首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An overview is presented of the formation of organic radical cations in zeolites. Attention is paid firstly to their deliberate production by radiolysis and then to the spontaneous oxidation by activated H-exchanged zeolites of adsorped organic substrates. The nature of the oxidation site arising from thermal pretreatment in oxygen is considered, and possible mechanistic details are outlined for the frequently observed oligomerisations of simple substrates. The broad conclusions are that radical cations are formed from that component of the organic product mixture with the lowest ionisation potential, and that the dominant molecular transformations are driven by proton (Brønsted) catalysis: it appears that there is little evidence that radical cations are involved particularly in heterogeneous catalysis by zeolites, but they may well precede the formation of neutral radicals which are implicated as reaction intermediates. The reorientational dynamics of alkene radical cations in zeolites, as determined by ESR spectroscopy, are also considered.  相似文献   

2.
3.
To understand the key processes of cell-free protein synthesis, the synthesis of adipose-type fatty acid binding protein (A-FABP) by a rapid translation system was examined under various conditions. The synthesis of A-FABP was achieved by using an expression vector of A-FABP containing a T7 promoter. However, synthesis of A-FABP was not observed when an RNA fragment corresponding to the open reading frame of A-FABP was used in the reaction instead of the expression vector. Northern analysis revealed that the RNA that was added to the reaction mixture promptly underwent degradation. On the contrary, when the expression vector of A-FABP was employed, a strong RNA signal was observed over the entire incubation period. Thus, a continuous supply of RNA is needed in order to account for its loss via degradation to achieve the synthesis of reasonable amounts of A-FABP. Furthermore, the effect of continuous exchange of reaction mixture was also evaluated by measurement of the amount of synthesized A-FABP.  相似文献   

4.
5.
We have developed an economical and simple cell-free protein synthesis system that produces milligram quantities of proteins in a milliliter batch reaction. In this system, the S12 extract, which was prepared from glucose-adapted cells, was employed and glucose alone was successfully used for the efficient and stable regeneration of ATP. The ATP level in the reaction mixture remained stable over a remarkably extended reaction period, which enabled prolonged protein synthesis, and the issues associated with proton accumulation and amino acid depletion were simultaneously addressed. Under the reaction conditions established in this study, protein synthesis continued for 6 h and the amount of the accumulated protein reached 1.8 mg/mL.  相似文献   

6.
Factors causing the early cessation of protein synthesis have been studied in a cell-free system from Escherichia coli. We discovered that phosphoenol pyruvate (PEP), the secondary energy source for ATP regeneration, and several amino acids are rapidly degraded during the cell-free protein synthesis reaction. The degradation of such compounds takes place even in the absence of protein synthesis. This degradation severely reduces the capacity for protein synthesis. The lost potency was completely recovered when the reaction mixture was supplied with additional PEP and amino acids. Of the 20 amino acids, only arginine, cysteine, and tryptophan were required to restore system activity. Through repeated additions of PEP, arginine, cysteine,and tryptophan, the duration of protein synthesis was greatly extended. In this fed-batch reaction, after a 2 h incubation, the level of cell-free synthesized chloramphenicol acetyl transferase (CAT) reached 350 microg/mL, which is 3.5 times the yield of the batch reaction. Addition of fresh magnesium further extended the protein synthesis. As a result, through coordinated additions of PEP, arginine, cysteine, tryptophan, and magnesium, the final concentration of cell-free synthesized CAT increased more than 4-fold compared to a batch reaction. SDS-PAGE analysis of such a fed-batch reaction produced an obvious band of CAT upon Coomassie Blue staining.  相似文献   

7.
A method for the rapid generation of intact proteins in a cell-free protein synthesis system was developed. The productivity of the recombinant proteins from the polymerase-chain-reaction-amplified templates was enhanced remarkably using an optimized translation enhancer sequence. The extra amino acid residues derived from the translation enhancer sequence were effectively removed by utilizing the appropriate detergent and peptide cleavage enzyme in the reaction mixture. These results demonstrate the versatility of cell-free protein synthesis in providing optimized and customized reaction conditions for the efficient production of the desired proteins.  相似文献   

8.
A new approach for the regeneration of adenosine triphosphate (ATP) during cell-free protein synthesis was developed to prolong the synthesis and also to avoid the accumulation of inorganic phosphate. This approach was demonstrated in a batch system derived from Escherichia coli. Contrary to the conventional methods in which exogenous energy sources contain high-energy phosphate bonds, the new system was designed to generate continuously the required high-energy phosphate bonds within the reaction mixture, thereby recycling the phosphate released during protein synthesis. If allowed to accumulate, phosphate inhibits protein synthesis, most likely by reducing the concentration of free magnesium ion. Pediococcus sp. pyruvate oxidase, when introduced in the reaction mixture along with thiamine pyrophosphate (TPP) and flavin adenine dinucleotide (FAD), catalyzed the generation of acetyl phosphate from pyruvate and inorganic phosphate. Acetyl kinase, already present with sufficient activity in Escherichia coli S30 extract, then catalyzed the regeneration of ATP. Oxygen is required for the generation of acetyl phosphate and the H(2)O(2) produced as a byproduct is sufficiently degraded by endogenous catalase activity. Through the continuous supply of chemical energy, and also through the prevention of inorganic phosphate accumulation, the duration of protein synthesis is extended up to 2 h. Protein accumulation levels also increase. The synthesis of human lymphotoxin receives greater benefit than than that of chloramphenicol acetyl transferase, because the former is more sensitive to phosphate inhibition. Finally, through repeated addition of pyruvate and amino acids during the reaction period, protein synthesis continued for 6 h in the new system, resulting in a final yield of 0.7 mg/mL.  相似文献   

9.
The effect of regucalcin, a regulatory protein of Ca2+ signaling, on deoxyribonucleic acid (DNA) synthesis activity in the nuclei isolated from rat renal cortex was investigated. The addition of calcium chloride (10-100 microM) in the reaction mixture containing the nuclei caused a significant decrease in DNA synthesis activity. Nuclear DNA synthesis activity was significantly raised in the presence of EGTA (1 mM), a chelator of Ca2+, indicating that nuclear Ca2+ has an inhibitory effect. Regucalcin (0.1-0.5 microM) added in the reaction mixture in the presence of either EGTA (1 mM) or calcium chloride (50 microM) had a significant inhibitory effect on nuclear DNA synthesis activity. The presence of anti-regucalcin monoclonal antibody (10-50 ng/ml) in the reaction mixture caused a significant increase in DNA synthesis activity. This increase was completely abolished by the addition of regucalcin (0.5 microM). The effect of anti-regucalcin monoclonal antibody in increasing DNA synthesis was enhanced in the presence of EGTA. Additionally, an inhibitory effect of calcium chloride (10 or 50 microM) was enhanced in the presence of anti-regucalcin monoclonal antibody (25 ng/ml). The present study demonstrates that endogenous regucalcin has a suppressive effect on DNA synthesis in the nuclei of rat renal cortex.  相似文献   

10.
RNA synthesis in fat body nuclei of Sarcophaga peregrina larvae was temporarily activated after injection of β-ecdysone: increased synthesis was detectable 2 hr after injecting the hormone and lasted for at least 2 hr. This increased RNA synthesis was insensitive to α-amanitin and was observed in KCl-free reaction mixture, indicating that β-ecdysone activated RNA polymerase I but not RNA polymerase II. No activation was observed when protein synthesis was inhibited by cycloheximide, suggesting that protein synthesis was essential for the activation of the nuclei.  相似文献   

11.
Ozawa K  Dixon NE  Otting G 《IUBMB life》2005,57(9):615-622
Modern cell-free in vitro protein synthesis systems present powerful tools for the synthesis of isotope-labeled proteins in high yields. The production of selectively 15 N-labeled proteins from 15 N-labeled amino acids is particularly economic and yields are often sufficient to analyze the proteins very quickly by two-dimensional NMR spectra recorded of the crude reaction mixture without concentration or chromatographic purification of the protein. We review methodological aspects of cell-free in vitro protein synthesis based on an Escherichia coli cell extract, in particular with regard to the production of 15 N-labeled proteins for analysis by NMR spectroscopy.  相似文献   

12.
The role of endogenous regucalcin in the regulation of deoxyribonuleic acid (DNA) synthesis in the nuclei of the cloned rat hepatoma cells (H4-II-E) with proliferative cells was investigated. Cells were cultured for 6-96 h in a alpha-minimum essential medium (alpha-MEM) containing fetal bovine serum (FBS; 1 or 10%). Cell number was significantly increased between 24 and 96 h after culture with 10% FBS; cell proliferation was markedly stimulated by culture with 10% FBS as compared with that of 1% FBS. In vitro DNA synthesis activity in the nuclei of cells was significantly elevated 6 h after culture with 10% FBS and its elevation was remarkable at 12 and 24 h after the culture. Nuclear DNA synthesis activity was significantly reduced in the presence of various protein kinase inhibitors (PD98059, staurosprine, or trifluoperazine) in the reaction mixture containing the nuclei of cells cultured for 12 and 24 h with FBS (1 and 10%). The addition of regucalcin (10(-7) and 10(-6)M) in the reaction mixture caused a significant inhibition of nuclear DNA synthesis activity. The presence of anti-regucalcin monoclonal antibody (25-100 ng/ml) in the reaction mixture containing the nuclei of cells cultured for 24 h with 10% FBS resulted in a significant increase in nuclear DNA synthesis activity. This increase was completely blocked by the addition of regucalcin (10(-6) M). The effect of anti-regucalcin antibody (100 ng/ml) in increasing nuclear DNA synthesis activity was significantly inhibited in the presence of various protein kinase inhibitors. DNA synthesis activity was significantly enhanced in the presence of anti-regucalcin antibody (100 ng/ml) in the reaction mixture containing the nuclei of cells cultured for 24 h with 10% FBS in the presence of Bay K 8644 (2.5 x 10(-6) M). Culture with Bay K 8644 did not cause a significant increase in DNA synthesis activity in the absence of anti-regucalcin antibody. The present study demonstrates that endogenous regucalcin plays a suppressive role in the enhancement of nuclear DNA synthesis with proliferative cells.  相似文献   

13.
Taking advantage of the "open" nature of cell-free protein synthesis, this study investigated the direct analysis of protein expression using a surface plasmon resonance sensor. During the on-chip incubation of the reaction mixture for cell-free protein synthesis, the expressed protein molecules were immobilized onto the surface of the chip, giving rise to a sensorgram signal, which enabled on-line monitoring of protein expression. In addition, we found that the expression of the aggregation-prone proteins could be effectively monitored. The ability to monitor these proteins was most likely through the instant isolation of the expressed protein molecules onto the solid surface of the chip.  相似文献   

14.
Lee KY  Lee KH  Park JW  Kim DM 《PloS one》2012,7(3):e34429
The use of magnetic bead-immobilized DNA as movable template for cell-free protein synthesis has been investigated. Magnetic microbeads containing chemically conjugated plasmids were used to direct cell-free protein synthesis, so that protein generation could be readily programmed, reset and reprogrammed. Protein synthesis by using this approach could be ON/OFF-controlled through repeated addition and removal of the microbead-conjugated DNA and employed in sequential expression of different genes in a same reaction mixture. Since the incubation periods of individual template plasmids are freely controllable, relative expression levels of multiple proteins can be tuned to desired levels. We expect that the presented results will find wide application to the flexible design and execution of synthetic pathways in cell-free chassis.  相似文献   

15.
A high-throughput cell-free protein synthesis method has been described. The methodology is based on a bilayer diffusion system that enables the continuous supply of substrates, together with the continuous removal of small byproducts, through a phase between the translation mixture and substrate mixture. With the use of a multititer plate the system was functional for a prolonged time, and as a consequence yielded more than 10 times that of the similar batch-mode reaction. Combining this method with a wheat germ cell-free translation system developed by us, the system could produce a large amount of protein sufficient for carrying out functional analyses. This novel bilayer-based cell-free protein synthesis system with its simplicity, minimum time and low cost may be useful practical methodology in the post-genome era.  相似文献   

16.
The effect of genistein and daidzein on protein synthesis in osteoblastic MC3T3-E1 cells in vitro was investigated to determine a cellular mechanism by which the isoflavones stimulate bone formation. Cells were cultured for 48 h in alpha-minimal essential medium containing either vehicle, genistein (l0(-7) - 10(-5) M) or daidzein (10(-7) - 10(-5) M). The 5,500 g supernatant of cell homogenate was used for assay of protein synthesis with [3H]leucine incorporation in vitro. The culture with genistein or daidzein caused a significant elevation of protein synthesis in the cell homogenate. The effect of genistein ( 10(-5) M) or daidzein ( 10(-5) M) in elevating protein synthesis was significantly prevented, when cells were cultured for 48 h in a medium containing either actinomycin D (10(-7) M) or cycloheximide (10(-6) M) in the absence or presence of isoflavones. Moreover, when genistein (10(-7) 10(-5) M) or daidzein (10(-6) and 10(-5) M) was added to the reaction mixture containing the cell homogenate obtained from osteoblastic cells cultured without isoflavone, protein synthesis was significantly raised. This increase was markedly blocked by the addition of cycloheximide (10(-7) M). In addition, [3H]leucyl-tRNA synthetase activity in the cytosol of osteoblastic cells was significantly increased by the addition of genistein (10(-6) and 10(-5) M) or daidzein (10(-5) M) into the enzyme reaction mixture. The present study demonstrates that genistein or daidzein can stimulate protein synthesis in osteoblastic MC3T3-E1 cells. The isoflavones may have a stimulatory effect on osteoblastic bone formation due to increasing protein synthesis.  相似文献   

17.
RNA synthesis in fat body nuclei of Sarcophaga peregrina larvae was temporarily activated after injection of β-ecdysone: increased synthesis was detectable 2 hr after injecting the hormone and lasted for at least 2 hr. This increased RNA synthesis was insensitive to α-amanitin and was observed in KCl-free reaction mixture, indicating that β-ecdysone activated RNA polymerase I but not RNA polymerase II. No activation was observed when protein synthesis was inhibited by cycloheximide, suggesting that protein synthesis was essential for the activation of the nuclei.  相似文献   

18.
19.
We present a method to rapidly determine the optimal initial sequences for recombinant protein production. This method relies on the competitive translation of two genes in a reaction mixture for cell-free protein synthesis. Genes from a library with randomized +2/+3 codons were individually co-expressed with superfolder green fluorescent protein (sfGFP) in this reaction mixture. As a result of competitive translation, the intensity of sfGFP fluorescence was inversely proportional to the relative translational efficiency of the co-expressed gene. Using this simple method, we identified the +2/+3 codons that markedly enhanced production of recombinant human erythropoietin compared with its wild-type codons. These +2/+3 codons also effectively enhanced protein production in Escherichia coli, indicating that this method is a useful tool to design optimal gene constructs for industrial production of recombinant proteins.  相似文献   

20.
The 220 kDa β-subunit of erythroid cell spectrin is a potent inhibitor of protein synthesis in lysates from rabbit reticulocytes. On the basis of weight of protein added to a lysate reaction mixture, it has about half the inhibitory activity of highly purified heme-regulated eIF-2 kinase. Inhibition appears to be at the level of peptide initiation but does not involve a kinase that phosphorylates eIF-2 on its -subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号