首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Shen X  Wang H  Wang M  Liu B 《Génome》2011,54(11):911-922
Euphausiid krill are dominant organisms in the zooplankton population and play a central role in marine ecosystems. Euphausia pacifica (Malacostraca: Euphausiacea) is one of the most important and dominant crustaceans in the North Pacific Ocean. In this paper, we described the gene content, organization, and codon usage of the E. pacifica mitochondrial genome. The mitochondrial genome of E. pacifica is 16 898 bp in length and contains a standard set of 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. Translocation of three transfer RNAs (trnL(1), trnL(2), and trnW) was found in the E. pacifica mitochondrial genome when comparing with the pancrustacean ground pattern. The rate of K(a)/K(s) in 13 protein-coding genes among three krill is much less than 1, which indicates a strong purifying selection within this group. The largest noncoding region in the E. pacifica mitochondrial genome contains one section with tandem repeats (4.7 x 154 bp), which are the largest tandem repeats found in malacostracan mitochondrial genomes so far. All analyses based on nucleotide and amino acid data strongly support the monophyly of Stomatopoda, Penaeidae, Caridea, Brachyura, and Euphausiacea. The Bayesian analysis of nucleotide and amino acid datasets strongly supports the close relationship between Euphausiacea and Decapoda, which confirms traditional findings. The maximum likelihood analysis based on amino acid data strongly supports the close relationship between Euphausiacea and Penaeidae, which destroys the monophyly of Decapoda.  相似文献   

2.
Penaeoidea is a diverse group of economically important marine shrimps. Attention to the evolutionary history of the penaeoids has been raised since studies using mitochondrial DNA markers and sperm ultrastructure contradict classification of the penaeoid families based on morphology and hence challenge the long standing taxonomy of this superfamily. In this study, DNA sequences of two nuclear protein-coding genes, phosphoenolpyruvate carboxykinase and sodium–potassium ATPase α-subunit, were determined from 37 penaeoid genera to reconstruct the evolutionary relationships and to estimate divergence ages of the penaeoid shrimps. Phylogenetic analyses using maximum likelihood and Bayesian approaches strongly support the monophyly of Solenoceridae, Aristeidae and Benthesicymidae, but find Sicyoniidae nested within Penaeidae, making this family paraphyletic. Penaeoidea comprises two lineages: the former three families in one while the latter two in another. The diversification of these lineages may be related to bathymetry. The penaeid-like lineage diversified in the Triassic, earlier than the aristeid-like lineage with an origin in the Jurassic. Taxonomic revisions within Penaeoidea are also proposed for further investigation. Due to the paraphyly of Penaeidae and the high genetic divergence among the three penaeid tribes of Burkenroad [Burkenroad, M.D., 1983. Natural classification of Dendrobranchiata, with a key to recent genera. In: Schram, F.R. (Ed.), Crustacean Issues I. Crustacean Phylogeny. A.A. Balkema, Rotterdam, pp. 279–290], these tribes should be treated as having the same taxonomic rank as Sicyoniidae, while the family ranking of Benthesicymidae has to be re-considered owing to the low genetic divergence between the benthesicymids and the aristeids.  相似文献   

3.
Given the commercial and ecological importance of the Asian paddle crab, Charybdis japonica, there is a clearly need for genetic and molecular research on this species. Here, we present the complete mitochondrial genome sequence of C. japonica, determined by the long-polymerase chain reaction and primer walking sequencing method. The entire genome is 15,738 bp in length, encoding a standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes, plus the putative control region, which is typical for metazoans. The total A+T content of the genome is 69.2%, lower than the other brachyuran crabs except for Callinectes sapidus. The gene order is identical to the published marine brachyurans and differs from the ancestral pancrustacean order by only the position of the tRNA His gene. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes strongly support the monophyly of Dendrobranchiata and Pleocyemata, which is consistent with the previous taxonomic classification. However, the systematic status of Charybdis within subfamily Thalamitinae of family Portunidae is not supported. C. japonica, as the first species of Charybdis with complete mitochondrial genome available, will provide important information on both genomics and molecular ecology of the group.  相似文献   

4.
Ma, K. Y., Chan, T. ‐Y & Chu, K. H. (2011). Refuting the six‐genus classification of Penaeus s.l. (Dendrobranchiata, Penaeidae): a combined analysis of mitochondrial and nuclear genes. —Zoologica Scripta, 40, 498–508. The taxonomic revision in 1997 of the shrimps formerly classified in Penaeus s.l. has been one of the most controversial issues on systematics of the decapods in recent years. Since Pérez Farfante & Kensley (Penaeoid and Sergestoid Shrimps and Prawns of the World, 1997) split this long‐accepted taxon into six genera, much debate has been devoted to their proposed new classification scheme; this has taken place because there are serious doubts whether the said scheme could reflect the evolutionary relationships among the 29 Penaeus s.l. species. Although these shrimps can be easily separated into several groups morphologically, whether these subdivisions are truly monophyletic and warrant a generic rank continues to be hotly debated among taxonomists. This study examined a total of 2425 bp sequences from three nuclear protein genes (enolase, phosphoenolpyruvate carboxykinase and sodium–potassium ATPase α‐subunit), and the mitochondrial 16S and 12S rRNA gene of 18 Penaeus s.l. shrimps and 13 other species in the family Penaeidae. Our phylogenetic analyses strongly support the monophyly of Penaeus s.l. and, concurring with previous studies that used the mitochondrial genes alone, the paraphyly of both Penaeus s.s. (sensu Pérez Farfante & Kensley, Penaeoid and Sergestoid Shrimps and Prawns of the World, 1997) and Melicertus, rendering them non‐natural groupings. Our study reveals two lineages: Penaeus s.s. + Fenneropenaeus + Litopenaeus + Farfantepenaeus and Melicertus + Marsupenaeus, which exhibit genetic divergences comparable with those among other penaeid genera. However, all the morphological characters, which are emphasized by Pérez Farfante and Kensley and used to separate Penaeus s.l., do not correlate with the grouping revealed by the present, perhaps decisive, phylogenetic result. Such disparity may arise from selection on the morphology of genitalia and convergent evolution. Our molecular data clearly refute the six‐genus classification, and we advocate the restoration of the old Penaeus genus (=Penaeus s.l.) definition which is the only classification scheme with both the morphological and the molecular data being in agreement.  相似文献   

5.
田天  袁缓  陈斌 《昆虫学报》1950,63(8):1016-1027
【目的】明确肉食亚目(Adephaga)水生类群线粒体基因组的基本特征,并基于线粒体基因组序列分析肉食亚目水生类群的系统发育关系。【方法】基于Illumina HiSeq X Ten测序技术测定了圆鞘隐盾豉甲Dineutus mellyi和齿缘龙虱Eretes sticticus的线粒体全基因组序列,对其进行了基因注释,并对其tRNA基因二级结构进行了预测分析。加上已公布的鞘翅目(Coleoptera)肉食亚目水生类群17个种的线粒体基因组序列,对该类群共19个种线粒体的蛋白质编码基因(protein-coding genes, PCGs)开展了比较基因组学分析,包括AT含量、密码子偏好性、选择压力等。基于13个PCGs的氨基酸序列和核苷酸序列,利用最大似然法(ML)和贝叶斯法(BI)分别构建鞘翅目肉食亚目水生类群的系统发育关系,并通过FcLM分析进一步评估伪龙虱科(Noteridae)和瀑甲科(Meruidae)的系统发育位置。【结果】圆鞘隐盾豉甲和齿缘龙虱的线粒体基因组全长分别为16 123 bp(GenBank登录号: MN781126)和16 196 bp(GenBank登录号: MN781132),都包含13个PCGs、22个tRNA基因、2个rRNA基因和1个D-loop区(控制区)。19个肉食亚目水生类群线粒体基因组PCGs的碱基组成都呈现A+T偏好性,在密码子使用上也都偏向于使用富含A+T的密码子;在进化过程中13个PCGs的进化模式相同,都受到纯化选择。基于线粒体基因组13个PCGs的氨基酸序列的肉食亚目水生类群的系统发育关系为(豉甲科Gyrinidae+(沼梭甲科Haliplidae+((壁甲科Aspidytidae+(两栖甲科Amphizoidae+龙虱科Dytiscidae))+(水甲科Hygrobiidae+(瀑甲科Meruidae+伪龙虱科Noteridae)))))。【结论】研究结果表明,豉甲科是肉食亚目水生类群的基部类群,接下来是沼梭甲科和龙虱总科;伪龙虱科和瀑甲科互为姐妹群,并一起作为龙虱总科内部的一个分支;两栖甲科与龙虱科具有更近的亲缘关系。  相似文献   

6.
Comparisons of mitochondrial gene sequences and gene arrangements can be informative for reconstructing high-level phylogenetic relationships. We determined the complete sequence of the mitochondrial genome of Siphonodentalium lobatum, (Mollusca, Scaphopoda). With only 13,932 bases, it is the shortest molluscan mitochondrial genome reported so far. The genome contains the usual 13 protein-coding genes, two rRNA and 22 tRNA genes. The ATPase subunit 8 gene is exceptionally short. Several transfer RNAs show truncated TpsiC arms or DHU arms. The gene arrangement of S. lobatum is markedly different from all other known molluscan mitochondrial genomes and shows low similarity even to an unpublished gene order of a dentaliid scaphopod. Phylogenetic analyses of all available complete molluscan mitochondrial genomes based on amino acid sequences of 11 protein-coding genes yield trees with low support for the basal branches. None of the traditionally accepted molluscan taxa and phylogenies are recovered in all analyses, except for the euthyneuran Gastropoda. S. lobatum appears as the sister taxon to two of the three bivalve species. We conclude that the deep molluscan phylogeny is probably beyond the resolution of mitochondrial protein sequences. Moreover, assessing the phylogenetic signal in gene order data requires a much larger taxon sample than is currently available, given the exceptional diversity of this character set in the Mollusca.  相似文献   

7.
The order Archaeognatha was an ancient group of Hexapoda and was considered as the most primitive of living insects. Two extant families (Meinertellidae and Machilidae) consisted of approximately 500 species. This study determined 3 complete mitochondrial genomes and 2 nearly complete mitochondrial genome sequences of the bristletail. The size of the 5 mitochondrial genome sequences of bristletail were relatively modest, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and one control region. The gene orders were identical to that of Drosophila yakuba and most bristletail species suggesting a conserved genome evolution within the Archaeognatha. In order to estimate archaeognathan evolutionary relationships, phylogenetic analyses were conducted using concatenated nucleotide sequences of 13 protein-coding genes, with four different computational algorithms (NJ, MP, ML and BI). Based on the results, the monophyly of the family Machilidae was challenged by both datasets (W12 and G12 datasets). The relationships among archaeognathan subfamilies seemed to be tangled and the subfamily Machilinae was also believed to be a paraphyletic group in our study.  相似文献   

8.
Crustins are antimicrobial peptides initially identified in the hemocytes of the crab Carcinus maenas (11.5-kDa peptide or carcinin) and recently also recognized in penaeid shrimps and other crustacean species. The aim of this study was to identify sequences encoding for crustins from the hemocytes of four Brazilian penaeid species: Farfantepenaeus paulensis, Farfantepenaeus subtilis, Farfantepenaeus brasiliensis and Litopenaeus schmitti. Using primers based on consensus nucleotide alignment of crustins from different crustaceans, cDNA sequences coding for crustins in all indigenous penaeid species were amplified. The obtained four crustin sequences encoded for peptides containing a hydrophobic N-terminal region rich in glycine repeats and a C-terminal part with 12 cysteine residues and a conserved whey acidic protein domain. All obtained crustin sequences showed high amino acidic similarity among each other and with crustins from litopenaeid shrimps (76-98%). This is the first report of crustins in native Brazilian penaeid shrimps.  相似文献   

9.
Anti-lipopolysaccharide factors (ALFs) are antimicrobial peptides found in limulids and crustaceans that have a potent and broad range of antimicrobial activity. We report here the identification and molecular characterisation of new sequences encoding for ALFs in the haemocytes of the freshwater prawn Macrobrachium olfersi and also in two Brazilian penaeid species, Farfantepenaeus paulensis and Litopenaeus schmitti. All obtained sequences encoded for highly cationic peptides containing two conserved cysteine residues flanking a putative LPS-binding domain. They exhibited a significant amino acid similarity with crustacean and limulid ALF sequences, especially with those of penaeid shrimps. This is the first identification of ALF in a freshwater prawn.  相似文献   

10.
We explored the phylogenetic utility and limits of the individual and concatenated mitochondrial genes for reconstructing the higher-level relationships of teleosts, using the complete (or nearly complete) mitochondrial DNA sequences of eight teleosts (including three newly determined sequences), whose relative phylogenetic positions were noncontroversial. Maximum-parsimony analyses of the nucleotide and amino acid sequences of 13 protein-coding genes from the above eight teleosts, plus two outgroups (bichir and shark), indicated that all of the individual protein-coding genes, with the exception of ND5, failed to recover the expected phylogeny, although unambiguously aligned sequences from 22 concatenated transfer RNA (tRNA) genes (stem regions only) recovered the expected phylogeny successfully with moderate statistical support. The phylogenetic performance of the 13 protein-coding genes in recovering the expected phylogeny was roughly classified into five groups, viz. very good (ND5, ND4, COIII, COI), good (COII, cyt b), medium (ND3, ND2), poor (ND1, ATPase 6), and very poor (ND4L, ND6, ATPase 8). Although the universality of this observation was unclear, analysis of successive concatenation of the 13 protein-coding genes in the same ranking order revealed that the combined data sets comprising nucleotide sequences from the several top-ranked protein-coding genes (no 3rd codon positions) plus the 22 concatenated tRNA genes (stem regions only) best recovered the expected phylogeny, with all internal branches being supported by bootstrap values >90%. We conclude that judicious choice of mitochondrial genes and appropriate data weighting, in conjunction with purposeful taxonomic sampling, are prerequisites for resolving higher-level relationships in teleosts under the maximum-parsimony optimality criterion.  相似文献   

11.
Phylogenetic analyses based on mitochondrial DNA have yielded widely differing relationships among members of the arthropod lineage Arachnida, depending on the nucleotide coding schemes and models of evolution used. We enhanced taxonomic coverage within the Arachnida greatly by sequencing seven new arachnid mitochondrial genomes from five orders. We then used all 13 mitochondrial protein-coding genes from these genomes to evaluate patterns of nucleotide and amino acid biases. Our data show that two of the six orders of arachnids (spiders and scorpions) have experienced shifts in both nucleotide and amino acid usage in all their protein-coding genes, and that these biases mislead phylogeny reconstruction. These biases are most striking for the hydrophobic amino acids isoleucine and valine, which appear to have evolved asymmetrical exchanges in response to shifts in nucleotide composition. To improve phylogenetic accuracy based on amino acid differences, we tested two recoding methods: (1) removing all isoleucine and valine sites and (2) recoding amino acids based on their physiochemical properties. We find that these methods yield phylogenetic trees that are consistent in their support of ancient intraordinal divergences within the major arachnid lineages. Further refinement of amino acid recoding methods may help us better delineate interordinal relationships among these diverse organisms.  相似文献   

12.
Partial sequences for the 16S rRNA mitochondrial gene were obtained from 10 penaeid shrimp species: Farfantepenaeus paulensis, F. brasiliensis, F. subtilis, F. duorarum, F. aztecus, Litopenaeus schmitti, L. setiferus, and Xiphopenaeus kroyeri from the western Atlantic and L. vannamei and L. stylirostris from the eastern Pacific. Sequences were also obtained from an undescribed morphotype of pink shrimp (morphotype II) usually identified as F. subtilis. The phylogeny resulting from the 16S partial sequences showed that these species form two well-supported monophyletic clades consistent with the two genera proposed in a recent systematic review of the suborder Dendrobranchiata. This contrasted with conclusions drawn from recent molecular phylogenetic work on penaeid shrimps based on partial sequences of the mitochondrial COI region that failed to support recent revisions of the Dendrobranchiata based on morphological analysis. Consistent differences observed in the sequences for morphotype II, coupled with previous allozyme data, support the conclusion that this is a previously undescribed species of Farfantepenaeus.  相似文献   

13.
The genetics and molecular biology of the commercially important Chinese spiny lobster, Panulirus stimpsoni are little known. Here, we present the complete mitochondrial genome sequence of P. stimpsoni, determined by the long polymerase chain reaction and primer walking sequencing method. The entire genome is 15,677 bp in length, encoding the standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. The overall A + T content of the genome is 65.6%, lower than most malacostracan species. The gene order is consistent with the pancrustacean ground pattern. Several conserved elements were identified from P. stimpsoni control region, viz. one [TA(A)]n-block, two GA-blocks and three hairpin structures. However, the position of [TA(A)]n-block and number of hairpin structure are different from those in the congeneric P. japonicus and other decapods. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes do not support the monophyly of suborder Pleocyemata, which is in contrast to most morphological and molecular results. However, the position of Palinura and Astacidea is unstable, as represented by the basal or sister branches to other Reptantia species. P. stimpsoni, as the second species of Palinura with complete mitochondrial genome available, will provide important information on both genomics and conservation biology of the group.  相似文献   

14.
Ogoh K  Ohmiya Y 《Gene》2004,327(1):131-139
The primary structure of the mitochondrial genome of the bioluminescent crustacean, Vargula hilgendorfii, the sea-firefly (Arthropoda, Crustacea, Ostracoda), has sequenced using the transposon Tn5. The genome (15,923 bp) contains the same 37 genes (two ribosomal RNAs, 22 transfer RNAs, and 13 protein-coding genes) found in other Arthropoda. Interestingly, duplicate control regions (fragments of 778 and 855 bp) and triplicate short repeat sequences (fragments of 49 bp) occur. The AT composition of the protein-coding genes is lower than the published complete mitochondrial genomes within the Arthropoda. For gene arrangement, 13 transfer RNA genes and two protein-coding genes have moved and inserted directly or inversely relative to the typical Arthropoda order.  相似文献   

15.
The taxonomy and phylogeny of Penaeoidea have long been fraught with controversy. Here, we carried out the first mitochondrial phylogenomic analysis on all the penaeoid families and tribes, including nine newly sequenced and 14 published mitogenomes, towards elucidating the phylogeny and evolutionary history of Penaeoidea. All these nine mitogenomes exhibit the pancrustacean ground pattern, except that Benthonectes filipes contains two additional clusters of tRNAAla, tRNAArg and tRNAAsn and an uncommon noncoding region. The resulted phylogenetic tree is generally well resolved with Benthesicymidae sister to Aristeidae, forming a clade with Solenoceridae. Contrary to traditional classification, this clade has a sister relationship with the tribe Penaeini of the family Penaeidae. The family Sicyoniidae is deeply nested within the penaeid tribe Trachypenaeini which forms a sister clade with the remaining penaeid tribe, Parapenaeini. As the family Penaeidae is recovered to be polyphyletic, the three tribes in Penaeidae are all elevated to familial status. On the other hand, the family Sicyoniidae is retained to accommodate Trachypenaeini because they are now synonyms and the former name is more senior. This work is the first molecular analysis concurring with the latest findings in fossil assessments showing that Parapeaneini is the most primitive in Penaeoidae. Our results also illustrate a shallow‐water origin and an onshore–offshore evolutionary shift in penaeoid shrimps.  相似文献   

16.
Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria)   总被引:33,自引:0,他引:33  
Mitochondrial genes have been used extensively in population genetic and phylogeographical analyses, in part due to a high rate of nucleotide substitution in animal mitochondrial DNA (mtDNA). Nucleotide sequences of anthozoan mitochondrial genes, however, are virtually invariant among conspecifics, even at third codon positions of protein-coding sequences. Hence, mtDNA markers are of limited use for population-level studies in these organisms. Mitochondrial gene sequence divergence among anthozoan species is also low relative to that exhibited in other animals, although higher level relationships can be resolved with these markers. Substitution rates in anthozoan nuclear genes are much higher than in mitochondrial genes, whereas nuclear genes in other metazoans usually evolve more slowly than, or similar to, mitochondrial genes. Although several mechanisms accounting for a slow rate of sequence evolution have been proposed, there is not yet a definitive explanation for this observation. Slow evolution and unique characteristics may be common in primitive metazoans, suggesting that patterns of mtDNA evolution in these organisms differ from that in other animal systems.  相似文献   

17.
This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848–15651) and stem-loop 2 (15965–15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera.  相似文献   

18.
In crustaceans, the pigment-dispersing hormone (PDH) is released from the X-organ/sinus gland complex located in the eyestalks, and controls pigment dispersion in the chromatophores. Knowledge concerning the structure and activity of PDH in penaeid shrimps is remains limited, since natural PDH has been purified from only the Kuruma prawn, Marsupenaeus japonicus. In this study, two PDHs (Liv-PDH-A and -B) were purified from the sinus gland extracts of another penaeid species, the whiteleg shrimp, Litopenaeus vannamei, by two steps of reversed-phase HPLC, and their amino acid sequences were determined. They both consist of 18 amino acid residues, with a free N-terminus and an amidated C-terminus, the sequences of Liv-PDH-A and -B being NSELINSLLGIPKVMNDAamide and NSELINSLLGLPKVMNDAamide, respectively. These sequences are identical to those of mature PDHs deduced from cDNAs encoding L. vannamei PDH precursors cloned previously by other workers. Liv-PDH-A and -B showed significant pigment-dispersing activity in melanophores by in vivo bioassay.  相似文献   

19.
This study reports a primer set for amplifying a partial fragment of about 610 bp in the fast mutating mitochondrial control region in shrimps of the genus Penaeus (Decapoda: Penaeidae). The utility of this amplified fragment for studying population differentiation and structuring, compared with more conservative mitochondrial genes (16S rRNA and COI), was explored in P. merguiensis populations over a vast geographical range based on sequence and RFLP analyses. The results indicate that the mitochondrial control region provides more informative sites and reveals more haplotypes, making it most useful for evaluating genetic variations within and between populations of Penaeus species.  相似文献   

20.
Sun M  Shen X  Liu H  Liu X  Wu Z  Liu B 《Marine Genomics》2011,4(3):159-165
Mitochondrial genomes play a significant role in the reconstruction of phylogenetic relationships within metazoans. There are still many controversies concerning the phylogenetic position of the phylum Bryozoa. In this research, we have finished the complete mitochondrial genome of one bryozoan (Tubulipora flabellaris), which is the first representative from the class Stenolaemata. The complete mitochondrial genome of T. flabellaris is 13,763 bp in length and contains 36 genes, which lacks the atp8 gene in contrast to the typical metazoan mitochondrial genomes. Gene arrangement comparisons indicate that the mitochondrial genome of T. flabellaris has unique gene order when compared with other metazoans. The four known bryozoans complete mitochondrial genomes also have very different gene arrangements, indicates that bryozoan mitochondrial genomes have experienced drastic rearrangements. To investigate the phylogenetic relationship of Bryozoa, phylogenetic analyses based on amino acid sequences of 11 protein coding genes (excluding atp6 and atp8) from 26 metazoan complete mitochondrial genomes were made utilizing Maximum Likelihood (ML) and Bayesian methods, respectively. The results indicate the monopoly of Lophotrochozoa and a close relationship between Chaetognatha and Bryozoa. However, more evidences are needed to clarify the relationship between two groups. Lophophorate appeared to be polyphyletic according to our analyses. Meanwhile, neither analysis supports close relationship between Branchiopod and Phoronida. Four bryozoans form a clade and the relationship among them is T. flabellaris + (F. hispida + (B. neritina + W. subtorquata)), which is in coincidence with traditional classification system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号