首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysophospholipid receptor-dependent and -independent calcium signaling   总被引:4,自引:0,他引:4  
Changes in cellular Ca(2+) concentrations form a ubiquitous signal regulating numerous processes such as fertilization, differentiation, proliferation, contraction, and secretion. The Ca(2+) signal, highly organized in space and time, is generated by the cellular Ca(2+) signaling toolkit. Lysophospholipids, such as sphingosine-1-phosphate (S1P), sphingosylphosphorylcholine (SPC), or lysophosphatidic acid (LPA) use this toolkit in a specific manner to initiate their cellular responses. Acting as agonists at G protein-coupled receptors, S1P, SPC, and LPA increase the intracellular free Ca(2+) concentration ([Ca(2+)](i)) by using the classical, phospholipase C (PLC)-dependent pathway as well as PLC-independent pathways such as sphingosine kinase (SphK)/S1P. The S1P(1) receptor, via protein kinase C, inhibits the [Ca(2+)](i) transients caused by other receptors. Both S1P and SPC also act intracellularly to regulate [Ca(2+)](i). Intracellular S1P mobilizes Ca(2+) in intact cells independently of G protein-coupled S1P receptors, and Ca(2+) signaling by many agonists requires SphK-mediated S1P production. As shown for the FcepsilonRI receptor, PLC and SphK may contribute specific components to the overall [Ca(2+)](i) transient. Of the many open questions, identification of the intracellular S1P target site(s) appears to be of particular importance.  相似文献   

2.
Regulation of CBP-mediated transcription by neuronal calcium signaling   总被引:13,自引:0,他引:13  
Hu SC  Chrivia J  Ghosh A 《Neuron》1999,22(4):799-808
  相似文献   

3.
Cxs (connexins), the protein subunits forming gap junction intercellular communication channels, are transported to the plasma membrane after oligomerizing into hexameric assemblies called connexin hemichannels (CxHcs) or connexons, which dock head-to-head with partner hexameric channels positioned on neighbouring cells. The double membrane channel or gap junction generated directly couples the cytoplasms of interacting cells and underpins the integration and co-ordination of cellular metabolism, signalling and functions, such as secretion or contraction in cell assemblies. In contrast, CxHcs prior to forming gap junctions provide a pathway for the release from cells of ATP, glutamate, NAD+ and prostaglandin E2, which act as paracrine messengers. ATP activates purinergic receptors on neighbouring cells and forms the basis of intercellular Ca2+ signal propagation, complementing that occuring more directly via gap junctions. CxHcs open in response to various types of external changes, including mechanical, shear, ionic and ischaemic stress. In addition, CxHcs are influenced by intracellular signals, such as membrane potential, phosphorylation and redox status, which translate external stresses to CxHc responses. Also, recent studies demonstrate that cytoplasmic Ca2+ changes in the physiological range act to trigger CxHc opening, indicating their involvement under normal non-pathological conditions. CxHcs not only respond to cytoplasmic Ca2+, but also determine cytoplasmic Ca2+, as they are large conductance channels, suggesting a prominent role in cellular Ca2+ homoeostasis and signalling. The functions of gap-junction channels and CxHcs have been difficult to separate, but synthetic peptides that mimic short sequences in the Cx subunit are emerging as promising tools to determine the role of CxHcs in physiology and pathology.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
Prostanoids represent a group of lipid mediators that are produced from arachidonic acid via the cyclooxygenase pathway. Once formed, the prostanoids are released from the cells and act on their cognate receptors on cell surfaces to exert their biological actions. Of these, prostaglandin E(2) (PGE(2)) is the most common prostanoid, being produced by a wide variety of cells and tissues and has a broad range of bioactivity. Recent advance in this field has led to identification and characterization of a number of enzymes that play roles in the biosynthesis of PGE(2), namely phospholipase A(2), cyclooxygenase and terminal PGE synthase. Each of these three reactions can be rate-limiting and involves multiple enzymes/isozymes that can act in different phases of cell activation and exhibit distinct functional coupling. In this review, we will overview a recent understanding of the molecular biology, regulatory mechanisms, and physiological functions of these enzymes.  相似文献   

12.
13.
14.
15.
Guo D  Tan YC  Wang D  Madhusoodanan KS  Zheng Y  Maack T  Zhang JJ  Huang XY 《Cell》2007,128(2):341-355
The small GTPase Rac and the second messenger cGMP (guanosine 3',5'-cyclic monophosphate) are critical regulators of diverse cell functions. When activated by extracellular signals via membrane signaling receptors, Rac executes its functions through engaging downstream effectors such as p21-activated kinase (PAK), a serine/threonine protein kinase. However, the molecular mechanism by which membrane signaling receptors regulate cGMP levels is not known. Here we have uncovered a signaling pathway linking Rac to the increase of cellular cGMP. We show that Rac uses PAK to directly activate transmembrane guanylyl cyclases (GCs), leading to increased cellular cGMP levels. This Rac/PAK/GC/cGMP pathway is involved in platelet-derived growth factor-induced fibroblast cell migration and lamellipodium formation. Our findings connect two important regulators of cellular physiological functions and provide a general mechanism for diverse receptors to modulate physiological responses through elevating cellular cGMP levels.  相似文献   

16.
Metabolism of arachidonic acid by the cyclo-oxygenase (COX) pathway generates a family of prostanoid mediators. Nonsteroidal anti-inflammatory drugs (NSAIDs) act by inhibiting COX, thereby reducing prostanoid synthesis. The efficacy of these agents in reducing inflammation suggests a dominant proinflammatory role for the COX pathway. However, the actions of COX metabolites are complex, and certain prostanoids, such as PGE(2), in some circumstances actually inhibit immune and inflammatory responses. In these studies, we examine the hypothesis that anti-inflammatory actions of NSAIDs may be due, in part, to inhibition of thromboxane A(2) synthesis. To study the immunoregulatory actions of thromboxane A(2), we used mice with a targeted disruption of the gene encoding the thromboxane-prostanoid (TP) receptor. Both mitogen-induced responses and cellular responses to alloantigen were substantially reduced in TP(-/-) spleen cells. Similar attenuation was observed with pharmacological inhibition of TP signaling in wild-type splenocytes, suggesting that reduced responsiveness was not due to subtle developmental abnormalities in the TP-deficient mice. The absence of TP receptors reduced immune-mediated tissue injury following cardiac transplant rejection, an in vivo model of intense inflammation. Taken together, these findings show that thromboxane augments cellular immune responses and inflammatory tissue injury. Specific inhibition of the TP receptor may provide a more precise approach to limit inflammation without some of the untoward effects associated with NSAIDs.  相似文献   

17.
18.
19.
Cyclooxygenase-dependent signalling: molecular events and consequences   总被引:4,自引:0,他引:4  
Non-steroidal anti-inflammatory drugs (NSAIDs) currently attract large interest. Next to pain relief, NSAIDs have important anti-thrombotic and anti-oncogenic effects. NSAIDs exert their action by inhibition of cyclooxygenase, the enzyme responsible for the production of prostanoids. Prostanoid signal transduction is still poorly understood, but it has become clear that these inflammatory lipids influence cellular physiology at three different levels: (1) activation of a 7 x transmembrane receptor coupled to heterotrimeric G proteins, (2) the inhibition of inflammation by activating corticosteroid-like receptors, (3) participation in receptor protein tyrosine kinase signal transduction. In this review prostanoid signalling at these three different levels will be reviewed and the relevance in (patho)physiological processes will be evaluated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号