首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of bacterial lipopolysaccharide endotoxin (LPS), immune system activator, on differentiation and migration of gonadotropin-releasing, hormone producing neurons in rat embryogenesis has been studied. Intraperitoneal introduction of LPS (18 jg/kg) to pregnant rats on the 12th day of pregnancy led to 50% decrease in total number of GRH-neurons in the forebrain of 17-day-old embryos and 17% decrease in 19-day-old embryos. At the same time, the number of GRH-neurons in the nasal area of the head of 17- and 19-day-old embryos increased by 40 and 50%, respectively, whereas it increased by 20% in olfactory bulbs of 17-day-old embryos and did not changed in olfactory bulbs of 19-day-old embryos. Neither the total number of neurons nor their distribution patterns were affected by the introduction of LPS into pregnant rats on the 15th day of pregnancy. Singular localization of GRH-neurons in embryo forebrain was observed after LPS administration, whereas the neurons were located by groups of 3-4 cells in rostral areas. Therefore, at the early stages of pregnancy, LPS was shown to suppress initial stages of differentiation and migration of GRH producing neurons. The effects observed in our study may be mediated by LPS-induced, proinflammatory cytokines.  相似文献   

2.
The work has been carried out on mice of the Tg8 line with knockout of gene of monoamineoxidase A with an increase of serotonin and noradrenaline content in the brain, and on mice of the C3H line with unchanged genome and normal concentration of monoamines. An immunocytochemical study has been performed of development of neurons producing gonadotropin-releasing hormone (GnRH) under conditions of excess of serotonin and noradrenaline in the mice in embryogenesis. The GnRH-neurons were revealed at the 18th day of embryonic development in telencephalon along trajectory of their migration from olfactory bulbs to the retrochiasmatic area. In telencephalon of mouse embryos of the Tg8 line, a redistribution of the GnRH-neurons along their migration trajectory was observed as compared with embryos of the C3H line mice. The percent of the GnRH-neurons in the Tg8 mouse embryos in caudal parts of the migration trajectory was lower than in rostral parts, the opposite distribution of the neurons being observed in the C3H line mouse embryos; at the excess of serotonin and noradrenaline in the Tg8 line mouse embryos, the total amount of GnRH-neurons in the brain was lower than in the C3H mice. In males of the Tg8 line mice under conditions of excess of serotonin and noradrenaline the optical density of neurons, which correlated with the GnRH concentration in the cell, was higher than in control mice. Thus, in the Tg8 mice under conditions of the serotonin and noradrenaline excess, migration of the GnRH-neurons to their final anlage in hypothalamus is accelerated as well as the total number of the GnRH-neurons decreases, which indicates a decrease of proliferation of cells-precursors and the earlier differentiation of neurons.  相似文献   

3.
The work has been carried out on mice of the Tg8 line with knockout of gene of monoamineoxidase A with an increase of serotonin and noradrenaline content in the brain, and on mice of the C3H line with unchanged genome and normal concentration of monoamines. An immunocytochemical study has been performed of development of neurons producing gonadotropin-releasing hormone (GnRH) under conditions of excess of serotonin and noradrenaline in the mice in embryogenesis. The GnRH-neurons were revealed at the 18th day of embryonic development in telencephalon along trajectory of their migration from olfactory bulbs to the retrochiasmatic area. In telencephalon of mouse embryos of the Tg8 line, a redistribution of the GnRH-neurons along their migration trajectory was observed as compared with embryos of the C3H line mice. The percent of the GnRH-neurons in the Tg8 mouse embryos in caudal parts of the migration trajectory was lower than in rostral parts, the opposite distribution of the neurons being observed in the C3H line mouse embryos; at the excess of serotonin and noradrenaline in the Tg8 line mouse embryos, the total amount of GnRH-neurons in the brain was lower than in the C3H mice. In males of the Tg8 line mice under conditions of excess of serotonin and noradrenaline the optical density of neurons, which correlated with the GnRH concentration in the cell, was higher than in control mice. Thus, in the Tg8 mice under conditions of the serotonin and noradrenaline excess, migration of the GnRH-neurons to their final anlage in hypothalamus is accelerated as well as the total number of the GnRH-neurons decreases, which indicates a decrease of proliferation of cells-precursors and the earlier differentiation of neurons.  相似文献   

4.
The contents of dopamine, serotonin, and noradrenaline in rat fetuses developing under the conditions of their deficiency induced by administration of alpha-methyl-para-tyrosine to females during 11th to 16th or 20th day of pregnancy and in fetuses, whose mothers were given saline at the same time, were determined using HPLC with subsequent electrochemical detection. Administration of alpha-methyl-para-tyrosine led to decreased levels of dopamine and noradrenaline in the areas of migration of GnRH-neurons in fetuses on days 17 and 21 of prenatal development. The concentration of serotonin remained unchanged, except in the head nasal area in males on day 21. The areas of interaction between the brain catecholaminergic systems and migrating and differentiating GnRH-neurons were determined by double immunohistochemical labeling. Close topographical location of GnRH-immunoreactive neurons and tyrosine hydroxylase-immunoreactive in the area of nucleus accumbens on days 17 and 20, as well as in the median eminence on day 20. The GnRH concentration in the caudal areas of migration of GnRH-neurons under the normal conditions and in the case of catecholamine deficiency was determined using radioimmunoassay. After administration of alpha-methyl-para-tyrosine the GnRH concentration in the anterior hypothalamus decreased in females. The data obtained suggest the involvement of catecholamines in the regulation of development of GnRH-Neurons during prenatal development. In addition, the adequacy and efficiency of the used model of catecholamine deficiency for studying the development of such neurons was confirmed.  相似文献   

5.
The contents of dopamine, serotonin, and noradrenaline in rat fetuses developing under the conditions of their deficiency induced by administration of α-methyl-para-tyrosine to females during 11th to 16th or 20th day of pregnancy and in fetuses, whose mothers were given saline at the same time, were determined using HPLC with subsequent electrochemical detection. Administration of α-methyl-para-tyrosine led to decreased levels of dopamine and noradrenaline in the areas of migration of GnRH-neurons in fetuses on days 17 and 21 of prenatal development. The concentration of serotonin remained unchanged, except in the head nasal area in males on day 21. The areas of interaction between the brain catecholaminergic systems and migrating and differentiating GnRH-neurons were determined by double immunohistochemical labeling. Close topographical location of GnRH-immunoreactive neurons and tyrosine hydroxylase-immunoreactive in the area of nucleus accumbens on days 17 and 20, as well as in the median eminence on day 20. The GnRH concentration in the caudal areas of migration of GnRH-neurons under the normal conditions and in the case of catecholamine deficiency was determined using radioimmunoassay. After administration of α-methyl-para-tyrosine the GnRH concentration in the anterior hypothalamus decreased in females. The data obtained suggest the involvement of catecholamines in the regulation of development of GnRH-Neurons during prenatal development. In addition, the adequacy and efficiency of the used model of catecholamine deficiency for studying the development of such neurons was confirmed.  相似文献   

6.
Recent studies suggest that neurons born in the developing basal forebrain migrate long distances perpendicularly to radial glia and that many of these cells reach the developing neocortex. This form of tangential migration, however, has not been demonstrated in vivo, and the sites of origin, pathways of migration and final destinations of these neurons in the postnatal brain are not fully understood. Using ultrasound-guided transplantation in utero, we have mapped the migratory pathways and fates of cells born in the lateral and medial ganglionic eminences (LGE and MGE) in 13.5-day-old mouse embryos. We demonstrate that LGE and MGE cells migrate along different routes to populate distinct regions in the developing brain. We show that LGE cells migrate ventrally and anteriorly, and give rise to the projecting medium spiny neurons in the striatum, nucleus accumbens and olfactory tubercle, and to granule and periglomerular cells in the olfactory bulb. By contrast, we show that the MGE is a major source of neurons migrating dorsally and invading the developing neocortex. MGE cells migrate into the neocortex via the neocortical subventricular zone and differentiate into the transient subpial granule neurons in the marginal zone and into a stable population of GABA-, parvalbumin- or somatostatin-expressing interneurons throughout the cortical plate.  相似文献   

7.
Over the last three decades, experiments in several mammalian species have shown that the febrile response to bacterial endotoxin is attenuated late in pregnancy. More recent evidence has established that the expression of nitric oxide synthase (NOS) enzymes is increased in the brain late in pregnancy. The current study investigated the possible role of brain nitric oxide in mediating the phenomenon of fever suppression. Core body temperature (Tb) of near-term pregnant rats (day 19 and 20) was measured following inhibition of brain NOS and intraperitoneal injection of LPS (50 microg/kg); they were compared with both day 15 pregnant and virgin animals. Intracerebroventricular injection with an inhibitor of NOS, NG-monomethyl-L-arginine citrate (L-NMMA; 280 microg), in near-term pregnant rats restored the febrile response to LPS. As expected, near-term dams that received intracerebroventricular vehicle + IP LPS did not increase Tb, in contrast to the 1.0 +/- 0.2 degrees C rise in Tb in dams treated with ICV L-NMMA + IP LPS (P < 0.01). In virgin females and day 15 pregnant controls receiving this treatment, the increases in Tb were 1.5 +/- 0.3 degrees C and 1.6 +/- 0.4 degrees C, respectively. Thus, blockade of brain NOS restored the febrile response to LPS in near-term dams; at 5 h postinjection, Tb was 60-70% of that observed in virgins and day 15 pregnant animals. Intracerebroventricular L-NMMA alone did not induce a significant change in Tb in any group. These results suggest that the mechanism underlying the suppression of the febrile response in near-term pregnancy is mediated by nitric oxide signaling in the brain.  相似文献   

8.
Autoradiographic and morphometric studies of the embryonal endbrain anlage of mice whose mothers were kept on the low-protein diet since the first day of pregnancy point to the retardation of the embryonal cerebral cortex histogenesis under the influence of alimentary deficiency. The structure of the endbrain anlage in 17-day-old embryos, that developed under the conditions of malnutrition, correlated with the earlier stages of embryogenesis in terms of the degree of maturity. The retardation of the neocortex development is caused by a fall in the rate of ventricular cell proliferation because of a 21% increase in the duration of the mitotic cycle. Analysis of the distribution pattern of intensely labeled neuronal nuclei in the neocortex of 20-day-old mice whose mothers were injected with 3H-thymidine on days 13 and 17 of pregnancy indicates that under the conditions of prenatal malnutrition the neurons in the appropriate layers of the brain cortex are formed at the later times as compared to normal.  相似文献   

9.
Partial deafferentation of the olfactory bulb in Xenopus embryos was performed to analyze the effects of afferent innervation on the development of the central olfactory structure. In an attempt to analyze a possible early inductive role of the olfactory axons, one olfactory placode was removed before differentiation of the neural tube began (stages 26–31). A morphological and quantitative analysis was performed on larvae at the onset of metamorphic climax (stage 58). When the single olfactory nerve innervated one side of the rostral telencephalon, a single olfactory bulb developed on that side and no olfactory bulb formed on the contralateral side. When the nerve innervated the midline of the rostral telencephalon, a smaller-than-normal, fused olfactory bulb developed. Partial deafferentation at these early stages resulted in a significant reduction in the number of olfactory axons (to approximately one-half of control values) and a corresponding decrease in the number of mitral/tufted cells (output neurons of the olfactory bulb). To control for possible damage to the neural tube during olfactory-placode removal, a portion of the neural tube directly beneath one of the olfactory placodes was removed in embryos. In these animals, the neural tube regenerated within 24 h and formed a normal olfactory bulb; olfactory axon and mitral/tufted-cell numbers were not significantly different from controls. In conclusion, olfactory-afferent innervation was critical for differentiation of the olfactory bulb, and decreasing the number of olfactory axons resulted in a reduction in the number of output neurons of the olfactory bulb. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Chatzi C  Brade T  Duester G 《PLoS biology》2011,9(4):e1000609
Although retinoic acid (RA) has been implicated as an extrinsic signal regulating forebrain neurogenesis, the processes regulated by RA signaling remain unclear. Here, analysis of retinaldehyde dehydrogenase mutant mouse embryos lacking RA synthesis demonstrates that RA generated by Raldh3 in the subventricular zone of the basal ganglia is required for GABAergic differentiation, whereas RA generated by Raldh2 in the meninges is unnecessary for development of the adjacent cortex. Neurospheres generated from the lateral ganglionic eminence (LGE), where Raldh3 is highly expressed, produce endogenous RA, which is required for differentiation to GABAergic neurons. In Raldh3?/? embryos, LGE progenitors fail to differentiate into either GABAergic striatal projection neurons or GABAergic interneurons migrating to the olfactory bulb and cortex. We describe conditions for RA treatment of human embryonic stem cells that result in efficient differentiation to a heterogeneous population of GABAergic interneurons without the appearance of GABAergic striatal projection neurons, thus providing an in vitro method for generation of GABAergic interneurons for further study. Our observation that endogenous RA is required for generation of LGE-derived GABAergic neurons in the basal ganglia establishes a key role for RA signaling in development of the forebrain.  相似文献   

11.
The GnRH producing neurons are the key link of neuroendocrine regulation of the adult reproductive system. Synthesis and secretion of GnRH are, in turn, under the afferent catecholaminergic control. Taking into account that catecholamines exert morphogenetic effects on target cells during ontogenesis, this study was aimed at investigation of the effects of catecholamines on development of GnRH neurons in rats during ontogenesis. We carried out comparative quantitative and semiquantitative analyses of differentiation and migration of GnRH neurons in fetuses of both sexes under the conditions of normal metabolism of catecholamines (administration of saline) or their pharmacologically induced deficiency (administration of alpha-methylparatyrosine). The inhibition of catecholamine synthesis from day 11 of embryogenesis led to an increasing number of GnRH neurons in rostral regions of the trajectory of their migration over the brain: in the area of olfactory tubercles on day 17 and in the area of olfactory bulb on days 18 and 21. In addition, the optical density of GnRH neurons located in the rostral regions of migration was higher in the fetuses after administration of alpha-methylparatyrosine during embryogenesis, as compared to the control. It has been concluded that catecholamines stimulate the migration of GnRH neurons and affect their differentiation.  相似文献   

12.
Olfactory placodes, that give rise to the olfactory and respiratory epithelia during ontogenesis, are a source of many neurons migrating into forebrain in the direction of growth of the olfactory nerves. The neurons expressing gonadotropin releasing hormone (GnRH) are among the best studied in the population in question. This hormone is responsible for the central regulation of reproduction in adult animals. It was already shown that, in addition to the GnRH-immunoreactive neurons, a small amount of neurons expressing tyrosine hydroxylase (TH), the first enzyme of catecholamine synthesis, migrates into the forebrain. Such a transient population of TH-immunoreactive neurons was shown by means of single and double immmunohistochemical labeling. The TH neurons were first found on branches of the olfactory, terminal, and vomeronasal nerves, along the trajectory of migration of GnRH-immunoreactive neurons on day 15 of embryogenesis, which preceded the appearance of GnRH-immunoreactive neurons. On days 17-21 of embryogenesis, both populations of neurons were found in almost the same areas and on day 21 single neurons contained both GnRH and TH. There were no neurons expressing decarboxylase of aromatic acids (DAA), the second enzyme of catecholamine synthesis, among TH-immunoreactive neurons, thus suggesting noncatecholaminergic nature of these neurons. However, single nonenzymatic DAA-immunoreactive neurons were found in the area of anterior olfactory nuclei in the forebrain, which suggests their involvement in local cooperative synthesis of catecholamines in the area where GnRH-immunoreactive neurons penetrate in the forebrain. Thus, the neurons expressing TH, TH and GnRH, and DAA were found in rats during prenatal period in the nasal part of the head along the nerves projecting into the forebrain and in the rostral part of forebrain. The origin and functional significance of these neurons are discussed.  相似文献   

13.
Transuterine migration of bovine embryos following fertilization in vivo is apparently rare, but little is known about migration following embryo transfer. We studied heifers receiving either 1 or 2 in vitro produced embryos to determine 1) the incidence of transuterine migration, 2) the timing of migration and 3) the random or systematic occurrence of the event. In 4 experiments, 436 heifers received embryos and 218 of these were pregnant at necroscopy on either Day 14, Day 18, Day 26 or Day 60 of pregnancy. Overall, 43/218 (20%) of the heifers had embryos that had migrated. The frequency of migration was higher in twin (30/68) than in single (13/150) embryo transfers of pregnant recipients (44 vs 9%; P<0.001), and in contralateral (9/15) than in ipsilateral (33/170) transfers (60 vs 19%; P<0.001). Among the heifers that received embryos by ipsilateral transfer, the migration rate was similar to that in heifers pregnant with a singleton after the transfer of either 1 (2/48) or 2 (4/60) embryos (4 vs 7%, NS). The migration rate was highest at Day 26 (12/37) in heifers receiving twin embryos by ipsilateral transfer but was similar at all other stages of pregnancy (15/111, 32 vs 14%; P<0.01). Migration was first observed by Day 14, and it appears that either further migration occurred over the next 12 d or that migration was associated with a higher survival rate from Day 14 to Day 26. The low migration rate evident at Day 60 suggests that migration by Day 26 was associated with increased embryo or fetal death by Day 60. The data suggest that embryo migration is probably independent for each of a pair of surviving embryos. We conclude that in cattle embryo migration is embryo-dependent, but this capability is dormant unless more than 1 embryo is present in a uterine horn or the embryos are transferred to the contralateral uterine horn. The relationship between migration and embryo survival remains unclear.  相似文献   

14.
Kallmann syndrome (KAL) associates hypogonadotropic hypogonadism and anosmia, i.e. a deficiency of the sense of smell. Anosmia is related to the absence or the hypoplasia of the olfactory bulbs. Hypogonadism is due to GnRH deficiency, and is likely to result from the failed embryonic migration of GnRH-synthesizing neurons. These cells normally migrate from the olfactory epithelium to the forebrain along the olfactory nerve pathway. Kallmann syndrome is genetically heterogeneous. The gene responsible for the X-chromosome linked form of the disease, KAL-1, has been identified in 1991. KAL1 encodes a ~95 kDa glycoprotein of unknown function, which is present locally in various extracellular matrices during the period of organogenesis. The recent finding that FGFR1 mutations are involved in an autosomal dominant form of Kallmann syndrome (KAL-2), combined to the analysis of mutant mouse embryos that no longer express Fgfr1 in the telencephalon, suggests that the disease results from a deficiency in FGF-signaling at the earliest stage of olfactory bulb morphogenesis. We propose that the role of the KAL1 gene product, the extracellular matrix protein anosmin-1, is to enhance FGF-signaling, and suggest that the gender difference in anosmin-1 dosage (because KAL1 partially escapes X-inactivation) explains the higher prevalence of the disease in males.  相似文献   

15.
The current study reports for the first time the distribution of tyrosine hydroxylase immunoreactive (TH-ir) neurons in the forebrain of the guppy Poecilia reticulata . Numerous small TH-ir neurons were observed in the olfactory bulbs, located mainly in the periphery of the bulbs. The TH-ir telencephalic neurons are localized in the ventral telencephalic area where they are grouped in three distinct nuclei (Vv,Vd and Vp) composed of a small number of cells forming a continuous strip. The largest number of forebrain TH-ir neurons was observed in the diencephalon where both small and larger neurons are present. Diencephalic TH-ir neurons are subdivided in large nuclei located in the preoptic region (nSC, nPOp and nPOm), the thalamus (nDM), the pretectal region (nPPv and nAP), the hypothalamus (nPP and nRP) and the posterior tuberculum (nPT). Many diencephalic nuclei are distributed in periventricular regions and no TH-ir cells were observed in the paraventricular organ. A comparative analysis indicates that the present observations are consistent with the general pattern of TH-ir neurons distribution reported for the forebrain of other teleosts, but with some interspecies variability present, mainly in the diencephalon. This paper also provides valuable neuroanatomical information for P. reticulata , a teleost frequently used in toxicological tests, for future studies investigating the effects of environmental pollutants on the catecholaminergic system.  相似文献   

16.
Olfactory placodes, that give rise to the olfactory and respiratory epithelia during ontogenesis, are a source of many neurons migrating into forebrain in the direction of growth along the olfactory nerves. The neurons expressing gonadotropin releasing hormone (GnRH) are among the best studied in the population in question. This hormone is responsible for the central regulation of reproduction in adult animals. It was already shown that, in addition to the GnRH-immunoreactive neurons, a small amount of neurons expressing tyrosine hydroxylase (TH), the first enzyme of catecholamine synthesis, migrates into the forebrain. Such a transient population of TH-immunoreactive neurons was shown by means of single and double immmunohistochemical labeling. The TH neurons were first found on branches of the olfactory, terminal, and vomeronasal nerves, along the trajectory of migration of GnRH-immunoreactive neurons on day 15 of embryogenesis, which preceded the appearance of GnRH-immunoreactive neurons. On days 17–21 of embryogenesis, both populations of neurons were found in almost the same areas and on day 21 single neurons contained both GnRH and TH. There were no neurons expressing decarboxylase of aromatic amino acids (DAA), the second enzyme of catecholamine synthesis, among TH-immunoreactive neurons, thus suggesting noncatecholaminergic nature of these neurons. However, single nonenzymatic DAA-immunoreactive neurons were found in the area of anterior olfactory nuclei in the forebrain, which suggests their involvement in local cooperative synthesis of catecholamines in the area where GnRH-immunoreactive neurons penetrate in the forebrain. Thus, the neurons expressing TH, TH and GnRH, and DAA were found in rats during prenatal period in the nasal part of the head along the nerves projecting into the forebrain. The origin and functional significance of these neurons are discussed.  相似文献   

17.
Reelin, an extracellular glycoprotein is essential for migration and correct positioning of neurons during development. Since the olfactory system is known as a source of various migrating neuronal cells, we studied Reelin expression in the two chemosensory olfactory systems, main and accessory, during early developmental stages of human foetuses/embryos from Carnegie Stage (CS) 15 to gestational week (GW) 14. From CS 15 to CS 18, but not at later stages, a transient expression of Reelin was detected first in the presumptive olfactory and then in the presumptive vomeronasal epithelium. During the same period, Reelin-positive cells detach from the olfactory/vomeronasal epithelium and migrate through the mesenchyme beneath the telencephalon. Dab 1, an adaptor protein of the Reelin pathway, was simultaneously expressed in the migratory mass from CS16 to CS17 and, at later stages, in the presumptive olfactory ensheathing cells. Possible involvements of Reelin and Dab 1 in the peripheral migrating stream are discussed.  相似文献   

18.
Gonadotropin-releasing hormone (GnRH) neurons are born in the nasal placode and migrate along olfactory and vomeronasal axons to reach the forebrain and settle in the hypothalamus, where they control reproduction. The molecular cues that guide their migration have not been fully identified, but are thought to control either cell movement directly or the patterning of their axonal substrates. Using genetically altered mouse models we show that the migration of GnRH neurons is directly modulated by Slit2 and Robo3, members of the axon guidance Slit ligand and Robo receptor families. Mice lacking Slit2 or Robo3 have a reduced number of GnRH neurons in the forebrain, but a normal complement of their supporting axons, pointing to a direct role for these molecules in GnRH neuron migration.  相似文献   

19.
During embryogenesis, LHRH neurons arise in the olfactory epithelium, migrate along the olfactory nerve, and enter the forebrain. We have examined the distribution of several cell adhesion molecules (CAMs) in the developing chick olfactory system and brain to determine whether differential distributions of these adhesion molecules might be important in pathway choices made by migrating LHRH neurons. Single- and double-label immunocytochemical studies indicated that high levels of N-CAM and N-cadherin were expressed throughout the olfactory epithelium and not restricted to the medial half of the olfactory epithelium where most of the LHRH neurons originate. Further, high levels of N-CAM, Ng-CAM, and N-cadherin were uniformly expressed throughout the entire olfactory nerve while migrating LHRH neurons were confined to the medial half of the nerve. However, once LHRH neurons reach the brain, they migrate dorsally and caudally, tangential to the medial surface of the forebrain, along a region enriched in N-CAM and Ng-CAM. After this first stage of migration within the brain, LHRH neurons migrate laterally. At this stage, there is no correlation between the intensity of N-CAM and Ng-CAM immunostaining and the location of LHRH neurons. These results suggest that N-CAM, Ng-CAM, and N-cadherin do not play a guiding role in LHRH neuronal migration through the olfactory epithelium and olfactory nerve but that migrating LHRH neurons may follow a "CAM-trail" of N-CAM and Ng-CAM along the medial surface of the forebrain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号