall was greater when the zebrafish were exposed to the red cellophane with a food reward during the training session, when compared with the use of food reward only. Furthermore, the red cellophane with food reward group showed more predictable memory recall than the food reward only group. These results propose that visual perception can increase memory recall by enhancing the consolidation processes. We suggest that color-cued learning with food reward is a more discriminative method than food reward alone for examining the cognitive changes in the zebrafish.

Abbreviations: WM: working memory; LTM: long-term memory  相似文献   


9.
A new and simple method of training intact cockroaches was designed. (1) Cockroaches were maintained before and during the experiment with a high motivation to look for sugar. They were kept in a chamber with water and yeast extract ad libitum but without any sugar. (2) Cockroaches were individually trained to associate two artificial scent signals, i.e. menthol and vanilla, with sugar and salt solutions. Discriminatory learning performance was measured by testing the scent preference before and after training. Care was taken to exclude other than olfactory cues in the discriminatory paradigm. (3) Cockroaches exhibited a spontaneous initial preference for vanilla over menthol. This preference could be modified by training. The insect showed fast learning and long retention. One training trial was enough to reverse the initial preference with a significant retention after 7 days. Reversal of trained preference was accomplished by retraining. (4) The method provides an opportunity to study sensory performance and memory consolidation in cockroaches.  相似文献   

10.
Fear conditioning is an associative learning process by which organisms learn to avoid environmental stimuli that are predictive of aversive outcomes. Fear extinction learning is a process by which avoidance of fear‐conditioned stimuli is attenuated when the environmental stimuli is no longer predictive of the aversive outcome. Aberrant fear conditioning and extinction learning are key elements in the development of several anxiety disorders. The 129S1 inbred strain of mice is used as an animal model for maladaptive fear learning because this strain has been shown to generalize fear to other nonaversive stimuli and is less capable of extinguishing fear responses relative to other mouse strains, such as the C57BL/6. Here we report new environmental manipulations that enhance fear and extinction learning, including the ability to discriminate between an aversively paired tone and a neutral tone, in both the 129S1 and C57BL/6 strains of mice. Specifically, we show that discontinuous (“pipped”) tone stimuli significantly enhance within‐session extinction learning and the discrimination between neutral and aversively paired stimuli in both strains. Furthermore, we find that extinction training in novel contexts significantly enhances the consolidation and recall of extinction learning for both strains. Cumulatively, these results underscore how environmental changes can be leveraged to ameliorate maladaptive learning in animal models and may advance cognitive and behavioral therapeutic strategies.  相似文献   

11.
We have evaluated the role of the Drosophila mushroom bodies (MBs) in courtship conditioning, in which experience with mated females causes males to reduce their courtship toward virgins (Siegel and Hall, 1979). Whereas previous studies indicated that MB ablation abolished learning in an olfactory conditioning paradigm (deBelle and Heisenberg, 1994), MB-ablated males were able to learn in the courtship paradigm. They resumed courting at naive levels within 30 min after training, however, while the courtship of control males remained depressed 1 hr after training. We also describe a novel courtship conditioning paradigm that established long-term memory, lasting 9 days. In MB-ablated males, memory dissipated completely within 1 day. Our results indicate that the MBs are not required for learning and immediate recall of courtship conditioning but are required for consolidation of short-term and long-term associative memories.  相似文献   

12.
Summary Drosophila melanogaster can be conditioned to avoid an odorant selectively after being shocked in its presence (Quinn et al., 1974). In the following study learning and memory properties of the flies are reported. The major part of the conditioned behavior is acquired after a single training trial (Fig. 2). Similar degrees of learning are obtained by using various odorants in various combinations (Table 1). The flies can learn to avoid selectively several odorants at a time, can learn to discriminate between different concentrations of the same odorant (Fig. 4), and can also learn to distinguish a mixture of odorants from its components. If not extinguished, the selective avoidance decays slowly and can be detected for hours, its magnitude depending upon the intensity of training (Fig. 6). Memory can be disrupted by narcosis during the first 20 min after training, but not afterwards (Fig. 7). A study of learning properties of wild-type strains and various morphological and behavioral mutants reveals differences in performance (Table 2). However, the differences cannot be attributed with certainty to differences in learning and memory, per se, because the mutants differ in other aspects of behavior, e.g., locomotor activity and phototaxis. Of the wild-type strains tested, Canton-S performed the best.I thank Dr. S. Benzer for the hospitality of his laboratory, and S. Benzer, D. Byers, W. Harris, L. Jan, Y.-N. Jan, W. Quinn, D. Ready and M. Shankland for valuable discussions. This work was supported by an EMBO long-term fellowship and by a grant from the National Science Foundation to Dr. S. Benzer.  相似文献   

13.
Rat pups during a critical postnatal period (≤ 10 days) readily form a preference for an odor that is associated with stimuli mimicking maternal care. Such a preference memory can last from hours, to days, even life-long, depending on training parameters. Early odor preference learning provides us with a model in which the critical changes for a natural form of learning occur in the olfactory circuitry. An additional feature that makes it a powerful tool for the analysis of memory processes is that early odor preference learning can be lateralized via single naris occlusion within the critical period. This is due to the lack of mature anterior commissural connections of the olfactory hemispheres at this early age. This work outlines behavioral protocols for lateralized odor learning using nose plugs. Acute, reversible naris occlusion minimizes tissue and neuronal damages associated with long-term occlusion and more aggressive methods such as cauterization. The lateralized odor learning model permits within-animal comparison, therefore greatly reducing variance compared to between-animal designs. This method has been used successfully to probe the circuit changes in the olfactory system produced by training. Future directions include exploring molecular underpinnings of odor memory using this lateralized learning model; and correlating physiological change with memory strength and durations.  相似文献   

14.
Learning and memory systems are intimately involved in drug addiction. Previous studies suggest that galanin, a neuropeptide that binds G-protein coupled receptors, plays essential roles in the encoding of memory. In the present study, we tested the function of galnon, a galanin receptor 1 and 2 agonist, in reward-associated memory, using conditioned place preference (CPP), a widely used paradigm in drug-associated memory. Either before or following CPP-inducing morphine administration, galnon was injected at four different time points to test the effects of galanin activation on different reward-associated memory processes: 15 min before CPP training (acquisition), immediately after CPP training (consolidation), 15 min before the post-conditioning test (retrieval), and multiple injection after post-tests (reconsolidation and extinction). Galnon enhanced consolidation and extinction processes of morphine-induced CPP memory, but the compound had no effect on acquisition, retrieval, or reconsolidation processes. Our findings demonstrate that a galanin receptor 1 and 2 agonist, galnon, may be used as a viable compound to treat drug addiction by facilitating memory extinction process.  相似文献   

15.
Functional magnetic resonance imaging (fMRI) was used to investigate the cerebral correlates of motor sequence memory consolidation. Participants were scanned while training on an implicit oculomotor sequence learning task and during a single testing session taking place 30 min, 5 hr, or 24 hr later. During training, responses observed in hippocampus and striatum were linearly related to the gain in performance observed overnight, but not over the day. Responses in both structures were significantly larger at 24 hr than at 30 min or 5 hr. Additionally, the competitive interaction observed between these structures during training became cooperative overnight. These results stress the importance of both hippocampus and striatum in procedural memory consolidation. Responses in these areas during training seem to condition the overnight memory processing that is associated with a change in their functional interactions. These results show that both structures interact during motor sequence consolidation to optimize subsequent behavior.  相似文献   

16.
Practice on a procedural task involves within-session learning and between-session consolidation of learning, with the latter requiring a minimum of about four hours to evolve due to involvement of slower cellular processes. Learning to attend to threats is vital for survival and thus may involve faster memory consolidation than simple procedural learning. Here, we tested whether attention to threat modulates the time-course and magnitude of learning and memory consolidation effects associated with skill practice. All participants (N = 90) practiced in two sessions on a dot-probe task featuring pairs of neutral and angry faces followed by target probes which were to be discriminated as rapidly as possible. In the attend-threat training condition, targets always appeared at the angry face location, forming an association between threat and target location; target location was unrelated to valence in a control training condition. Within each attention training condition, duration of the between-session rest interval was varied to establish the time-course for emergence of consolidation effects. During the first practice session, we observed robust improvement in task performance (online, within-session gains), followed by saturation of learning. Both training conditions exhibited similar overall learning capacities, but performance in the attend-threat condition was characterized by a faster learning rate relative to control. Consistent with the memory consolidation hypothesis, between-session performance gains (delayed gains) were observed only following a rest interval. However, rest intervals of 1 and 24 hours yielded similar delayed gains, suggesting accelerated consolidation processes. Moreover, attend-threat training resulted in greater delayed gains compared to the control condition. Auxiliary analyses revealed that enhanced performance was retained over several months, and that training to attend to neutral faces resulted in effects similar to control. These results provide a novel demonstration of how attention to threat can accelerate and enhance memory consolidation effects associated with skill acquisition.  相似文献   

17.
Most species used for behavioural studies are bisexual. Sexual dimorphism determines genotypic diversity and behavioural variation within a species. The relative contribution of a genome to a specific behaviour is for the most part indiscernible, but gene changes can alter behaviour in many different ways1. Within a species, strain differences can contribute to behavioural differences and many less clearly systematic behaviours, such as the aptitude to learn or to recall, may be genetically determined2. Genotypic diversity, on the other hand, obscures gene correlates of behaviour because each organism brings a unique repertoire of behaviours to the experimental situation. Against this, learning research has found basic phenomena of learning and memory to be valid across many vertebrate species. In an effort to reduce genotypic and behavioural variability in studying memory processing, we have used a unisexual clonal fish, Poecilia formosa, as suggested by Agranoff and Davis3.  相似文献   

18.

Background

It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis.

Methodology/Principal Findings

Initially, we used a behavioral ecological approach using adult mice to assess the impact of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a spaced (across days), but not a massed (within day), learning paradigm increased survival of adult-born neurons and allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on consolidation processes taking place in the olfactory bulb.

Conclusion/Significance

We can thus propose a model in which consolidation processes in the olfactory bulb determine both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival during olfactory learning is governed by consolidation in the olfactory bulb strongly argues in favor of a role for bulbar adult-born neurons in supporting olfactory memory.  相似文献   

19.
A 3-neuron central pattern generator, whose sufficiency and necessity has been directly demonstrated, mediates aerial respiratory behaviour in the pond snail, Lymnaea stagnalis. This behaviour can be operantly conditioned, and this associative learning is consolidated into long-lasting memory. Depending on the operant conditioning training procedure used the learning can be consolidated into intermediate term (ITM) or long-term memory (LTM). ITM persists for only 2-3 h, whilst LTM persists for days to weeks. LTM is dependent on both altered gene activity and new protein synthesis while ITM is only dependent on new protein synthesis. We have now directly established that one of the 3-CPG neurons, RPeD1, is a site of LTM formation and storage. We did this by ablating the soma of RPeD1 and leaving behind a functional primary neurite capable of mediating the necessary synaptic interactions to drive aerial respiratory behaviour by the 3-neuron CPG. However, following soma ablation the neuronal circuit is only capable of mediating learning and ITM. LTM can no longer be demonstrated. However, if RPeD1's soma is ablated after LTM consolidation memory is still present. Thus the soma is not needed for the retention of LTM. Using a similar strategy it may be possible to block forgetting.  相似文献   

20.
Conscious memory for a new experience is initially dependent on information stored in both the hippocampus and neocortex. Systems consolidation is the process by which the hippocampus guides the reorganization of the information stored in the neocortex such that it eventually becomes independent of the hippocampus. Early evidence for systems consolidation was provided by studies of retrograde amnesia, which found that damage to the hippocampus-impaired memories formed in the recent past, but typically spared memories formed in the more remote past. Systems consolidation has been found to occur for both episodic and semantic memories and for both spatial and nonspatial memories, although empirical inconsistencies and theoretical disagreements remain about these issues. Recent work has begun to characterize the neural mechanisms that underlie the dialogue between the hippocampus and neocortex (e.g., “neural replay,” which occurs during sharp wave ripple activity). New work has also identified variables, such as the amount of preexisting knowledge, that affect the rate of consolidation. The increasing use of molecular genetic tools (e.g., optogenetics) can be expected to further improve understanding of the neural mechanisms underlying consolidation.Memory consolidation refers to the process by which a temporary, labile memory is transformed into a more stable, long-lasting form. Memory consolidation was first proposed in 1900 (Müller and Pilzecker 1900; Lechner et al. 1999) to account for the phenomenon of retroactive interference in humans, that is, the finding that learned material remains vulnerable to interference for a period of time after learning. Support for consolidation was already available in the facts of retrograde amnesia, especially as outlined in the earlier writings of Ribot (1881). The key observation was that recent memories are more vulnerable to injury or disease than remote memories, and the significance of this finding for consolidation was immediately appreciated.
In normal memory a process of organization is continually going on—a physical process of organization and a psychological process of repetition and association. In order that ideas may become a part of permanent memory, time must elapse for these processes of organization to be completed. (Burnham 1903, p. 132)
It is useful to note that the term consolidation has different contemporary usages that derive from the same historical sources. For example, the term is commonly used to describe events at the synaptic/cellular level (e.g., protein synthesis), which stabilize synaptic plasticity within hours after learning. In contrast, systems consolidation, which is the primary focus of this review, refers to gradual reorganization of the brain systems that support memory, a process that occurs within long-term memory itself (Squire and Alvarez 1995; Dudai and Morris 2000; Dudai 2012).Systems consolidation is typically, and accurately, described as the process by which memories, initially dependent on the hippocampus, are reorganized as time passes. By this process, the hippocampus gradually becomes less important for storage and retrieval, and a more permanent memory develops in distributed regions of the neocortex. The idea is not that memory is literally transferred from the hippocampus to the neocortex, for information is encoded in the neocortex as well as in hippocampus at the time of learning. The idea is that gradual changes in the neocortex, beginning at the time of learning, establish stable long-term memory by increasing the complexity, distribution, and connectivity among multiple cortical regions. Recent findings have enriched this perspective by emphasizing the dynamic nature of long-term memory (Dudai and Morris 2013). Memory is reconstructive and vulnerable to error, as in false remembering (Schacter and Dodson 2001). Also, under some conditions, long-term memory can transiently return to a labile state (and then gradually stabilize), a phenomenon termed reconsolidation (Nader et al. 2000; Sara 2000; Alberini 2005). In addition, the rate of consolidation can be influenced by the amount of prior knowledge that is available about the material to be learned (Tse et al. 2007; van Kesteren et al. 2012).Neurocomputational models of consolidation (McClelland et al. 1995; McClelland 2013) describe how the acquisition of new knowledge might proceed and suggest a purpose for consolidation. As originally described, elements of information are first stored in a fast-learning hippocampal system. This information directs the training of a “slow learning” neocortex, whereby the hippocampus gradually guides the development of connections between the multiple cortical regions that are active at the time of learning and that represent the memory. Training of the neocortex by the hippocampus (termed “interleaved” training) allows new information to be assimilated into neocortical networks with a minimum of interference. In simulations (McClelland et al. 1995), rapid learning of new information, which was inconsistent with prior knowledge, was shown to cause interference and disrupt previously established representations (“catastrophic interference”). The gradual incorporation of information into the neocortex during consolidation avoids this problem. In a recent revision of this framework (McClelland 2013), neocortical learning is characterized, not so much as fast or slow, but as dependent on prior knowledge. If the information to be learned is consistent with prior knowledge, neocortical learning can be more rapid.This review considers several types of evidence that illuminate the nature of the consolidation process: studies of retrograde amnesia in memory-impaired patients, studies of healthy volunteers with neuroimaging, studies of sleep and memory, studies of experimental animals, both with lesions or other interventions, and studies that track neural activity as time passes after learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号