首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. V. Clark 《Genetics》1994,136(2):547-557
The Drosophila Prat gene encodes phosphoribosylamidotransferase (PRAT), the enzyme that performs the first committed step of the de novo purine nucleotide biosynthesis pathway. Using information from amino acid sequence alignments of PRAT from other organisms, a polymerase chain reaction-based approach was employed to clone Prat. Amino acid sequence alignment of Drosophila PRAT with PRAT from bacteria, yeast, and vertebrates indicates that it is most identical (at least 60%) to the vertebrate PRATs. It shares putative amino-terminal propeptide and ironbinding domains seen only in Bacillus subtilis and vertebrate PRATs. Prat was localized to the right arm of chromosome 3 at polytene band 84E1-2. Owing to the fact that this region had been well characterized previously, Prat was localized to a 30-kilobase region between two deficiency break-points. By making the prediction that Prat would have a similar ``purine syndrome' phenotype as mutations in the genes ade2 and ade3, which encode enzymes downstream in the pathway, five alleles of Prat were isolated. Three of the alleles were identified as missense mutations. A comparison of PRAT enzyme activity with phenotype in three of the mutants indicates that a reduction to 40% of the wild-type allele's activity is sufficient to cause the purine syndrome, suggesting that PRAT activity is limiting in Drosophila.  相似文献   

2.
Phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) is an important bifunctional enzyme in de novo purine biosynthesis in vertebrate with both 5-aminoimidazole ribonucleotide carboxylase (AIRc) and 4-(N-succinylcarboxamide)-5-aminoimidazole ribonucleotide synthetase (SAICARs) activities. It becomes an attractive target for rational anticancer drug design, since rapidly dividing cancer cells rely heavily on the purine de novo pathway for synthesis of adenine and guanine, whereas normal cells favor the salvage pathway. Here, we report the crystal structure of human PAICS, the first in the entire PAICS family, at 2.8 Å resolution. It revealed that eight PAICS subunits, each composed of distinct AIRc and SAICARs domains, assemble a compact homo-octamer with an octameric-carboxylase core and four symmetric periphery dimers formed by synthetase domains. Based on structural comparison and functional complementation analyses, the active sites of SAICARs and AIRc were identified, including a putative substrate CO2-binding site. Furthermore, four symmetry-related, separate tunnel systems in the PAICS octamer were found that connect the active sites of AIRc and SAICARs. This study illustrated the octameric nature of the bifunctional enzyme. Each carboxylase active site is formed by structural elements from three AIRc domains, demonstrating that the octamer structure is essential for the carboxylation activity. Furthermore, the existence of the tunnel system implies a mechanism of intermediate channeling and suggests that the quaternary structure arrangement is crucial for effectively executing the sequential reactions. In addition, this study provides essential structural information for designing PAICS-specific inhibitors for use in cancer chemotherapy.  相似文献   

3.
4.
Phosphoribosylaminoimidazole-succinocarboxamide synthetase (SAICAR synthetase) converts 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) to 4-(N-succinylcarboxamide)-5-aminoimidazole ribonucleotide (SAICAR). The enzyme is a target of natural products that impair cell growth. Reported here are the crystal structures of the ADP and the ADP.CAIR complexes of SAICAR synthetase from Escherichia coli, the latter being the first instance of a CAIR-ligated SAICAR synthetase. ADP and CAIR bind to the active site in association with three Mg(2+), two of which coordinate the same oxygen atom of the 4-carboxyl group of CAIR; whereas, the third coordinates the alpha- and beta-phosphoryl groups of ADP. The ADP.CAIR complex is the basis for a transition state model of a phosphoryl transfer reaction involving CAIR and ATP, but also supports an alternative chemical pathway in which the nucleophilic attack of l-aspartate precedes the phosphoryl transfer reaction. The polypeptide fold for residues 204-221 of the E. coli structure differs significantly from those of the ligand-free SAICAR synthetase from Thermatoga maritima and the adenine nucleotide complexes of the synthetase from Saccharomyces cerevisiae. Conformational differences between the E. coli, T. maritima, and yeast synthetases suggest the possibility of selective inhibition of de novo purine nucleotide biosynthesis in microbial organisms.  相似文献   

5.
6.
Addition of purines to the growth medium of Escherichia coli represses synthesis of cytosine deaminase (codA) and enzymes of purine de novo synthesis. After Tn10 mutagenesis, mutants displaying derepressed levels of cytosine deaminase in the presence of hypoxanthine were isolated. One of these had simultaneously acquired resistance to the hypoxanthine analog 6-mercaptopurine. The mutation purR6::Tn10 was shown to affect de novo synthesis of the purine enzymes glutamine phosphoribosylpyrophosphate amidotransferase (purF) and phosphoribosyl glycinamide synthetase (purD). The mutation was mapped by P1 transduction at 36 min on the E. coli linkage map. A plasmid containing the purR region was obtained by complementation of the purR6::Tn10 mutation. By comparing the restriction maps of the cloned fragment and the E. coli chromosome, the purR gene was found to be located very close to the lpp gene (36.3 min).  相似文献   

7.
Nodules of tropical legumes generally export symbiotically fixed nitrogen in the form of ureides that are produced by oxidation of de novo synthesized purines. To investigate the regulation of de novo purine biosynthesis in these nodules, we have isolated cDNA clones encoding 5-aminoimidazole ribonucleotide (AIR) carboxylase and 5-aminoimidazole-4-N-succinocarboxamide ribonucleotide (SAICAR) synthetase from a mothbean (Vigna aconitifolia) nodule cDNA library by complementation of Escherichia coli purE and purC mutants, respectively. Sequencing of these clones revealed that the two enzymes are distinct proteins in mothbean, unlike in animals where both activities are associated with a single bifunctional polypeptide. As is the case in yeast, the mothbean AIR carboxylase has a N-terminal domain homologous to the eubacterial purK gene product. This PurK-like domain appears to facilitate the binding of CO2 and is dispensable in the presence of high CO2 concentrations. Because the expression of the mothbean PurE cDNA clone in E. coli apparently generates a truncated polypeptide lacking at least 140 N-terminal amino acids, this N-terminal region of the enzyme may not be essential for its CO2-binding activity.  相似文献   

8.
Bazurto JV  Downs DM 《Genetics》2011,187(2):623-631
In Salmonella enterica, 5-aminoimidazole ribonucleotide (AIR) is the precursor of the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) pyrophosphate moiety of thiamine and the last intermediate in the common HMP/purine biosynthetic pathway. AIR is synthesized de novo via five reactions catalyzed by the purF, -D, -T, -G, and -I gene products. In vivo genetic analysis demonstrated that in the absence of these gene products AIR can be generated if (i) methionine and lysine are in the growth medium, (ii) PurC is functional, and (iii) 5-amino-4-imidazolecarboxamide ribotide (AICAR) has accumulated. This study provides evidence that the five steps of the common HMP/purine biosynthetic pathway can be bypassed in the synthesis of AIR and thus demonstrates that thiamine synthesis can be uncoupled from the early purine biosynthetic pathway in bacteria.  相似文献   

9.
Meyer E  Kappock TJ  Osuji C  Stubbe J 《Biochemistry》1999,38(10):3012-3018
Formation of 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) in the purine pathway in most prokaryotes requires ATP, HCO3-, aminoimidazole ribonucleotide (AIR), and the gene products PurK and PurE. PurK catalyzes the conversion of AIR to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) in a reaction that requires both ATP and HCO3-. PurE catalyzes the unusual rearrangement of N5-CAIR to CAIR. To investigate the mechanism of this rearrangement, [4,7-13C]-N5-CAIR and [7-14C]-N5-CAIR were synthesized and separately incubated with PurE in the presence of ATP, aspartate, and 4-(N-succinocarboxamide)-5-aminoimidazole ribonucleotide (SAICAR) synthetase (PurC). The SAICAR produced was isolated and analyzed by NMR spectroscopy or scintillation counting, respectively. The PurC trapping of CAIR as SAICAR was required because of the reversibility of the PurE reaction. Results from both experiments reveal that the carboxylate group of the carbamate of N5-CAIR is transferred directly to generate CAIR without equilibration with CO2/HCO3- in solution. The mechanistic implications of these results relative to the PurE-only (CO2- and AIR-requiring) AIR carboxylases are discussed.  相似文献   

10.
We have initiated an investigation of the de novo purine nucleotide biosynthetic pathway in the plant Arabidopsis thaliana. Functional suppression of Escherichia coli auxotrophs allowed the direct isolation of expressed Arabidopsis leaf cDNAs. Using this approach we have successfully suppressed mutants in 4 of the 12 genes in this pathway. One of these cDNA clones, encoding 5'-phosphoribosyl-5-aminoimidazole (AIR) synthetase (PUR5) has been characterized in detail. Analysis of genomic DNA suggests that the Arabidopsis genome contains a single AIR synthetase gene. Analysis of the cDNA sequence and mRNA size suggests that this enzyme activity is encoded by a monofunctional polypeptide, similar to that of bacteria and unlike other eukaryotes. The Arabidopsis AIR synthetase contains a basic hydrophobic transit peptide consistent with transport into chloroplasts. Comparison of both the predicted amino acid and nucleotide sequence from Arabidopsis to those of eight other distant organisms suggests that the plant sequence is more similar to the bacterial sequences than to other eukaryotic sequences. This study provides the groundwork for future investigations into the regulation of de novo purine biosynthesis in plants. Additionally, we have demonstrated that functional suppression of bacterial mutants may provide a useful method for cloning a variety of plant genes.  相似文献   

11.
J Aimi  H Qiu  J Williams  H Zalkin    J E Dixon 《Nucleic acids research》1990,18(22):6665-6672
The trifunctional enzyme encoding glycinamide ribonucleotide synthetase (GARS)-aminoimidazole ribonucleotide synthetase (AIRS)-glycinamide ribonucleotide transformylase (GART) was cloned by functional complementation of an E. coli mutant using an avian liver cDNA expression library. In E. coli, genes encoding these separate activities (purD, purM, and purN, respectively) produce three proteins. The avian cDNA, in contrast, encodes a single polypeptide with all three enzyme activities. Using the avian DNA as a probe, a cDNA encoding the complete coding sequence of the trifunctional human enzyme was also isolated and sequenced. The deduced amino acid sequence of the human and avian polyproteins show extensive sequence homologies to the bacterial purD, purM, and purN encoded proteins. Avian and human liver RNAs appear to encode both a trifunctional enzyme (G-ARS-AIRS-GART) as well as an RNA which encodes only GARS. The trifunctional protein has been implicated in the pathology of Downs Syndrome and molecular tools are now available to explore this hypothesis. Initial efforts to compare the expression of GARS-AIRS-GART between a normal fibroblast cell line and a Downs Syndrome cell line indicate that the levels of RNA are similar.  相似文献   

12.
The carbocyclic analogues of phosphoribosylamine, glycinamide ribonucleotide, and formylglycinamide ribonucleotide have been prepared as the racemates. Carbocyclic phosphoribosylamine was utilized as a substrate by the monofunctional glycinamide ribonucleotide synthetase from Escherichia coli as well as the glycinamide ribonucleotide synthetase activity of the eucaryotic trifunctional enzyme of de novo purine biosynthesis. Furthermore, carbocyclic glycinamide ribonucleotide was processed in the reverse reaction catalyzed by these enzymes. In addition, carbocyclic formylglycinamide ribonucleotide was converted, by E. coli formylglycinamide ribonucleotide synthetase, to carbocyclic formylglycinamidine ribonucleotide, which was accepted as a substrate by the aminoimidazole ribonucleotide synthetase activity of the trifunctional enzyme. This study has afforded carbocyclic substrate analogues, in particular for the chemically labile phosphoribosyl amine, for the initial steps of de novo purine biosynthesis.  相似文献   

13.
14.
The Saccharomyces cerevisiae ADE16 and ADE17 genes encode 5-aminoimidazole-4-carboxamide ribonucleotide transformylase isozymes that catalyze the penultimate step of the de novo purine biosynthesis pathway. Disruption of these two chromosomal genes results in adenine auxotrophy, whereas expression of either gene alone is sufficient to support growth without adenine. In this work, we show that an ade16 ade17 double disruption also leads to histidine auxotrophy, similar to the adenine/histidine auxotrophy of ade3 mutant yeast strains. We also report the purification and characterization of the ADE16 and ADE17 gene products (Ade16p and Ade17p). Like their counterparts in other organisms, the yeast isozymes are bifunctional, containing both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities, and exist as homodimers based on cross-linking studies. Both isozymes are localized to the cytosol, as shown by subcellular fractionation experiments and immunofluorescent staining. Epitope-tagged constructs were used to study expression of the two isozymes. The expression of Ade17p is repressed by the addition of adenine to the media, whereas Ade16p expression is not affected by adenine. Ade16p was observed to be more abundant in cells grown on nonfermentable carbon sources than in glucose-grown cells, suggesting a role for this isozyme in respiration or sporulation.  相似文献   

15.
S M Wang  W L Lue  S Y Wu  H W Huang    J Chen 《Plant physiology》1997,113(2):403-409
A maize (Zea mays L.) cDNA clone (pZMB2) encoding beta-amylase was isolated from a cDNA library prepared from the aleurone RNA of germinating kernels. The cDNA encodes a predicted product of 488 amino acids with significant similarity to known beta-amylases from barley (Hordeum vulgare), rye (Secale cereale), and rice (Oryza sativa). Glycine-rich repeats found in the carboxyl terminus of the endosperm-specific beta-amylase of barley and rye are absent from the maize gene product. The N-terminal sequence of the first 20 amino acids of a beta-amylase peptide derived from purified protein is identical to the 5th through 24th amino acids of the predicted cDNA product, indicating the absence of a conventional signal peptide in the maize protein. Recombinant inbred mapping data indicate that the cDNA clone is single-copy gene that maps to chromosome 7L at position 83 centimorgans. Northern blot analysis and in vitro translation-immunoprecipitation data indicate that the maize beta-amylase is synthesized de novo in the aleurone cells but not in the scutellum during seed germination.  相似文献   

16.
17.
We have isolated genomic and cDNA clones encoding protein synthesis initiation factor eIF-4E (mRNA cap-binding protein) of the yeast Saccharomyces cerevisiae. Their identity was established by expression of a cDNA in Escherichia coli. This cDNA encodes a protein indistinguishable from purified eIF-4E in terms of molecular weight, binding to and elution from m7GDP-agarose affinity columns, and proteolytic peptide pattern. The eIF-4E gene was isolated by hybridization of cDNA to clones of a yeast genomic library. The gene lacks introns, is present in one copy per haploid genome, and encodes a protein of 213 amino acid residues. Gene disruption experiments showed that the gene is essential for growth.  相似文献   

18.
19.
The first insect cDNA and genomic sequences encoding pyrroline 5-carboxylate reductase (EC 1.5.1.2) have been isolated from Drosophila melanogaster. The cDNA sequence was identified by interspecies complementation of an E. coli proline auxotroph and encodes a protein 280 amino acids in length with 25–41% identity to pyrroline 5-carboxylate reductases isolated from other organisms. The corresponding gene is single copy and is located at cytological position 91E-F, and in one of the P1 clones in that region. With a single 61-bp intron, and an impressively small 135- to 200-bp region that presumably acts as a bidirectional promoter, the gene itself shows remarkable economy. The calculated molecular weight of 29,700 predicts that the native enzyme is likely an octomer. Sequencing of the promoter region and expression studies, as well as the known function of the enzyme in redox regulation and the high levels of free proline in insects, suggest that this housekeeping gene encodes an enzyme with a crucial role in intermediary metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号