首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rainbow trout (Oncorhynchus mykiss) and brook trout (or charr, Salvelinus fontinalis) display different rostral-caudal patterns of power production by the red or aerobic muscle during steady swimming. The anterior muscle of rainbow trout produces much less power for swimming than the posterior, while in brook trout there is no variation in power output. To determine if red muscle recruitment is associated with anterior-posterior patterns of power production, electromyography (EMG) was used to record red muscle activity at three body positions across a range of swimming speeds in fish of each species. The initial recruitment of the anterior red muscle in swimming rainbow trout was predicted to lag behind, i.e. occur at higher speeds, that of the posterior due to the variation in power production, but no variation in recruitment was expected for brook trout. Burst of red muscle EMG activity occurring with each tailbeat was analyzed for frequency (tailbeat frequency), duty cycle (DC) (duration of burst relative to the period of the tailbeat) and burst intensity (BI) (magnitude of the measured EMG activity). Brook trout swam with higher tailbeat frequencies and longer values of DC than rainbow trout. Both species showed a pattern of longitudinal variation in DC, with longer DC values in the anterior red muscle. BI also differed significantly along the length of rainbow trout but not brook trout. In the former, BI of anterior muscle was significantly less than the posterior at lower steady swimming speeds. The EMG data suggest that power production and muscle recruitment are related. In rainbow trout, where there is longitudinal variation in muscle power output, there are also significant rostral-caudal differences in red muscle recruitment.  相似文献   

2.
Fishes power steady, undulatory swimming using both red andpink muscle. In this study we examined the roles of the twofiber types in generating power for swimming by using two-steptechnique. First, in vivo data is collected from swimming fish,and second, the electrical activity and muscle length changeconditions recorded in vivo are recreated in vitro with isolatedmuscle bundles. Force production and power generation by muscleduring swimming can then be estimated. In scup, both red andpink muscle are recruited to power swimming at the maximum sustainedswimming speed. For both fiber types, the duration of electricalactivity decreases from anterior to posterior. However, theamplitude of muscle length change increases anterior to posterior.Mass-specific power production increases posteriorly for bothmuscle types. The faster contraction kinetics of pink muscletranslate to higher power production pink muscle relative tored muscle for all longitudinal positions of the fish. Determinationof absolute power production, based on mass-specific power andmuscle mass, shows that the posterior regions of the fish generatethe most power for swimming. At 20°C, red muscle generatesmore absolute power than pink due to its higher muscle mass.However, at 10°C, pink muscle generates more absolute powerthan red, because red muscle produces little or no positivepower for all longitudinal positions.  相似文献   

3.
We quantified the intensity and duration of electromyograms (emgs) from the red and white axial muscles in five bluegill sunfish (Lepomis macrochirus) which performed three categories of behavior including steady swimming and burst and glide swimming at moderate and rapid speeds. Steady swimming (at 2 lengths/s) involved exclusively red muscle activity (mean posterior emg duration = 95 ms), whereas unsteady swimming utilized red and white fibers with two features of fiber type recruitment previously undescribed for any ectothermic vertebrate locomotor muscle. First, for moderate speed swimming, the timing of red and white activity differed significantly with the average onset time of white lagging behind that of red by approximately 40 ms. The durations of these white emgs were shorter than those of the red emgs (posterior mean = 82 ms) because offset times were effectively synchronous. Second, compared to steady and moderate speed unsteady swimming, the intensity of red activity during rapid unsteady swimming decreased while the intensity of white muscle activity (mean white emg duration = 33 ms) increased. Decreased red activity associated with increased white activity differs from the general pattern of vertebrate muscle recruitment in which faster fiber types are recruited in addition to, but not to the exclusion of, slower fiber types.  相似文献   

4.
Summary Electromyography has been used to study the recruitment of red, pink and white muscle fibres of the Mirror carp at different swimming speeds. Locomotion below 0.3–0.5 L/S (lengths per second) is achieved primarily by fin movements after which the red myotomal muscle becomes active. Pink muscle fibres are the next type to be recruited at speeds around 1.1–1.5 L/S. White muscle is only used for fast cruising in excess of 2–2.5 L/S and during bursts of acceleration.Studies of the myofibrillar ATPase activities of these muscles have shown a ratio of 124 for the red, pink and white fibres respectively. The myosin low molecular weight components, which are characteristic of the myosin phenotype, have been investigated by SDS polyacrylamide electrophoresis. The light chain patterns of the pink and white muscles were identical and characteristic of the fast myosin phenotype. Red muscle myosin had a light chain pattern characteristic of slow muscles. It would appear that there is a relationship between the speed of contraction of the fibre types and the locomotory speed at which they are recruited.The activities of some enzymes of energy metabolism have also been determined in the three muscle types. Enzymes associated with oxidate metabolism have high, intermediate and low activities in the red, pink and white muscles respectively. Pyruvate kinase and lactate dehydrogenase activities were considerably higher in the pink than in either red or white muscles. It is suggested that the high capacity for anaerobic glycolysis of the pink muscle is associated with its recruitment for sustained effort at swimming speeds above which the fish can no longer meet all its energy requirements by gas exchange at the gills.Abbreviations used EDTA ethylenediamine tetraacetic acid - L/S lengths, sec–1 - LDH Lactate dehydrogenase - PFK phosphofructokinase - SDS sodium dodecyl sulphate - TCA trichloroacetic acid  相似文献   

5.
Because the mass-specific power generated by myotomal muscle during swimming varies along the length of the fish, a realistic assessment of total power generation by the musculature requires integrating the product of mass-specific power and muscle mass at each position over the length of the fish. As a first step toward this goal, we examined the distribution of red, pink, and white muscle along the length of Stenotomus chrysops (scup) using histochemical and image analysis techniques. The largest cross-sectional area of red fibers occurs at 60% of total fish length and declines both anteriorly and posteriorly. By contrast, white fibers have the largest cross-sectional area in the anterior and decline dramatically moving posteriorly. The proportion of the fishes' cross-section occupied by red fibers increases from 1.37% to 8.42% moving posteriorly along the length of the fish. In contrast, the proportion of cross-sectional area occupied by pink fibers is constant (1.19%), while the proportional cross-sectional area of white fibers falls from 82.5% to 66.3%. The red, pink, and white fibers comprise 2.09, 0.73, and 51.1%, respectively, of total fish weight. We also compared the distribution of muscle in 10°C-and 200°C-acclimated animals. The value for red fiber volume, though slightly higher (13%) in cold-acclimated fish, is not statistically different. No difference was found in pink or white fibers. Finally, the finding that most of the red muscle is in the posterior half of the fish further supports the notion that most power for steady swimming at moderate speeds comes from posterior rather than anterior musculature. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Power produced by red myotomal muscles of fish during cruise swimming appears seldom maximized, so we sought to investigate whether economy may impact or dominate muscle function. We measured cost of transport (COT) using oxygen consumption and the strain trajectories and electromyographic activity of red muscle measured at anterior (ANT) and posterior (POST) locations while Atlantic cod (Gadus morhua) swam steadily at speeds between 0.3 and 1.0 body lengths (BL) s(-1). We then measured the power produced by isolated segments of red muscle when activated either as in the swimming cod or such that maximal net power was produced. Patterns of activation during swimming were not optimal for power output and were highly variable between tail beats, particularly at the ANT location and at slow swim speeds. Muscle strain amplitude did not increase until swimming speed reached 0.9 (ANT) versus 0.5 (POST) BL s(-1). These limited power to only 53% (ANT) and 71% (POST) of maximum at slower swim speeds and to 70%-80% of maximum at high swim speeds. COT (resting metabolism subtracted) was minimal at the slowest swim speed, surprisingly, where power was most impaired by activation and strain. Thus, production of powered forces for maneuverability/stability appeared to greatly impact red muscle function during cruise swimming in cod, particularly at slow speeds and in ANT muscle.  相似文献   

7.
Intramuscular electromyography (EMG) was used to determine and compare the recruitment patterns of the rat soleus (Sol), tibialis anterior (TA), and a deep and a superficial portion of the medial gastrocnemius (MG) during treadmill locomotion at various speeds and inclines and during swimming. Raw EMG signals for 10-20 step or stroke cycles were rectified, averaged, and processed to determine cycle period (EMG onset of one cycle to EMG onset of the next cycle), EMG burst duration, and integrated area of the rectified burst (IEMG). Mean EMG per burst was calculated as IEMG/burst duration. IEMG/min was calculated as IEMG times the number of bursts (cycles) per minute. Cycle period and burst duration of the extensors decreased hyperbolically, while the TA burst duration was unchanged, with increased treadmill speed. With increased treadmill speed, IEMG was decreased in the Sol and unchanged in the MG and TA, whereas IEMG/min decreased in the Sol and increased in the MG and TA. An elevation in treadmill incline resulted in an increase in the activation levels of the MG but not in the Sol or TA. These data indicate that the additional power required at increased speeds and/or inclines of treadmill locomotion is derived from the recruitment of the fast extensors, e.g., the MG. The mean cycle period during swimming was similar to that observed during the fastest treadmill locomotion. EMG burst durations and amplitudes, however, were higher in the TA, relatively similar in the MG, and lower in the Sol during swimming than treadmill locomotion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Both activation and relaxation times of rainbow trout Oncorhynchus mykiss red muscle were shorter in parr than in older juveniles. Furthermore, parr red muscle had a faster maximum shortening velocity than that of older fish, as estimated with the force-clamp technique. Parr swam with higher tailbeat frequencies and lower tailbeat amplitude than did older fish across a range of length-specific steady swimming speeds. The developmental shift in contraction kinetics of red muscle and steady swimming kinematics was associated with a reduction from two or three myosin heavy chain isoforms in parr to one in older juveniles. This transition provides a mechanism to explain the variations in muscle contraction kinetics and swimming performance.  相似文献   

9.
Red and white axial muscle activity of adult Atlantic salmon Salmo salar was examined using conventional electromyography (EMG x ) and activity radio-transmitters (EMG i ) at 0·5 and 0.7 body lengths (L) along the body of the fish. Critical swimming trials were conducted and maximum sustainable speeds (Ucrit) were unaffected by the presence of electrodes, being 1·51 ± 21 m s−1 (3.33 ± 0.34 L s−1) ( n =44). Regardless of longitudinal position of the electrodes within the musculature, both EMG x s and EMG i s indicated increasing red muscle activity with increasing swimming speed, whereas white muscle fibres were recruited only at speeds > 86±5% Ucrit. Telemetered EMG i signals indicated that muscle activity varied significantly for electrodes implanted at different longitudinal positions along the fish ( P < 0·001). These results suggest that electrode placement is an important influence affecting the signals obtained from radio transmitters that estimate activity and location should be standardized within biotelemetry studies to allow accurate and consistent comparisons of activity between individuals and species. Optimal location for electrode placement was determined to be in the red muscle, towards the tail of the fish (0·7 L ).  相似文献   

10.
Red muscle function during steady swimming in brook trout was studied through both in vivo swimming and in vitro muscle mechanics experiments. In the swimming experiments, red muscle activity was characterized through the use of electromyography and sonomicrometry, allowing the determination of several parameters such as tailbeat frequency, EMG burst duration, muscle length change patterns and relative phase of EMG activity and length change. Brook trout do show some shifts in these variables along their length during steady swimming, but the magnitude of these shifts is relatively small. In the muscle mechanics experiments, the in vivo muscle activity data were used to evaluate patterns of power production by red muscle during swimming. Unlike many fish species, the red muscle along the length of brook trout shows little change in isometric kinetic variables such as relaxation rate and twitch time. Furthermore, there is no rostral-caudal shift in red muscle mass-specific power output during steady swimming. This last result contrasts sharply with rainbow trout and with a variety of other fish species that power steady swimming primarily with the posterior red myotome.  相似文献   

11.
Circular mantle muscle of squids and cuttlefishes consists of distinct zones of aerobic and anaerobic muscle fibers that are thought to have functional roles analogous to red and white muscle in fishes. To test predictions of the functional role of the circular muscle zones during swimming, electromyograms (EMGs) in conjunction with video footage were recorded from brief squid Lolliguncula brevis (5.0-6.8 cm dorsal mantle length, 10.9-18.3 g) swimming in a flume at speeds of 3-27 cm s(-1). In one set of experiments, in which EMGs were recorded from electrodes intersecting both the central anaerobic and peripheral aerobic circular mantle muscles, electrical activity was detected during each mantle contraction at all swimming speeds, and the amplitude and frequency of responses increased with speed. In another set of experiments, in which EMGs were recorded from electrodes placed in the central anaerobic circular muscle fibers alone, electrical activity was not detected during mantle contraction until speeds of about 15 cm s(-1), when EMG activity was sporadic. At speeds greater than 15 cm s(-1), the frequency of central circular muscle activity subsequently increased with swimming speed until maximum speeds of 21-27 cm s(-1), when muscular activity coincided with the majority of mantle contractions. These results indicate that peripheral aerobic circular muscle is used for low, intermediate, and probably high speeds, whereas central anaerobic circular muscle is recruited at intermediate speeds and used progressively more with speed for powerful, unsteady jetting. This is significant because it suggests that there is specialization and efficient use of locomotive muscle in squids.  相似文献   

12.
Rainbow trout were trained for 3–4 weeks in a flume at swimming speeds of 1, 2 and 3 l s−1. For each experiment growth rates were estimated and by measuring the hypertrophy of red and mosaic skeletal muscle fibres their function was described at particular swimming speeds and compared with earlier experiments on coalfish using the same technique.
Maximum growth, compared with controls in still water, occurred at swimming speeds of 1 l s−1. At this speed the trout mosaic muscle fibres hypertrophied by 40% but the red muscle fibres showed only a 25% hypertrophy. It is suggested that natural swimming speeds are close to 1Ls−l and the trout mosaic fibres are better adapted for use at this speed in comparison with coalfish white muscle fibres.  相似文献   

13.
A study has been made of the maximum sustained swimming speed of Crucian carp Carassius carassius (L.) using a fixed velocity technique. The data obtained from swimming tests on 214 carp have been analysed using the method of probit analysis. The 50% fatigue level for 13–16 cm fish acclimated to 9.5±0.6°C has been estimated to be 3.35 lengths/sec. Biochemical measurements have been made on the red and white myotomal muscles and liver of fish subjected to both varying intensities of sustained swimming and short periods of vigorous swimming. Free creatine was found to increase only during high speed swimming in the white muscle. Elevated lactate concentrations occurred at both low and high sustained swimming speeds in the red superficial muscle but not during short periods of strenuous exercise. Glycogen depletion from the red musculature also only took place at the sustained swimming speeds investigated. The reverse situation was operative in the white muscle, significant glycogen depletion occurring only at the highest swimming speed studied. Lactate levels were only significantly different from non-exercised fish in the fish swimming at the higher velocities. The effects of periods of recovery following 200 min of sustained swimming were also investigated. White muscle lactate was at a higher level than non-exercise fish 5 h post-exercise, while both red muscle glycogen and lactate rapidly returned to pre-exercise concentrations. Biochemical measurements on the myotomal muscle types have been discussed in relation to the swimming performance of the fish and the division of labour between red and white fibres.  相似文献   

14.
To test the hypothesis that white muscle fibre portions of the myotomes are used at sustainable swimming speeds, skipjack tuna, Katsuwonus pelamis , were forced to swim against various current velocities in a water tunnel while electrical activity of the red and white muscle fibres was simultaneously recorded. Eight fish were tested, five fish graded white muscle fibres into activity at swimming speeds above their minimum hydrostatic equilibrium speed, but well below the estimated maximum sustainable swimming speed of skipjack tuna. Three other fish showed white muscle fibre activity at minimum swimming speeds, a possibly abnormal condition.  相似文献   

15.
To gain insight into the function of the dorsal fins in white-spotted bamboo sharks (Orectolobiformes: Hemiscyillidae) during steady swimming, data on three-dimensional kinematics and electromyographic recordings were collected. Bamboo sharks were induced to swim at 0.5 and 0.75 body lengths per second in a laminar flow tank. Displacement, lag and angles were analyzed from high-speed video images. Onset, offset, duration, duty cycle and asynchrony index were calculated from three muscle implants on each side of each dorsal fin. The dorsal fins were displaced more laterally than the undulating body. In addition, the dorsal tips had larger lateral displacement than the trailing edges. Increased speed was accompanied by an increase in tail beat frequency with constant tail beat amplitude. However, lateral displacement of the fins and duration of muscle bursts remained relatively constant with increased speed. The range of lateral motion was greater for the second dorsal fin (mean 33.3°) than for the first dorsal fin (mean 28.4°). Bending within the fin was greater for the second dorsal fin (mean 43.8°) than for the first dorsal fin (mean 30.8°). Muscle onset and offset among implants on the same side of each dorsal fin was similar. Three-dimensional conformation of the dorsal fins was caused by interactions between muscle activity, material properties, and incident flow. Alternating bilateral activity occurred in both dorsal fins, further supporting the active role of these hydrofoils in thrust production during steady swimming. The dorsal fins in bamboo sharks are capable of thrust production during steady swimming and do not appear to function as stabilizing structures.  相似文献   

16.
There is a significant reduction in overall maximum power output of muscle at low temperatures due to reduced steady-state (i.e. maximum activation) power-generating capabilities of muscle. However, during cyclical locomotion, a further reduction in power is due to the interplay between non-steady-state contractile properties of muscle (i.e. rates of activation and relaxation) and the stimulation and the length-change pattern muscle undergoes in vivo. In particular, even though the relaxation rate of scup red muscle is slowed greatly at cold temperatures (10°C), warm-acclimated scup swim with the same stimulus duty cycles at cold as they do at warm temperature, not affording slow-relaxing muscle any additional time to relax. Hence, at 10°C, red muscle generates extremely low or negative work in most parts of the body, at all but the slowest swimming speeds.Do scup shorten their stimulation duration and increase muscle relaxation rate during cold acclimation? At 10°C, electromyography (EMG) duty cycles were 18% shorter in cold-acclimated scup than in warm-acclimated scup. But contrary to the expectations, the red muscle did not have a faster relaxation rate, rather, cold-acclimated muscle had an approximately 50% faster activation rate. By driving cold- and warm-acclimated muscle through cold- and warm-acclimated conditions, we found a very large increase in red muscle power during swimming at 10°C. As expected, reducing stimulation duration markedly increased power output. However, the increased rate of activation alone produced an even greater effect. Hence, to fully understand thermal acclimation, it is necessary to examine the whole system under realistic physiological conditions.  相似文献   

17.
Little is known about the behaviour patterns and swimming speed strategies of anadromous upriver migrating fish. We used electromyogram telemetry to estimate instantaneous swimming speeds for individual sockeye (Oncorhynchus nerka) and pink salmon (O. gorbuscha) during their spawning migrations through reaches which spanned a gradient in river hydraulic features in the Fraser River, British Columbia. Our main objectives were to describe patterns of individual-specific swim speeds and behaviours, identify swimming speed strategies and contrast these between sexes, species and reaches. Although mean swimming speeds did not differ between pink salmon (2.21 BL s–1) and sockeye salmon (1.60 BL s–1), sockeye salmon were over twice as variable (mean CV; 54.78) in swimming speeds as pink salmon (mean CV; 22.54). Using laboratory-derived criteria, we classified swimming speeds as sustained (<2.5 BL s–1), prolonged (2.5–3.2 BL s–1), or burst (>3.2 BL s–1). We found no differences between sexes or species in the proportion of total time swimming in these categories – sustained (0.76), prolonged (0.18), burst (0.06); numbers are based on species and sexes combined. Reaches with relatively complex hydraulics and fast surface currents had migrants with relatively high levels of swimming speed variation (e.g., high swimming speed CV, reduced proportions of sustained speeds, elevated proportions of burst speeds, and high rates of bursts) and high frequency of river crossings. We speculate that complex current patterns generated by river constrictions created confusing migration cues, which impeded a salmon's ability to locate appropriate pathways.  相似文献   

18.
A histochemical study of the myotomal muscles in the grass pickerel, Esox americanus vermiculatus , and the muskellunge, E. masquinongy , was performed using actomyosin ATPase and NADH diaphorase activities. Three fibre types, i.e., red, white and pink were distinguished on the basis of their enzyme activities. White muscle fibres comprised the bulk of the myotomal musculature. The relative proportion of red muscle fibres was greater in the caudal region than in more anterior regions of the body. Pink fibres formed only a few layers between red and white. These findings are discussed in relation to the possible functional significance of the muscle fibre types in swimming and feeding behaviour in these species.  相似文献   

19.
Summary We quantified midline kinematics with synchronized electromyograms (emgs) from the red and white muscles on both sides of bluegill sunfish (Lepomis macrochirus) during escape behaviors which were elicited from fish both at a standstill and during steady speed swimming. Analyses of variance determined whether or not kinematic and emg variables differed significantly between muscle fiber types, among longitudinal positions, and between swimming versus standstill trials.At a given longitudinal location, both the red and white muscle were usually activated synchronously during both stages of the escape behavior. Stage 1 emg onsets were synchronous; however, the mean durations of stage 1 emgs showed a significant increase posteriorly from about 11 to 15 ms. Stage 2 emgs had significant posterior propagation, but the duration of the stage 2 emgs was constant (17 ms). Posterior emgs from both stages occurred during lengthening of the contractile tissue (as indicated by lateral bending). Steady swimming activity was confined to red muscle bursts which were propagated posteriorly and had significant posterior decrease in duration from about 50% to 37% of a cycle. Fish performed escape responses during all phases of the steady swimming motor pattern. All kinematic events were propagated posteriorly. Furthermore, no distinct kinematic event corresponded to the time intervals of the stage 1 and 2 emgs. The rate of propagation of kinematic events was always slower than that of the muscle activity. The phase relationship between lateral displacement and lateral bending also changed along the length of the fish. Escape responses performed during swimming averaged smaller amplitudes of stage 2 posterior lateral displacement; however, most other kinematic and emg variables did not vary significantly between these two treatments.Abbreviations A angle of lateral flexion (bending) of midline at a single point in time - A1, A2 change in A from T0 to T1 and from T1 to T2 - AMX maximal lateral flexion concave towards the side of the stage 1 emg - AMXR equals AMX minus A at T0 - AT1, AT2 lateral flexion at T1 and T2 - DUR1, DUR2 durations of stage 1 and stage 2 emgs - emg electromyogram - ON2 onset time of stage 2 emg - RELDUR relative duration of steady swimming emg - T0, T1, T2 times of stage 1 emg onset, latest stage 1 emg offset and latest stage 2 emg offset standardized such that T0 = 0 - TAMX, TAMN, TYMX times of maximal lateral flexion, no lateral flexion and maximum lateral displacement - Y1, Y2 amounts of lateral displacement from T0 to T1 and from T1 to T2 - YMXR relative amount of lateral displacement from T0 to TYMX  相似文献   

20.
Kinematic data of high spatial and temporal resolution, acquired from image sequences of adult long-finned squid, Loligo pealei, during steady swimming in a flume, were used to examine the role of fins and the coordination between fin and jet propulsion in squid locomotion. Fin shape and body outlines were digitized and used to calculate fin wave speed, amplitude, frequency, angle of attack, body deformation, speed, and acceleration. L. pealei were observed to have two fin gait patterns with a transition at 1.4-1.8 mantle lengths per second (Lm s-1) marked by alternation between the two patterns. Fin motion in L. pealei exhibited characteristics of both traveling waves and flapping wings. At low speeds, fin motion was more wave-like; at high speeds, fin motion was more flap-like and was marked by regular periods during which the fins were wrapped tightly against the mantle. Fin cycle frequencies were dependent on swimming speed and gait, and obvious coordination between the fins and jet were observed. Fin wave speed, angle of attack, and body acceleration confirmed the role of fins in thrust production and revealed a role of fins at all swimming speeds by a transition from drag-based to lift-based thrust when fin wave speed dropped below swimming speed. Estimates of peak fin thrust were as high as 0.44-0.96 times peak jet thrust in steady swimming over the range of swimming speeds observed. Fin downstrokes generally contributed more to thrust than did upstrokes, especially at high speeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号