首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mature osteoclasts have an increased citric acid cycle and mitochondrial respiration to generate high ATP production and ultimately lead to bone resorption. However, changes in metabolic pathways during osteoclast differentiation have not been fully illustrated. We report that glycolysis and oxidative phosphorylation characterized by glucose and oxygen consumption as well as lactate production were increased during receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis from RAW264.7 and bone marrow-derived macrophage cells. Cell proliferation and differentiation varied according to glucose concentrations (0 to 100 mM). Maximal cell growth occurred at 20 mM glucose concentration and differentiation occurred at 5 mM concentration. Despite the similar growth rates exhibited when cultured cells were exposed to either 5 mM or 40 mM glucose, their differentiation was markedly decreased in high glucose concentrations. This finding suggests the possibility that osteoclastogenesis could be regulated by changes in metabolic substrate concentrations. To further address the effect of metabolic shift on osteoclastogenesis, we exposed cultured cells to pyruvate, which is capable of promoting mitochondrial respiration. Treatment of pyruvate synergistically increased osteoclastogenesis through the activation of RANKL-stimulated signals (ERK and JNK). We also found that osteoclastogenesis was retarded by blocking ATP production with either the inhibitors of mitochondrial complexes, such as rotenone and antimycin A, or the inhibitor of ATP synthase, oligomycin. Taken together, these results indicate that glucose metabolism during osteoclast differentiation is accelerated and that a metabolic shift towards mitochondrial respiration allows high ATP production and induces enhanced osteoclast differentiation.  相似文献   

2.
We previously demonstrated that mitochondrial bioenergetic deficits in the female brain accompanied reproductive senescence and was accompanied by a shift from an aerobic glycolytic to a ketogenic phenotype. Herein, we investigated the relationship between systems of fuel supply, transport and mitochondrial metabolic enzyme expression/activity during aging (3–15 months) in the hippocampus of nontransgenic (nonTg) background and 3xTgAD female mice. Results indicate that during female brain aging, both nonTg and 3xTgAD brains undergo significant decline in glucose transport, as detected by FDG-microPET, between 6–9 months of age just prior to the transition into reproductive senescence. The deficit in brain metabolism was sustained thereafter. Decline in glucose transport coincided with significant decline in neuronal glucose transporter expression and hexokinase activity with a concomitant rise in phosphorylated/inactivated pyruvate dehydrogenase. Lactate utilization declined in parallel to the decline in glucose transport suggesting lactate did not serve as an alternative fuel. An adaptive response in the nonTg hippocampus was a shift to transport and utilization of ketone bodies as an alternative fuel. In the 3xTgAD brain, utilization of ketone bodies as an alternative fuel was evident at the earliest age investigated and declined thereafter. The 3xTgAD adaptive response was to substantially increase monocarboxylate transporters in neurons while decreasing their expression at the BBB and in astrocytes. Collectively, these data indicate that the earliest change in the metabolic system of the aging female brain is the decline in neuronal glucose transport and metabolism followed by decline in mitochondrial function. The adaptive shift to the ketogenic system as an alternative fuel coincided with decline in mitochondrial function. Translationally, these data provide insights into the earliest events in bioenergetic aging of the female brain and provide potential targets for preventing shifts to less efficient bioenergetic fuels and transition to the ketogenic phenotype of the Alzheimer''s brain.  相似文献   

3.
Mucor genevensis was grown in both glucose-limited and glucose-excess continuous cultures over a range of dissolved oxygen concentrations (<0.1 to 25 muM) to determine the effects of glucose and the influence of metabolic mode (fermentative versus oxidative) on dimorphic transformations in this organism. The extent of differentiation between yeast and mycelial phases has been correlated with physiological and biochemical parameters of the cultures. Under glucose limitation, oxidative metabolism increased as the dissolved oxygen concentration increased, and this paralleled the increase in the proportion of the mycelial phase in the cultures. Filamentous growth and oxidative metabolism were both inhibited by glucose even though mitochondrial development was only slightly repressed. However, the presence of chloramphenicol in glucose-limited aerobic cultures inhibited mitochondrial respiratory development but did not induce yeast-like growth, indicating that oxidative metabolism is not essential for mycelial development. Once mycelial cultures had been established under aerobic, glucose-limited conditions, subsequent reversal to anaerobic conditions or treatment with chloramphenicol caused only a limited reversal (<35%) to the yeast-like form. Glucose, however, induced a complete reversion to yeast-like form. It is concluded that glucose is the most important single culture factor determining the morphological status of M. genevensis; mitochondrial development and the functional oxidative capacities of the cell appear to be less important factors in the differentiation process.  相似文献   

4.
Mitochondria are essential organelles with multiple functions, especially in energy metabolism. Recently, an increasing number of data has highlighted the role of mitochondria for cellular differentiation processes. Metabolic differences between stem cells and mature derivatives require an adaptation of mitochondrial function during differentiation. In this study we investigated alterations of the mitochondrial phenotype of human mesenchymal stem cells undergoing adipogenic differentiation. Maturation of adipocytes is accompanied by mitochondrial biogenesis and an increase of oxidative metabolism. Adaptation of the mt phenotype during differentiation is reflected by changes in the distribution of the mitochondrial network as well as marked alterations of gene expression and organization of the oxidative phosphorylation system (OXPHOS). Distinct differences in the supramolecular organization forms of cytochrome c oxidase (COX) were detected using 2D blue native (BN)-PAGE analysis. Most remarkably we observed a significant increase in the abundance of OXPHOS supercomplexes in mitochondria, emphasizing the change of the mitochondrial phenotype during adipogenic differentiation.  相似文献   

5.
6.
7.
In order to investigate the potential neuroprotective role played by glucose metabolism during brain oxygen deprivation, the susceptibility of cultured neurones and astrocytes to 1 h of oxygen deprivation (hypoxia) or oxygen and glucose deprivation (OGD) was examined. OGD, but not hypoxia, promotes dihydrorhodamine 123 and glutathione oxidation in neurones but not in astrocytes reflecting free radical generation in the former cells. A specific loss of mitochondrial complex-I activity, mitochondrial membrane potential collapse, ATP depletion and necrosis occurred in the OGD neurones, but not in the OGD astrocytes. Furthermore, superoxide anion but not nitric oxide formation was responsible for these effects. OGD decreased neuronal but not astrocytic NADPH concentrations; this was not observed in hypoxia and was independent of superoxide or nitric oxide formation. These results suggest that glucose metabolism would supply NADPH, through the pentose-phosphate pathway, aimed at preventing oxidative stress, mitochondrial damage and neurotoxicity during oxygen deprivation to neural cells.  相似文献   

8.
Cell differentiation is associated with changes in metabolism and function. Understanding these changes during differentiation is important in the context of stem cell research, cancer, and neurodegenerative diseases. An early event in neurodegenerative diseases is the alteration of mitochondrial function and increased oxidative stress. Studies using both undifferentiated and differentiated SH-SY5Y neuroblastoma cells have shown distinct responses to cellular stressors; however, the mechanisms remain unclear. We hypothesized that because the regulation of glycolysis and oxidative phosphorylation is modulated during cellular differentiation, this would change bioenergetic function and the response to oxidative stress. To test this, we used retinoic acid (RA) to induce differentiation of SH-SY5Y cells and assessed changes in cellular bioenergetics using extracellular flux analysis. After exposure to RA, the SH-SY5Y cells had an increased mitochondrial membrane potential, without changing mitochondrial number. Differentiated cells exhibited greater stimulation of mitochondrial respiration with uncoupling and an increased bioenergetic reserve capacity. The increased reserve capacity in the differentiated cells was suppressed by the inhibitor of glycolysis 2-deoxy-d-glucose. Furthermore, we found that differentiated cells were substantially more resistant to cytotoxicity and mitochondrial dysfunction induced by the reactive lipid species 4-hydroxynonenal or the reactive oxygen species generator 2,3-dimethoxy-1,4-naphthoquinone. We then analyzed the levels of selected mitochondrial proteins and found an increase in complex IV subunits, which we propose contributes to the increase in reserve capacity in the differentiated cells. Furthermore, we found an increase in MnSOD that could, at least in part, account for the increased resistance to oxidative stress. Our findings suggest that profound changes in mitochondrial metabolism and antioxidant defenses occur upon differentiation of neuroblastoma cells to a neuron-like phenotype.  相似文献   

9.
Oxidative stress and subsequent impairment of mitochondrial function is implicated in the neurodegenerative process and hence in diseases such as Parkinson's and Alzheimer's disease. Within the brain, neuronal and astroglial cells can display a differential susceptibility to oxidant exposure. Thus, astrocytes can up regulate glutathione availability and, in response to mitochondrial damage, glycolytic flux. Whilst neuronal cells do not appear to possess such mechanisms, neuronal glutathione status may be enhanced due to the trafficking of glutathione precursors from the astrocyte. However, when antioxidants reserves are not sufficient or the degree of oxidative stress is particularly great, mitochondrial damage occurs, particularly at the level of complex IV (cytochrome oxidase). Whilst the exact mechanism for the loss of activity of this enzyme complex is not know, it is possible that loss and/or oxidative modification of the phospholipid, cardiolipin is a critical factor. Consequently, in this short article, we also consider (a) cardiolipin metabolism and function, (b) the susceptibility of this molecule to undergo oxidative modification following exposure to oxidants such as peroxynitrite, (c) loss of mitochondrial cardiolipin in neurodegenerative disorders, (d) methods of detecting cardiolipin and (e) possible therapeutic strategies that may protect cardiolipin from oxidative degradation.  相似文献   

10.
Cultured human myotubes have a low mitochondrial oxidative potential. This study aims to remodel energy metabolism in myotubes by replacing glucose with galactose during growth and differentiation to ultimately examine the consequences for fatty acid and glucose metabolism. Exposure to galactose showed an increased [14C]oleic acid oxidation, whereas cellular uptake of oleic acid uptake was unchanged. On the other hand, both cellular uptake and oxidation of [14C]glucose increased in myotubes exposed to galactose. In the presence of the mitochondrial uncoupler carbonylcyanide p-trifluormethoxy-phenylhydrazone (FCCP) the reserve capacity for glucose oxidation was increased in cells grown with galactose. Staining and live imaging of the cells showed that myotubes exposed to galactose had a significant increase in mitochondrial and neutral lipid content. Suppressibility of fatty acid oxidation by acute addition of glucose was increased compared to cells grown in presence of glucose. In summary, we show that cells grown in galactose were more oxidative, had increased oxidative capacity and higher mitochondrial content, and showed an increased glucose handling. Interestingly, cells exposed to galactose showed an increased suppressibility of fatty acid metabolism. Thus, galactose improved glucose metabolism and metabolic switching of myotubes, representing a cell model that may be valuable for metabolic studies related to insulin resistance and disorders involving mitochondrial impairments.  相似文献   

11.
Hyperglycemia-induced oxidative stress leads to diabetes-associated damage to the microvasculature of the brain. Pericytes in close proximity to endothelial cells in the brain microvessels are vital to the integrity of the blood–brain barrier and are especially susceptible to oxidative stress. According to our recently published results, streptozotocin-diabetic mouse brain exhibits oxidative stress and loose pericytes by twelve weeks of diabetes, and cerebral pericytes cultured in high glucose media suffer intracellular oxidative stress and apoptosis. Oxidative stress in diabetes is hypothesized to be caused by reactive oxygen species (ROS) produced during hyperglycemia-induced enhanced oxidative metabolism of glucose (respiration). To test this hypothesis, we investigated the effect of high glucose on respiration rate and ROS production in mouse cerebral pericytes. Previously, we showed that pharmacological inhibition of mitochondrial carbonic anhydrases protects the brain from oxidative stress and pericyte loss. The high glucose-induced intracellular oxidative stress and apoptosis of pericytes in culture were also reversed by inhibition of mitochondrial carbonic anhydrases. Therefore, we extended our current study to determine the effect of these inhibitors on high glucose-induced increases in pericyte respiration and ROS. We now report that both the respiration and ROS are significantly increased in pericytes challenged with high glucose. Furthermore, inhibition of mitochondrial carbonic anhydrases significantly slowed down both the rate of respiration and ROS production. These data provide new evidence that pharmacological inhibitors of mitochondrial carbonic anhydrases, already in clinical use, may prove beneficial in protecting the brain from oxidative stress caused by ROS produced as a consequence of hyperglycemia-induced enhanced respiration.  相似文献   

12.
The brain E is determined by ratio in rate of processes occuring in two energy compartments--in glycolysis (the more ancient one in evolution) in which glucose is splitted whithout oxygen utilization, and in oxidative metabolism which is younger in evolution than glycolysis and more effective than glycolysis. In the present investigation, the brain cortex E changes were recorded with implanted platinum electrodes. CDR was established by combination of light and electric shock applied to the left ear. It has been found that the combinations started to be accompanied by the E shift after the first 5-20 combinations. The E shifts were widely generalized over the cortex, and both increasing and decreasing E were well expressed within 50-200 combinations. As the number of combination increased, the increases in E were gradually replaced by the decreases in E. This dynamic in the balance of the major sources of the brain energy supply during the formation of CDR demonstrates, in our opinion, that subcellular structures or complexes of cells which appeared at the same stages of evolution as the compartment of oxidative metabolism make a significant contribution to the CDR acquisition when memory traces are created, while brain function during realization of well consolidated CDR are supported mainly by glycolysis.  相似文献   

13.
The availability of glucose and oxygen are important regulatory elements that help directing stem cell fate. In the undifferentiated state, stem cells, and their artificially reprogrammed equivalent-induced pluripotent stem cells (iPS) are characterized by limited oxidative capacity and active anaerobic glycolysis. Recent studies have shown that pluripotency—a characteristic of staminality—is associated with a poorly developed mitochondrial patrimony, while differentiation is accompanied by an activation of mitochondrial biogenesis. Besides being an important energy source in hypoxia, high glucose level results in hyperosmotic stress. The identification of specific metabolic pathways and biophysical factors that regulate stem cell fate, including high glucose in the extracellular medium, may therefore facilitate reprogramming efficiency and control the differentiation and fate of iPS cells, which are increasingly being explored as therapeutic tools. In this article, we review recent knowledge of the role of glucose metabolism and high glucose level as major anaerobic energy source, and a determinant of osmolarity as possible tools for reprogramming therapies in clinical applications. As in the diabetic setting hyperglycemia negatively affect the stem/progenitor cell fate and likely somatic reprogramming, we also discuss the in vivo potential transferability of the available in vitro findings.  相似文献   

14.
Mitochondrial biogenesis and metabolism have recently emerged as important actors of stemness and differentiation. On the one hand, the differentiation of stem cells is associated with an induction of mitochondrial biogenesis and a shift from glycolysis toward oxidative phosphorylations (OXPHOS). In addition, interfering with mitochondrial biogenesis or function impacts stem cell differentiation. On the other hand, some inverse changes in mitochondrial abundance and function are observed during the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). Yet although great promises in cell therapy might generate better knowledge of the mechanisms regulating the stemness and differentiation of somatic stem cells (SSCs)—which are preferred over embryonic stem cells (ESCs) and iPSCs because of ethical and safety considerations—little interest was given to the study of their mitochondria. This study provides a detailed characterization of the mitochondrial biogenesis occurring during the hepatogenic differentiation of bone marrow-mesenchymal stem cells (BM-MSCs). During the hepatogenic differentiation of BM-MSCs, an increased abundance of mitochondrial DNA (mtDNA) is observed, as well as an increased expression of several mitochondrial proteins and biogenesis regulators, concomitant with increased OXPHOS activity, capacity, and efficiency. In addition, opposite changes in mitochondrial morphology and in the abundance of several OXPHOS subunits were found during the spontaneous dedifferentiation of primary hepatocytes. These data support reverse mitochondrial changes in a different context from genetically-engineered reprogramming. They argue in favor of a mitochondrial involvement in hepatic differentiation and dedifferentiation.  相似文献   

15.
16.
Alzheimer's is a neurodegenerative disease with a complex and progressive pathological phenotype characterized first by hypometabolism and impaired mitochondrial bioenergetics followed by pathological burden. Increasing evidence indicates an antecedent and potentially causal role of mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress in AD pathogenesis. Compromised mitochondrial bioenergetics lead to over-production of and mitochondrial accumulation of β-amyloid, which is coupled with oxidative stress. Collectively, this results in a shift in brain metabolic profile from glucose-driven bioenergetics towards a compensatory, but less efficient, ketogenic pathway. We propose that the compensatory shift from a primarily aerobic glycolysis pathway to a ketogenic/fatty acid β-oxidation pathway eventually leads to white matter degeneration. The essential role of mitochondrial bioenergetics and the unique trajectory of compensatory metabolic adaptations in brain enable a bioenergetic-centric strategy for development of biomarkers. From a therapeutic perspective, this trajectory of alterations in brain metabolic capacity enables disease-stage specific strategies to target brain metabolism for disease prevention and treatment. A combination of nutraceutical and pharmaceutical interventions that enhance glucose-driven metabolic activity and potentiate mitochondrial bioenergetic function could prevent the antecedent decline in brain glucose metabolism, promote healthy aging and prevent AD. Alternatively, during the prodromal incipient phase of AD, sustained activation of ketogenic metabolic pathways coupled with supplementation of the alternative fuel source, ketone bodies, could sustain mitochondrial bioenergetic function to prevent or delay further progression of the disease.  相似文献   

17.
18.
Yeast lacking copper-zinc superoxide dismutase (sod1?) have a number of oxygen-dependent defects, including auxotrophies for lysine and methionine and sensitivity to oxygen. Here we report additional defects in metabolic regulation. Under standard growth conditions with glucose as the carbon source, yeast undergo glucose repression in which mitochondrial respiration is deemphasized, energy is mainly derived from glycolysis, and ethanol is produced. When glucose is depleted, the diauxic shift is activated, in which mitochondrial respiration is reemphasized and stress resistance increases. We find that both of these programs are adversely affected by the lack of Sod1p. Key events in the diauxic shift do not occur and sod1? cells do not utilize ethanol and stop growing. The ability to shift to growth on ethanol is gradually lost as time in culture increases. In early stages of culture, sod1? cells consume more oxygen and have more mitochondrial mass than wild-type cells, indicating that glucose repression is not fully activated. These changes are at least partially dependent on the activity of the Hap2,3,4,5 complex, as indicated by CYC1-lacZ reporter assays. These changes may indicate a role for superoxide in metabolic signaling and regulation and/or a role for glucose derepression in defense against oxidative stress.  相似文献   

19.
Myogenesis induces mitochondrial proliferation, a decrease in reactive oxygen species (ROS) production, and an increased reliance upon oxidative phosphorylation. While muscles typically possess 20%-40% excess capacity of cytochrome c oxidase (COX), undifferentiated myoblasts have only 5%-20% of the mitochondrial content of myotubes and muscles. We used two muscle lines (C2C12, Sol8) and 3T3-L1 pre-adipocytes to examine if changes in COX regulation or activity with differentiation cause a shift in metabolic phenotype (i.e., more oxidative, less glycolytic, less ROS). COX activity in vivo can be suppressed by its inhibitor, nitric oxide, or sub-optimal substrate (cytochrome c) concentrations. Inhibition of nitric oxide synthase via L-NAME had no effect on the respiration of adherent undifferentiated cells, although it did stimulate respiration of myoblasts in suspension. While cytochrome c content increased during differentiation, there was no correlation with respiratory rate or reliance on oxidative metabolism. There was no correlation between COX specific activity and oxidative metabolism between cell type or in relation to differentiation. These studies show that, despite the very low activities of COX, undifferentiated myoblasts and pre-adipocytes possess a reserve of COX capacity and changes in COX with differentiation do not trigger the shift in metabolic phenotype.  相似文献   

20.
A quantitative proteomic analysis of changes in protein expression accompanying the differentiation of P19 mouse embryonal carcinoma cells into neuron-like cells using isobaric tag technology coupled with LC-MS/MS revealed protein changes reflecting withdrawal from the cell cycle accompanied by a dynamic reorganization of the cytoskeleton and an up-regulation of mitochondrial biogenesis. Further study of quantitative changes in abundance of individual proteins in a purified mitochondrial fraction showed that most mitochondrial proteins increased significantly in abundance. A set of chaperone proteins did not participate in this increase, suggesting that neuron-like cells are relatively deficient in mitochondrial chaperones. We developed a procedure to account for differences in recovery of mitochondrial proteins during purification of organelles from distinct cell or tissue sources. Proteomic data supported by RT-PCR analysis suggests that enhanced mitochondrial biogenesis during neuronal differentiation may reflect a large increase in expression of PGC-1alpha combined with down-regulation of its negative regulator, p160 Mybbp1a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号