首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical injury mechanisms: electrical breakdown of cell membranes   总被引:7,自引:0,他引:7  
Electric fields are capable of damaging cells through both thermal and nonthermal mechanisms. While joule heating is generally recognized to mediate tissue injury in electrical trauma, the possible role of electrical breakdown of cell membranes has not been thoroughly considered. Evidence is presented suggestive that in many instances of electrical trauma the local electrical field is of sufficient magnitude to cause electrical breakdown of cell membranes and cell lysis. In theory, large cells such as muscle and nerve cells are more vulnerable to electrical breakdown. To illustrate the significance of cell size and orientation, a geometrically simple model of an elongated cell is analyzed.  相似文献   

2.
Levengood, W. C. 1985, Ion transport in the testa of germinatingseeds.—J. exp. Bot. 36: 1053–1063. The current flow produced when an electrical potential is appliedto a partially hydrated seed is drastically altered by the applicationof a thermal pulse. Specific responses to thermally inducedchanges in electrical activity are related to the cell wallstructure of the seed coat and its state of hydration. It issuggested that expansion and contraction of the micropores inthe cell wall matrix provide a model based on a diffusion anddehydration during a thermal pulse and an ion-gating effectimmediately following the pulse. Mechanical flexing producedoscillatory behaviour in the electrical current flow throughseed coat tissues in a manner predicted by the thermal responses. Key words: Ion transport, testa, germinating seeds  相似文献   

3.
Biological polar molecules and polymer structures with energy supply (such as microtubules in the cytoskeleton) can get excited and generate an endogenous electromagnetic field with strong electrical component in their vicinity. The endogenous electrical fields through action on charges, on dipoles and multipoles, and through polarization (causing dielectrophoretic effect) exert forces and can drive charges and particles in the cell. The transport of mass particles and electrons is analyzed as a Wiener-Lévy process with inclusion of deterministic force (validity of the Bloch theorem is assumed for transport of electrons in molecular chains too). We compare transport driven by deterministic forces (together with an inseparable thermal component) with that driven thermally and evaluate the probability to reach the target. Deterministic forces can transport particles and electrons with higher probability than forces of thermal origin only. The effect of deterministic forces on directed transport is dominant.  相似文献   

4.
Background, Aim and Scope The objective of this life cycle assessment (LCA) study is to develop LCA models for energy systems in order to assess the potential environmental impacts that might result from meeting energy demands in buildings. The scope of the study includes LCA models of the average electricity generation mix in the USA, a natural gas combined cycle (NGCC) power plant, a solid oxide fuel cell (SOFC) cogeneration system; a microturbine (MT) cogeneration system; an internal combustion engine (ICE) cogeneration system; and a gas boiler. Methods LCA is used to model energy systems and obtain the life cycle environmental indicators that might result when these systems are used to generate a unit energy output. The intended use of the LCA analysis is to investigate the operational characteristics of these systems while considering their potential environmental impacts to improve building design using a mixed integer linear programming (MILP) optimization model. Results The environmental impact categories chosen to assess the performance of the energy systems are global warming potential (GWP), acidification potential (AP), tropospheric ozone precursor potential (TOPP), and primary energy consumption (PE). These factors are obtained for the average electricity generation mix, the NGCC, the gas boiler, as well as for the cogeneration systems at different part load operation. The contribution of the major emissions to the emission factors is discussed. Discussion The analysis of the life cycle impact categories indicates that the electrical to thermal energy production ratio has a direct influence on the value of the life cycle PE consumption factors. Energy systems with high electrical to thermal ratios (such as the SOFC cogeneration systems and the NGCC power plant) have low PE consumption factors, whereas those with low electrical to thermal ratios (such as the MT cogeneration system) have high PE consumption factors. In the case of GWP, the values of the life cycle GWP obtained from the energy systems do not only depend on the efficiencies of the systems but also on the origins of emissions contributing to GWP. When evaluating the life cycle AP and TOPP, the types of fuel as well as the combustion characteristics of the energy systems are the main factors that influence the values of AP and TOPP. Conclusions An LCA study is performed to eraluate the life cycle emission factors of energy systems that can be used to meet the energy demand of buildings. Cogeneration systems produce utilizable thermal energy when used to meet a certain electrical demand which can make them an attractive alternative to conventional systems. The life cycle GWP, AP, TOPP and PE consumption factors are obtained for utility systems as well as cogeneration systems at different part load operation levels for the production of one kWh of energy output. Recommendations and Perspectives Although the emission factors vary for the different energy systems, they are not the only factors that influence the selection of the optimal system for building operations. The total efficiencies of the system play a significant part in the selection of the desirable technology. Other factors, such as the demand characteristics of a particular building, influence the selection of energy systems. The emission factors obtained from this LCA study are used as coefficients of decision variables in the formulation of an MILP to optimize the selection of energy systems based on environmental criteria by taking into consideration the system efficiencies, emission characteristics, part load operation, and building energy demands. Therefore, the emission factors should not be regarded as the only criteria for choosing the technology that could result in lower environmental impacts, but rather one of several factors that determine the selection of the optimum energy system. ESS-Submission Editor: Arpad Horvath (horvath@ce.berkeley.edu)  相似文献   

5.
The effect of the temperature of the corona electrode on the electrical characteristics of a corona discharge was studied experimentally. A modified Townsend formula for the current-voltage characteristic of a one-dimensional corona is proposed. Gasdynamic and thermal characteristics of a positive corona discharge in a coaxial electrode system are calculated. The calculated results are compared with the experimental data.  相似文献   

6.
Intracellular effect of ultrashort electrical pulses   总被引:20,自引:0,他引:20  
A simple electrical model for biological cells predicts an increasing probability for electric field interactions with cell substructures of prokaryotic and eukaryotic cells when the electric pulse duration is reduced into the sub-microsecond range. The validity of this hypothesis was verified experimentally by applying electrical pulses with electric field intensities of up to 5.3 MV/m to human eosinophils in vitro. When 3-5 pulses of 60 ns duration were applied to human eosinophils, intracellular granules were modified without permanent disruption of the plasma membrane. In spite of the extreme electrical power levels applied to the cells thermal effects could be neglected because of the ultrashort pulse duration. The intracellular effect extends conventional electroporation to cellular substructures and opens the potential for new applications in apoptosis induction, gene delivery to the nucleus, or altered cell functions, depending on the electrical pulse conditions.  相似文献   

7.
Tumor ablation with irreversible electroporation   总被引:1,自引:0,他引:1  
We report the first successful use of irreversible electroporation for the minimally invasive treatment of aggressive cutaneous tumors implanted in mice. Irreversible electroporation is a newly developed non-thermal tissue ablation technique in which certain short duration electrical fields are used to permanently permeabilize the cell membrane, presumably through the formation of nanoscale defects in the cell membrane. Mathematical models of the electrical and thermal fields that develop during the application of the pulses were used to design an efficient treatment protocol with minimal heating of the tissue. Tumor regression was confirmed by histological studies which also revealed that it occurred as a direct result of irreversible cell membrane permeabilization. Parametric studies show that the successful outcome of the procedure is related to the applied electric field strength, the total pulse duration as well as the temporal mode of delivery of the pulses. Our best results were obtained using plate electrodes to deliver across the tumor 80 pulses of 100 micros at 0.3 Hz with an electrical field magnitude of 2500 V/cm. These conditions induced complete regression in 12 out of 13 treated tumors, (92%), in the absence of tissue heating. Irreversible electroporation is thus a new effective modality for non-thermal tumor ablation.  相似文献   

8.
Conclusion Excitability appears to be an important property of adenohypophyseal cells. The example ofthe lactotroph cell illustrates how the modification of membrane electrical properties can allowthe cell to adapt its functional characteristics to different physiological demands, which mayeven coexist in a contradictory manner in one animal. The amalgam of endocrine cell andnerve cell characteristics in one membrane makes the adenohypophyseal cell an ideal model forstudies in pharmacology and cellular toxicology.  相似文献   

9.
Linear frequency domain analysis of subthreshold current flow and cell to cell action potential timing studies have been used to examine the dynamic electrical behaviour of the electrotonic junction between Retzius cells in the leech. Both types of electrical transmission may be completely explained if the junction is modelled by a single resistive element. The possible role of axonal cable properties in the apparent junctional characteristics were considered, but the form of the predicted frequency response functions for such cables make it unlikely that they are involved in the observed electrical behaviour.  相似文献   

10.
The membrane potential Every living cell is surrounded by a cell membrane separating the cell's contents from the environment. It enables the generation of an electrical potential difference, the membrane potential or membrane voltage. Simple experiments using model membranes (ion exchanger membranes) help to understand the characteristics and the generation of the membrane potential, as well as analysis of the data by the theoretical equations derived by Nernst, Goldman, Hodgkin and Huxley.  相似文献   

11.
Summary Single cells ofChara braunii andNitella flexilis were placed in a microstrip exposure apparatus and subjected to isolated bursts of radiofrequency irradiation. Their electrical responses were observed both extra- and intracellularly and found to be in accordance with theoretical predictions. In particular, the cell membrane displays rectifier-like behavior up to a cutoff near 10 MHz; this cutoff implies for the principal current carriers a transit time through the membrane of roughly 50 nsec and a mobility within the membrane approximately onefifth that of potassium in free solution. An electrical response of purely thermal origin was also detected; it was separated from the athermal rectifier response on the basis of rise time and frequency dependence. This is believed to be the first instance in which (i) a biological effect of radio-frequency radiation has had its thermal and athermal components clearly separated and (ii) a primary effect of ion transit time through the membrane has been directly detected.  相似文献   

12.
The objective of the study was to determine if chronic electrical or thermal stimulation of sensory neurons on the surface of the teat is able to activate pathways that suppress the weaning-induced increase in luteinizing hormone (LH) secretion in beef cows. Treatment groups (n = 5 per group) consisted of: 1) control suckled (CS); 2) weaned plus electrical stimulation of the teat (ESTT); 3) weaned plus electrical stimulation of the tail (ESTL); 4) weaned plus thermal stimulation of the teat (TTT); 5) weaned plus thermal stimulation of the tail (TTL) and 6) weaned (WN). Cows were ovariectomized on Day 5 post partum (PP) and were treated with estradiol-17beta to maintain a constant tonic baseline. Beginning on Days 17 to 21 post partum, cows were suckled by their own calf (control), weaned or weaned and electrically or thermally stimulated for 10 minutes every 6 hours for 4 days. Chronic transcutaneous electrical and thermal stimulation of the teat or tail failed to impede the unambiguous rise (P < 0.001) in LH pulse frequency and amplitude following weaning. Positive and negative feedback of estradiol on LH secretion was not affected by treatments. Relatively consistent episodes of oxytocin and prolactin release were observed following control-suckling, but responses to electrical and thermal stimulation were inconsistent. Chronic electrical or thermal stimulation of teat-specific or nonspecific loci did not attenuate heightened secretion of LH after weaning. The results are further evidence against a role for mammary somatosensory neurons in the suckling-mediated inhibition of LH secretion.  相似文献   

13.
Carbon dots (CDs), as an attractive zero-dimensional carbon nanomaterial with unique photoluminescent merits, have recently exhibited significant application potential in gas sensing as a result of their excellent optical/electronic characteristics, high chemical/thermal stability, and tunable surface states. CDs exhibit strong light absorption in the ultraviolet range and tunable photoluminescence characteristics in the visible range, which makes CDs an effective tool for optical sensing applications. Optical gas sensor based on CDs have been investigated, which generally responds to the target gas by corresponding changes in optical absorption or fluorescence. Moreover, electrical gas sensor and quartz crystal microbalance sensor whose sensing layer involves CDs have also been designed. Electrical gas sensor exhibits an increase or a decrease in electrical current, capacitance, or conductance once exposed to the target gas. Quartz crystal microbalance sensor responds to the target gas with a frequency shift. CDs greatly promote the absorption of the target gas and improve the sensitivity of both sensors. In this review, we aim to summarize different types of gas sensors involving CDs, and sensing performances of these sensors for monitoring diverse gases or vapors, as well as the mechanisms of CDs in different types of sensors. Moreover, this review provides the prospect of the potential development of CDs based gas sensors.  相似文献   

14.
Abstract

Electrical properties of the cells play a key role in biological processes. Intermediate frequencies of electrical fields influence the cells proliferation without heat generation and electrical stimulation. Silver nanoparticle (SNP) as a metallic agent can change the electrical characteristics of the cells. We study the effect of low voltages at an intermediate frequency (300 kHz) on a human breast adenocarcinoma cell line (MCF7) in the presence of SNPs. At first, cell toxicity of SNPs was determined at different concentrations. Then three different voltages were applied to the cells for 15?min, both in the presence and absence of SNPs. The treatments efficiency was evaluated by MTT assay. The results showed that the intermediate frequency-low voltages with SNPs not only provide an additive efficacy on cytotoxicity, but also a synergism was observed between these factors. By increasing the voltage from 3 to 9?V, a rising synergistic rate was observed. It seems that the synergistic effect between SNPs and the 300?kHz low voltages can inhibit cell proliferation and/or increases cell death of MCF-7, and hence increases treatment efficiency of SNPs, effectively.  相似文献   

15.
Electrical transmission signals have been used for decades to characterize the internal structure of composite materials. We theoretically analyze the transmission of an electrical signal through a composite material which consists of two phases with different chemical compositions. We assume that the temperature of the biphasic system increases as a result of Joule heating and its electrical resistivity varies linearly with temperature; this last consideration leads to simultaneously study the electrical and thermal effects. We propose a nonlinear conjugate thermo-electric model, which is solved numerically to obtain the current density and temperature profiles for each phase. We study the effect of frequency, resistivities and thermal conductivities on the current density and temperature. We validate the prediction of the model with comparisons with experimental data obtained from rock characterization tests.  相似文献   

16.
Electric fields and surface charges induced by ELF magnetic fields   总被引:1,自引:0,他引:1  
C Polk 《Bioelectromagnetics》1990,11(2):189-201
A method is described for evaluating electric fields induced by ELF magnetic fields into electrically inhomogeneous, low-conductivity (less than 5 S/m) structures. It is applied to cylinders and spheres, and numerical results are given for electrical properties that are representative of some tissues, or of cells embedded either in saline solution or a tissue matrix. Surface currents on spherical cell boundaries are estimated and compared with thermal noise due to ion motion.  相似文献   

17.
The deposition of thermal copolyamino acids on planar lipid membranes causes oscillations and action potentials upon electrical stimulation. Results are reported for compositionally simple thermal copoly(asp,glu) and for a more heterotonic polyamino acid. The data conform to the interference that electrical activity of cellular membranes is due to the polypeptide components, not to the lipid components. Because of the ease and controllability of producing polypeptides by thermal copolymerization of amino acids, new possibilities in investigation of structure-excitability relationships are provided.  相似文献   

18.
Microsecond and nanosecond electric pulses in cancer treatments   总被引:1,自引:0,他引:1  
New local treatments based on electromagnetic fields have been developed as non‐surgical and minimally invasive treatments of tumors. In particular, short electric pulses can induce important non‐thermal changes in cell physiology, especially the permeabilization of the cell membrane. The aim of this review is to summarize the present data on the electroporation‐based techniques: electrochemotherapy (ECT), nanosecond pulsed electric fields (nsPEFs), and irreversible electroporation (IRE). ECT is a safe, easy, and efficient technique for the treatment of solid tumors that uses cell‐permeabilizing electrical pulses to enhance the activity of a non‐permeant (bleomycin) or low permeant (cisplatin) anticancer drug with a very high intrinsic cytotoxicity. The most interesting feature of ECT is its unique ability to selectively kill tumor cells without harming normal surrounding tissue. ECT is already used widely in the clinics in Europe. nsPEFs could represent a drug free, purely electrical cancer therapy. They allow the inhibition of tumor growth, and interestingly, nsPEF can target intracellular organelles. However, many questions remain on the mechanism of action of these pulses. Finally, IRE is a new ablation procedure using pulses that provoke the permanent permeabilization of the cells resulting in their death. This technique does not result in any thermal effect, which is its main advantage in current physical ablation technologies. For both the nsPEF and the IRE, the preservation of the normal tissue, which is characteristic of ECT, has not yet been shown and their safety and efficacy still have to be investigated thoroughly in vivo and in the clinics. Bioelectromagnetics 33:106–123, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
The thermal electrical potential generated in isochemical conditions by a temperature gradient at the two sides of lipid bilayer leaflets is measured. The experimental results agree rather well with the theoretical predictions. The cephaline (from sheep brain) bilayer behaves like a film with zero charge while the phosphatidylcholine (from egg yolk) film performs like a charged membrane. The results presented suggest that the measurement of electrical thermal potential is an interesting method to investigate the electrical behaviour of bilayer membranes.  相似文献   

20.
Suspensions of yeast cell (zygo Saccharomyces bailii) in a phosphate buffer solution were subjected to conventional (hot water) and ohmic (electric current) heating under identical temperature histories. Experiments were also conducted with cells of Escherichia coli to compare the lethal effect of combination of sublethal electrical preteatment and conventional heating with conventional heating. The kinetic parameters (D,Z,K and E(a)) were determined for both organisms during different treatments. There was no significant difference in the death rate of yeast cells during conventional and ohmic heating at the voltage range used in this study. Results of electrical pretreatment and conventional heating on E. coli indicated differences under certain conditions when compared with pure conventional heating. Thus it is concluded that microbial death during ohmic heating was due primarily to thermal effects with no significant effect of electric current per se. Sublethal electrical pretreatment appears to offer potential for increased bacterial inactivation in certain cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号