首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Murine phagocytes express three different activating IgG FcgammaR: FcgammaRI is specific for IgG2a; FcgammaRIII for IgG1, IgG2a, and IgG2b; and FcgammaRIV for IgG2a and IgG2b. Although the role of FcgammaRIII in IgG1 and IgG2a anti-RBC-induced autoimmune hemolytic anemia (AIHA) is well documented, the contribution of FcgammaRI and FcgammaRIV to the development of IgG2a- and IgG2b-induced anemia has not yet been defined. In the present study, using mice deficient in FcgammaRI, FcgammaRIII, and C3, in combination with an FcgammaRIV-blocking mAb, we assessed the respective roles of these three FcgammaR in the development of mild and severe AIHA induced by two different doses (50 and 200 microg) of the IgG2a and IgG2b subclasses of the 34-3C anti-RBC monoclonal autoantibody. We observed that the development of mild anemia induced by a low dose of 34-3C IgG2a autoantibody was highly dependent on FcgammaRIII, while FcgammaRI and FcgammaRIV additionally contributed to the development of severe anemia induced by a high dose of this subclass. In contrast, the development of both mild and severe anemia induced by 34-3C IgG2b was dependent on FcgammaRIII and FcgammaRIV. Our results indicate differential roles of the three activating FcgammaR in IgG2a- and IgG2b-mediated AIHA.  相似文献   

2.
Classic hyperacute rejection is dependent on the activation of the terminal components of complement. Recently, xenoantibodies with limited abilities to activate the classical pathway of complement in vitro have been implicated in the acute vascular rejection of xenografts. It is unclear how these Abs affect their pathogenic activities in vivo. In this study, we demonstrate the ability of an anti-Gal-alpha1,3Gal (Gal) IgG1, with modest complement-activating abilities in vitro, to induce xenograft rejection. This rejection was dependent on the activation of complement, on FcgammaR-mediated interactions, and on the presence of NK cells. Inhibition of any one of these factors resulted in the abrogation of IgG1-mediated rejection. In contrast, an anti-Gal IgG3 mAb induced classic, hyperacute rejection that was solely dependent on complement activation. Our observations implicate two types of IgG-mediated rejection; one that is dependent on complement activation, and a second that is uniquely dependent on complement, FcgammaR, and NK cells.  相似文献   

3.
We have previously produced a series of antigalactose (anti-Gal) hybridomas and characterized their heavy chain gene usage. Here we have quantified the affinity of these Abs for the alpha-Gal epitope and characterized their in vitro effects on endothelial cell activation and apoptosis. We report that anti-Gal mAbs derived from Gal(-/-) mice show a range of affinity for the alpha-Gal epitope, and that affinity was generally increased as the V(H) gene usage transitioned from germline sequences to sequences exhibiting somatic maturation. Despite an 85-fold range in affinity, all the anti-Gal mAbs examined induced alpha-Gal-specific endothelial cell activation, and after prolonged exposure induced endothelial cell apoptosis in a complement-independent manner. Only murine anti-Gal mAbs of the IgM or IgG3 subclass, but not IgG1, were effective at initiating complement-dependent cell lysis. Using a novel rat to mouse xenograft model, we examined the in vivo ability of these mAbs to induce xenograft rejection and characterized the rejection using histology and immunohistochemistry. Infusion of complement-fixing IgG3 mAbs resulted in either hyperacute rejection or acute vascular rejection of the xenograft. Surprisingly, infusion of an equal amount of a high affinity anti-Gal IgG1 mAb, that fixed complement poorly also induced a rapid xenograft rejection, which we have labeled very acute rejection. These studies emphasize the importance of in vivo assays, in addition to in vitro assays, in understanding the role of anti-Gal IgG-mediated tissue injury and xenograft rejection.  相似文献   

4.
Streptococcus pneumoniae is an important cause of morbitity and mortality worldwide. Capsule-specific IgG1 and IgG2 Abs are induced upon vaccination with polysaccharide-based vaccines that mediate host protection. We compared the protective capacity of human recombinant serogroup 6-specific IgG1 and IgG2 Abs in mice deficient for either leukocyte FcR or complement factors. Human IgG1 was found to interact with mouse leukocyte FcR in vitro, whereas human IgG2 did not. Both subclasses induced complement activation, resulting in C3c deposition on pneumococcal surfaces. Passive immunization of C57BL/6 mice with either subclass before intranasal challenge with serotype 6A induced similar degrees of protection. FcgammaRI- and III-deficient mice, as well as the combined FcgammaRI, II, and III knockout mice, were protected by passive immunization, indicating FcR not to be essential for protection. C1q or C2/factor B knockout mice, however, were not protected by passive immunization. Passively immunized C2/factor B(-/-) mice displayed higher bacteremic load than C1q(-/-) mice, supporting an important protective role of the alternative complement pathway. Spleens from wild-type and C1q(-/-) mice showed hyperemia and thrombotic vessel occlusion, as a result of septicemic shock. Notably, thrombus formation was absent in spleens of C2/factor B(-/-) mice, suggesting that the alternative complement pathway contributes to shock-induced intravascular coagulation. These studies demonstrate complement to play a central role in Ab-mediated protection against pneumococcal infection in vivo, as well as in bacteremia-associated thrombotic complications.  相似文献   

5.
Murine immunoglobulin G (IgG) plays an important role in mediating protective immune responses to malaria. We still know relatively little about which IgG subclasses protect against this disease in mouse models, although IgG2a and IgG2b are considered to be the most potent and dominate in successful passive transfer experiments in rodent malarias. To explore the mechanism(s) by which the different mouse IgG subclasses may mediate a protective effect, we generated mouse IgG1, IgG2a, IgG2b and IgG3 specific for the C-terminal 19-kDa region of Plasmodium falciparum merozoite surface protein 1 (PfMSP1(19)), and to the homologous antigen from Plasmodium yoelii (P. yoelii), both major targets of protective immune responses. This panel of eight IgGs bound antigen with an affinity comparable to that seen for their epitope-matched parental monoclonal antibodies (mAbs) from which they were derived, although for reasons of yield, we were only able to explore the function of mouse IgG1 recognizing PfMSP1(19) in detail, both in vitro and in vivo. Murine IgG1 was as effective as the parental human IgG from which it was derived at inducing NADPH-mediated oxidative bursts and degranulation from neutrophils. Despite showing efficacy in in vitro functional assays with neutrophils, the mouse IgG1 failed to protect against parasite challenge in vivo. The lack of protection afforded by MSP1(19)-specific IgG1 against parasite challenge in wild type mice suggests that this Ab class does not play a major role in the control of infection with mouse malaria in the Plasmodium berghei transgenic model.  相似文献   

6.
Four murine IgG subclasses display markedly different Fc-associated effector functions because of their differential binding to three activating IgG Fc receptors (FcgammaRI, FcgammaRIII, and FcgammaRIV) and C1q. Previous analysis of IgG subclass switch variants of 34-3C anti-RBC monoclonal autoantibodies revealed that the IgG1 subclass, which binds only to FcgammaRIII and fails to activate complement, displayed the poorest pathogenic potential. This could be related to the presence of a three amino acid deletion at positions 233-235 in the CH2 domain uniquely found in this subclass. To address this question, IgG1 insertion and IgG2b deletion mutants at positions 233-235 of 34-3C anti-RBC Abs were generated, and their ability to initiate effector functions and their pathogenicity were compared with those of the respective wild-type Abs. The insertion of amino acid residues at positions 233-235 enabled the IgG1 subclass to bind FcgammaRIV but did not improve the binding to C1q. Accordingly, its pathogenicity was enhanced but still inferior to that of IgG2b. In contrast, the IgG2b deletion mutant lost its ability to bind to FcgammaRIV and activate complement. Consequently, its pathogenicity was markedly diminished to a level comparable to that of IgG1. Our results demonstrated that the initiation of FcgammaR- and complement-mediated effector functions of IgG2b was profoundly affected by the three amino acid deletion at positions 233-235, but that this natural three amino acid deletion could only partially explain the poor binding of IgG1 to FcgammaRIV and C1q. This indicates the lack in the IgG1 subclass of as yet unknown motifs promoting efficient interaction with FcgammaRIV and C1q.  相似文献   

7.
Recent attempts to specify the relative contribution of FcR and complement in various experimental systems of immune complex disease have led to opposing conclusions. As concluded in IgG FcRgamma-/- mice, manifestation of disease is almost exclusively determined by FcgammaR on effector cells, arguing for a minor role of complement. In contrast, data obtained with C5aR-/- mice suggested that, dependent on the tissue site, complement is more important than FcgammaR. In this paper, we demonstrate that, in response to IgG immune complex formation, FcgammaRI/III- and C5aR-mediated pathways are both necessary and only together are they sufficient to trigger the full expression of inflammation in skin and lung. Moreover, both effector systems are not entirely independent, suggesting an interaction between FcgammaR and C5aR. Therefore, FcgammaR-mediated responses can be integrated through C5aR activation, which may explain why these two receptor pathways have previously been considered to dominate each other.  相似文献   

8.
Anti-Gal is a natural antibody present in unusually high concentrations in human sera. It constitutes as much as 1% of circulating IgG and displays a distinct specificity for the Gal alpha 1----3Gal carbohydrate epitope. In the present study, we have found in the sera of patients with Chagas' disease and Leishmania infection anti-Gal titers 10- and 16-fold higher than that of healthy or bacteria-infected individuals. This increase in anti-Gal titer seemed to be the result of a specific immune response toward parasitic Gal alpha 1----3Gal epitopes. Binding studies of affinity chromatography-purified anti-Gal antibodies to Trypanosoma cruzi and American Leishmania parasites indeed demonstrated the presence of Gal alpha 1----3Gal epitopes on these parasites. This finding was supported by the observed binding to the parasites of two additional Gal alpha 1----3Gal recognizing molecules: the mAb Gal-13, and the lectin, Bandeiraea simplicifolia I B4. Furthermore, the binding of both anti-Gal antibody and of the B. simplicifolia I B4 lectin could be inhibited by galactose, and not glucose. In addition, removal of the terminal alpha-galactosyl residues from the parasites by pretreatment with alpha-galactosidase, or the oxidation of the binding epitopes by periodate prevented the subsequent binding of both the antibody and the lectin. A crude leishmanial lipid extract readily bound these three reagents, suggesting that at least part of these epitopes are of a glycolipid nature. These Gal alpha 1----3Gal epitopes may thus serve as an antigenic source for the excess production of anti-Gal. In view of the naturally high level of anti-Gal in humans and its binding to T. cruzi and Leishmania, it is argued that these antibodies may contribute to the natural defense against the invasion of such parasites.  相似文献   

9.
We have produced a panel of murine anti-streptococcal mAbs, expressing identical V domains and different H chain C domains, corresponding to the IgG3, IgG1, and IgG2b subclasses. We have used these mAb to evaluate the role of IgG subclass-specific C region determinants in modulating the interaction between antibody and the bacterial surface. We report, for the first time, that V region-identical murine IgG of different subclasses exhibit substantial differences in binding to specific Ag; IgG3 mAb binds more strongly to streptococci than the IgG1 and IgG2b mAb or IgG3-derived F(ab')2 fragments. Furthermore, the IgG3 mAB binds cooperatively to the bacteria, whereas the IgG1, IgG2b, and IgG3-derived F(ab')2 fragments do not exhibit significant cooperativity, which suggests that differences in Fc region structure can affect antibody binding to multivalent Ag by modulating the potential for cooperative binding. These results suggest a plausible mechanism by which murine IgG3 could be more effective, than other antibodies bearing identical V domains, but of different gamma-subclass, in mediating bacterial immunity.  相似文献   

10.
Peritoneal cavity B-1 cells are believed to produce IgM natural Abs. We have used alpha1,3-galactosyltransferase-deficient (GalT(-/-)) mice, which, like humans, produce IgM natural Abs against the carbohydrate epitope Galalpha1,3Gal (Gal), to demonstrate that peritoneal cavity B-1b cells with anti-Gal receptors produce anti-Gal IgM Abs only after LPS stimulation. Likewise, peritoneal cavity cells of GalT(-/-) and wild-type mice do not produce IgM Abs of other specificities without LPS stimulation. Development of Ab-secreting capacity is associated with loss of CD11b/CD18 (Mac-1) expression. In contrast, there are large numbers of cells producing anti-Gal and other IgM Abs in fresh splenocyte preparations from GalT(-/-) and (for non-Gal specificities) wild-type mice. These cells are Mac-1(-) but otherwise B-1b-like in their phenotype. We therefore hypothesized a pathway wherein peritoneal cavity B cells migrate into the spleen after activation in vivo and lose Mac-1 expression to become IgM Ab-producing cells. Consistent with this possibility, splenectomy reduced anti-Gal Ab production after immunization of GalT(-/-) mice with Gal-positive rabbit RBC. Furthermore, splenectomized B6 GalT(-/-), Ig micro -chain mutant ( micro (-/-)) (both Gal- and B cell-deficient) mice produced less anti-Gal IgM than nonsplenectomized controls after adoptive transfer of peritoneal cavity cells from B6 GalT(-/-) mice. When sorted GalT(-/-) Mac-1(+) peritoneal cavity B cells were adoptively transferred to B6 GalT(-/-), micro (-/-) mice, IgM Abs including anti-Gal appeared, and IgM-producing and Mac1(-) B cells were present in the spleen 5 wk after transfer. These findings demonstrate that peritoneal cavity Mac-1(+) B-1 cells are precursors of Mac-1(-) splenic IgM Ab-secreting cells.  相似文献   

11.
The factors that determine whether immune complexes (IC) are cleared safely from the circulation or are deposited in vulnerable tissues such as glomeruli are not well defined. To better understand how IC are handled, the present study examined the fate in vivo of three model IC preparations with different immunochemical characteristics. Radiolabeled IC were constructed with murine IgG1, IgG2a, or IgG3 anti-DNP mAbs bound to DNP-BSA, designated IgG1 IC, IgG2a IC, and IgG3 IC, respectively. The IC were infused i.v. into BALB/c mice, and clearance and tissue localization of the three IC probes were compared. The results indicate that the major portion of each IC preparation was cleared from the circulation by the liver. However, compared with the other two probes, IgG2a IC were preferentially deposited in the kidney. Histologic examination revealed the presence of IgG2a IC in glomeruli. The enhanced renal uptake of IgG2a IC could not be attributed solely to such characteristics as IC size, Ag/Ab ratio, Ab charge, or affinity. However, the preferential renal deposition of IgG2a IC was abrogated by complement depletion. Thus, enhanced renal uptake in normal mice was complement dependent. These data suggest that interactions between IC and the complement system can influence the propensity of IC to deposit in tissues susceptible to IC-mediated injury.  相似文献   

12.
An ongoing production of IFN-alpha may be of etiopathogenic significance in systemic lupus erythematosus (SLE). It may be due to the natural IFN-producing cells (NIPC), also termed plasmacytoid dendritic cells (PDC), activated by immune complexes that contain nucleic acids derived from apoptotic cells. We here examined the role of FcgammaR in the IFN-alpha production in vitro by PBMC induced by the combination of apoptotic U937 cells and autoantibody-containing IgG from SLE patients (SLE-IgG). The Fc portion of the SLE-IgG was essential to induce IFN-alpha production, because Fab fragments or F(ab')(2) were ineffective. Normal, especially heat-aggregated, IgG inhibited the IFN-alpha production, suggesting a role for FcgammaR on PBMC. Using blocking anti-FcgammaR Abs, the FcgammaRIIa,c (CD32) but not FcgammaRI or FcgammaRIII were shown to be involved in the IFN-alpha induction by apoptotic cells combined with SLE-IgG, but not by HSV or CpG DNA. In contrast, the action of all of these inducers was inhibited by the anti-FcgammaRIIa,b,c mAb AT10 or heat-aggregated IgG. Flow cytometric analysis revealed that approximately 50% of the BDCA-2-positive PBMC, i.e., NIPC/PDC, expressed low but significant levels of FcgammaRII, as did most of the actual IFN-alpha producers activated by HSV. RT-PCR applied to NIPC/PDC purified by FACS demonstrated expression of FcgammaRIIa, but not of FcgammaRIIb or FcgammaRIIc. We conclude that FcgammaRIIa on NIPC/PDC is involved in the activation of IFN-alpha production by interferogenic immune complexes, but may also mediate inhibitory signals. The FcgammaRIIa could therefore have a key function in NIPC/PDC and be a potential therapeutic target in SLE.  相似文献   

13.
Antibody-dependent cellular cytotoxicity (ADCC) is one of the important mechanisms of action of the targeting of tumor cells by therapeutic monoclonal antibodies (mAbs). Among the human Fcγ receptors (FcγRs), FcγRIIIa is well known as the only receptor expressed in natural killer (NK) cells, and it plays a pivotal role in ADCC by IgG1-subclass mAbs. In addition, the contributions of FcγRIIa to mAb-mediated cytotoxicity have been reported. FcγRIIa is expressed in myeloid effector cells including neutrophils and macrophages, and it is involved in the activation of these effector cells. However, the measurement of the cytotoxicity via FcγRIIa-expressing effector cells is complicated and inconvenient for the characterization of therapeutic mAbs. Here we report the development of a cell-based assay using a human FcγRIIa-expressing reporter cell line. The FcγRIIa reporter cell assay was able to estimate the activation of FcγRIIa by antigen-bound mAbs by a very simple method in vitro. The usefulness of this assay for evaluating the activity of mAbs with different abilities to activate FcγRIIa was confirmed by the examples including the comparison of the activity of the anti-CD20 mAb rituximab and its Fc-engineered variants, and two anti-EGFR mAbs with different IgG subclasses, cetuximab (IgG1) and panitumumab (IgG2). We also applied this assay to the characterization of a force-oxidized mAb, and we observed that oxidation significantly decreased the FcγRIIa activation by EGFR-bound cetuximab. These results suggest that our FcγRIIa reporter assay is a promising tool for the characterization of therapeutic mAbs, including Fc-engineered mAbs, IgG2-subclass mAbs, and their product-related variants.  相似文献   

14.
Eleven genomic porcine Cγ gene sequences are described that represent six putative subclasses that appear to have originated by gene duplication and exon shuffle. The genes previously described as encoding porcine IgG1 and IgG3 were shown to be the IgG1a and IgG1b allelic variants of the IGHG1 gene, IgG2a and IgG2b are allelic variants of the IGHG2 gene, while “new” IgG3 is monomorphic, has an extended hinge, is structurally unique, and appears to encode the most evolutionarily conserved porcine IgG. IgG5b differs most from its putative allele, and its CH1 domain shares sequence homology with the CH1 of IgG3. Four animals were identified that lacked either IgG4 or IgG6. Alternative splice variants were also recovered, some lacking the CH1 domain and potentially encoding heavy chain only antibodies. Potentially, swine can transcribe >20 different Cγ chains. A comparison of mammalian Cγ gene sequences revealed that IgG diversified into subclasses after speciation. Thus, the effector functions for the IgG subclasses of each species should not be extrapolated from “same name subclasses” in other species. Sequence analysis identified motifs likely to interact with Fcγ receptors, FcRn, protein A, protein G, and C1q. These revealed IgG3 to be most likely to activate complement and bind FcγRs. All except IgG5a and IgG6a should bind to FcγRs, while all except IgG6a and the putative IgG5 subclass proteins should bind well to porcine FcRn, protein A, and protein G. An erratum to this article can be found at  相似文献   

15.
Macrophages are pivotal in promoting wound healing. We hypothesized that topical application of liposomes with glycolipids that carry Galα1-3Galβ1-4GlcNAc-R epitopes (α-gal liposomes) on wounds may accelerate the healing process by rapid recruitment and activation of macrophages in wounds. Immune complexes of the natural anti-Gal Ab (constituting ~1% of Ig in humans) bound to its ligand, the α-gal epitope on α-gal liposomes would induce local activation of complement and generation of complement chemotactic factors that rapidly recruit macrophages. Subsequent binding of the Fc portion of anti-Gal coating α-gal liposomes to FcγRs on recruited macrophages may activate macrophage genes encoding cytokines that mediate wound healing. We documented the efficacy of this treatment in α1,3galactosyltrasferase knockout mice. In contrast to wild-type mice, these knockout mice lack α-gal epitopes and can produce the anti-Gal Ab. The healing time of excisional skin wounds treated with α-gal liposomes in these mice is twice as fast as that of control wounds. Moreover, scar formation in α-gal liposome-treated wounds is much lower than in physiologic healing. Additional sonication of α-gal liposomes resulted in their conversion into submicroscopic α-gal nanoparticles. These α-gal nanoparticles diffused more efficiently in wounds and further increased the efficacy of the treatment, resulting in 95-100% regeneration of the epidermis in wounds within 6 d. The study suggests that α-gal liposome and α-gal nanoparticle treatment may enhance wound healing in the clinic because of the presence of high complement activity and high anti-Gal Ab titers in humans.  相似文献   

16.
Schistosomula of Schistosoma mansoni are known to be killed in vitro by complement and IgG (lethal antibody). To investigate whether this mechanism reflects the in vivo situation, we isolated IgG subclasses from sera of infected rats and assayed their ability to promote the complement-mediated killing of schistosomula in vitro as well as to protect normal recipients from a challenge infection. We found that a serum fraction containing only IgG2a + IgG2b has lethal activity to schistosomula in vitro, whereas a fraction containing only IgG1 + IgG2c fails to kill schistosomula in the presence of complement. The assay of protective activity has shown that the same fraction containing the lethal activity (IgG2a + IgG2b) was able to reduce the number of schistosomula recovered from lungs. These results provide evidence of the participation of IgG2a and/or IgG2b, but not IgG1 or IgG2c, in protective immunity to S. mansoni in rats, possibly through a complement-mediated mechanism.  相似文献   

17.
Ag-IgG immune complexes (IC) are efficiently taken up, and Ag-derived peptides are subsequently processed and presented by APC. In vitro experiments indicate that IgG Fc Receptors (FcgammaR) facilitate the efficient uptake of IC by dendritic cells. Previous experiments showed that the cross-presentation of Ag-derived peptides after s.c. administration of IC is FcgammaR-dependent. To study the role of different FcgammaR and complement in MHC class I Ag presentation after i.v. administration, we used mice deficient for FcgammaRs and complement components. These mice were injected with CFSE-labeled OVA-specific CD8+ T cells followed by administration of IC composed of OVA and rabbit anti-OVA IgG i.v. to measure MHC class I presentation of OVA-derived peptides. The Ag presentation was partly reduced in FcRgamma-chain-deficient mice, but not affected in FcgammaRI/II/III-deficient mice, complement factor C3-deficient mice, or FcgammaRI/II/III x C3-deficient mice. Importantly, CD8+ T cell proliferation was significantly reduced in mice deficient for C1q. This proliferation could be restored when IC were incubated with purified human C1q before injection. Likewise, purified C1q could strongly enhance the uptake and presentation of IC by dendritic cells in vitro. Heat inactivation abrogated the C1q-mediated uptake of IC. In addition, in vivo uptake of OVA-IC in the spleen was significantly reduced in C1q-deficient mice compared with wild-type mice. Together, these results indicate a novel function of C1q, which is present in high levels in the bloodstream, by directly enhancing the uptake and MHC class I presentation of Ag captured in IC by APC to CD8+ T cells.  相似文献   

18.
Antigen-specific IgG antibodies, passively administered to mice or humans together with large particulate antigens like erythrocytes, can completely suppress the antibody response against the antigen. This is used clinically in Rhesus prophylaxis, where administration of IgG anti-RhD prevents RhD-negative women from becoming immunized against RhD-positive fetal erythrocytes aquired transplacentally. The mechanisms by which IgG suppresses antibody responses are poorly understood. We have here addressed whether complement or Fc-receptors for IgG (FcγRs) are required for IgG-mediated suppression. IgG, specific for sheep red blood cells (SRBC), was administered to mice together with SRBC and the antibody responses analyzed. IgG was able to suppress early IgM- as well as longterm IgG-responses in wildtype mice equally well as in mice lacking FcγRIIB (FcγRIIB knockout mice) or FcγRI, III, and IV (FcRγ knockout mice). Moreover, IgG was able to suppress early IgM responses equally well in mice lacking C1q (C1qA knockout mice), C3 (C3 knockout mice), or complement receptors 1 and 2 (Cr2 knockout mice) as in wildtype mice. Owing to the previously described severely impaired IgG responses in the complement deficient mice, it was difficult to assess whether passively administered IgG further decreased their IgG response. In conclusion, Fc-receptor binding or complement-activation by IgG does not seem to be required for its ability to suppress antibody responses to xenogeneic erythrocytes.  相似文献   

19.
Human IgG of four subclasses, semi-purified from pooled human serum by a series of DEAE ion exchange and protein A affinity chromatographies, were used as immunogens and initial screening antigens to produce subclass-specific and -restricted monoclonal antibodies (McAbs). These McAbs were bound to CNBr-activated Sepharose 4B and utilized in immunoaffinity chromatography to prepare four polyclonal human IgG subclasses of satisfactory purities, which were then used as final screening antigens. Subclass-specific McAbs thus chosen were further evaluated for subclass- and especially allotype-specificity using a panel of monoclonal IgG myeloma proteins with representative Gm markers for each subclass in micro enzyme-linked immunosorbent assay (ELISA). A total of 10 clones of subclass-specific McAbs (one for anti-IgG1, three anti-IgG2, two anti-IgG3, four anti-IgG4) were established. Among them, IgG2-specific clones of HG2-30F and HG2-56F, IgG3-specific HG3-7C and HG3-32C, and IgG4-specific HG4-53G McAbs were superior to the corresponding specificity standard McAbs chosen by the Human Immunoglobulins Subcommittee of the WHO/International Union of Immunological Societies (IUIS) in 1985. As allotype-specific McAbs, HG1-1E for G1m(az) and HG3-3B for G3m(b) were obtained. In micro ELISA of this study as well as all protocols of the previous WHO/IUIS collaborative study, antigens (myeloma IgG subclasses) were immobilized or fixed to a solid phase, resulting in possible variations in their epitope expressions. We developed a new assay system, micro radioimmunoassay (RIA), in which reactivities of McAbs against free IgG subclasses in solution can be evaluated. HG2-30F, having extremely high reactivities to coated IgG2 in micro ELISA, remarkably reduced its reactivities to free IgG2 in solution in micro RIA. Two other clones also showed some different reactivities in micro RIA and micro ELISA. We believe that this micro RIA is valuable for evaluation of McAbs reactivities against native human IgG subclasses in solution.  相似文献   

20.
The IgG binding Fcgamma receptors (FcgammaRs) play a key role in defence against pathogens by linking humoral and cell-mediated immune responses. Impaired expression and/or function of FcgammaR may result in the development of pathological autoimmunity. Considering the functions of FcgammaRs, they are potential target molecules for drug design to aim at developing novel anti-inflammatory and immunomodulatory therapies. Previous data mostly obtained by X-ray analysis of ligand-receptor complexes indicate the profound role of the CH2 domain in binding to various FcgammaRs. Our aim was to localize linear segments, which are able to bind and also to modulate the function of the low affinity FcgammaRs, like FcgammaRIIb and FcgammaRIIIa. To this end a set of overlapping octapeptides was prepared corresponding to the 231-298 sequence of IgG1 CH2 domain and tested for binding to human recombinant soluble FcgammaRIIb. Based on these results, a second group of peptides was synthesized and their binding properties to recombinant soluble FcgammaRIIb, as well as to FcgammaRs expressed on the cell surface, was investigated. Here we report that peptide representing the Arg(255)-Ser(267) sequence of IgG1 is implicated in the binding to FcgammaRIIb. In addition we found that peptides corresponding to the Arg(255)-Ser(267), Lys(288)-Ser(298) or Pro(230)-Val(240) when presented in a multimeric form conjugated to branched chain polypeptide in uniformly oriented copies induced the release of TNFalpha, a pro-inflammatory cytokine from MonoMac monocyte cell line. These findings indicate that these conjugated peptides are able to cluster the activating FcgammaRs, and mediate FcgammaR dependent function. Peptide Arg(255)-Ser(267) can also be considered as a lead for further functional studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号