首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human C-reactive protein (CRP), as a mediator of innate immunity, removed damaged cells by activating the classical complement pathway. Previous studies have successfully demonstrated that CRPs are differentially induced as glycosylated molecular variants in certain pathological conditions. Affinity-purified CRPs from two most prevalent diseases in India viz. tuberculosis (TB) and visceral leishmaniasis (VL) have differential glycosylation in their sugar composition and linkages. As anemia is a common manifestation in TB and VL, we assessed the contributory role of glycosylated CRPs to influence hemolysis via CRP-complement-pathway as compared to healthy control subjects. Accordingly, the specific binding of glycosylated CRPs with erythrocytes was established by flow-cytometry and ELISA. Significantly, deglycosylated CRPs showed a 7–8-fold reduced binding with erythrocytes confirming the role of glycosylated moieties. Scatchard analysis revealed striking differences in the apparent binding constants (104–105 M−1) and number of binding sites (106–107sites/erythrocyte) for CRP on patients’ erythrocytes as compared to normal. Western blotting along with immunoprecipitation analysis revealed the presence of distinct molecular determinants on TB and VL erythrocytes specific to disease-associated CRP. Increased fragility, hydrophobicity and decreased rigidity of diseased-erythrocytes upon binding with glycosylated CRP suggested membrane damage. Finally, the erythrocyte-CRP binding was shown to activate the CRP-complement-cascade causing hemolysis, even at physiological concentration of CRP (10 μg/ml). Thus, it may be postulated that CRP have a protective role towards the clearance of damaged-erythrocytes in these two diseases.  相似文献   

2.
The effect of savory essential oil added with drinking water (150 ng/ml) or with feed (2.5 μg/g) on the lifetime of AKR mice and the parameters of oxidative stress in animal blood were investigated. It was found for the first time that long-term administration of an essential oil in low doses increased the average lifetime of mice by 20–35% and was accompanied by a decrease in the hemolysis level and the content of lipid peroxidation products in erythrocytes of mice, as well as alteration in the structural state of their membranes and stabilization of polyunsaturated fatty acids level in mice liver cells.  相似文献   

3.
Saponins are a class of compounds containing a triterpenoid or steroid core with some attached carbohydrate modules. Many saponins cause hemolysis. However, the hemolytic mechanism of saponins at the molecular level is not yet fully understood. In an attempt to explore this issue, we have studied dioscin—a saponin with high hemolytic activity—through extensive molecular dynamics (MD) simulations. Firstly, all-atom MD simulations of 8 ns duration were conducted to study the stability of the dioscin–cholesterol complex and the cholesterol–cholesterol complex in water and in decane, respectively. MM-GB/SA computations indicate that the dioscin–cholesterol complex is energetically more favorable than the cholesterol–cholesterol complex in a non-polar environment. Next, several coarse-grained MD simulations of 400 ns duration were conducted to directly observe the distribution of multiple dioscin molecules on a DPPC-POPC-PSM-CHOL lipid bilayer. Our results indicate that dioscin can penetrate into the lipid bilayer, accumulate in the lipid raft micro-domain, and then bind cholesterol. This leads to the destabilization of lipid raft and consequent membrane curvature, which may eventually result in the hemolysis of red cells. This possible mechanism of hemolysis can well explain some experimental observations on hemolysis.  相似文献   

4.
Haematological and biochemical studies were conducted on 12 clinically healthy tigers of Central India. The range and mean (with one standard deviation), respectively for the parameters examined were: red blood cells, 4.66 to 9.15, 7.9 ± 1.42, 106/μl; haemoglobin, 7.8 to 13.8, 12.8 ± 1.65 g/dl; packed cell volume, 36 to 45, 38 ± 2.54; icterus index, 2 to 5, 2 ± 1.51 U; erythrocyte sedimentation rate, 14 to 26, 21 ± 4.21 mm at 1 h; white blood cells, 6.2 to 11.05, 8.5 ± 1.49, 103/μl; neutrophils, 57 to 75, 60 ± 5.08%; lymphocytes, 18 to 35, 30 ± 4.56%; monocytes, 2 to 6, 5 ± 1.21%; eosinophils, 2 to 6, 4 ± 1.3; basophils, 0 to 4, 1 ± 1.21; plasma albumin, 2.1 to 4.6, 3.5 ± 0.99 mg/dl; total protein, 3.7 to 8.7, 6.4 ± 1.88 mg/dl; total bilirubin, 0.4 to 3.2, 1.9 ± 1.21 mg/dl; creatinine, 1.6 to 4.6, 2.90 ± 1.03 mg/dl; blood urea nitrogen, 6.5 to 48.2, 27.90 ± 13.77 mg/dl; glutamic pyruvic transaminase, 21.2 to 109.0, 67.88 ± 27.84 IU/L and glutamic oxaloacetate transaminase, 14.4 to 84, 57.96 ± 17.27 IU/L; index conspicuous erythrocyte sedimentation rate; absence of reticulocytes and predominance of neutrophils.  相似文献   

5.
In this work, a recombinant Escherichia coli was constructed by overexpressing glucosamine (GlcN) synthase and GlcN-6-P N-acetyltransferase for highly efficient production of GlcN and N-acetylglucosamine (GlcNAc). For further enhancement of GlcN and GlcNAc production, the effects of different glucose feeding strategies including constant-rate feeding, interval feeding, and exponential feeding on GlcN and GlcNAc production were investigated. The results indicated that exponential feeding resulted in relatively high cell growth rate and low acetate formation rate, while constant feeding contributed to the highest specific GlcN and GlcNAc production rate. Based on this, a multistage glucose supply approach was proposed to enhance GlcN and GlcNAc production. In the first stage (0–2 h), batch culture with initial glucose concentration of 27 g/l was conducted, whereas the second culture stage (2–10 h) was performed with exponential feeding at μ set = 0.20 h−1, followed by feeding concentrated glucose (300 g/l) at constant rate of 32 ml/h in the third stage (10–16 h). With this time-variant glucose feeding strategy, the total GlcN and GlcNAc yield reached 69.66 g/l, which was enhanced by 1.59-fold in comparison with that of batch culture with the same total glucose concentration. The time-dependent glucose feeding approach developed here may be useful for production of other fine chemicals by recombinant E. coli.  相似文献   

6.
The purpose of this study was to examine the stability of biopolymer particles formed by heating electrostatic complexes of β-lactoglobulin and sugar beet pectin together (pH 5, 80 °C for 15 min). The effects of electrostatic interactions on the formation and stability of the particles were investigated by incorporation of different salt levels (0 to 200 mM NaCl) during the preparation procedure. Biopolymer particles were characterized by turbidity, electrophoretic mobility, dynamic light scattering, and visual observance. Salt inclusion (≥25 mM) prior to heating β-lactoglobulin/pectin complexes led to the formation of large biopolymer particles (d > 1,000 nm) that rapidly sedimented, but salt inclusion after heating (0 to 200 mM) led to the formation of biopolymer particles that remained relatively small (d < 350 nm) and were stable to sedimentation. The biopolymer particles formed in the absence of salt remained stable over a wide range of pH values (e.g., pH 3 to 7 in the presence of 200 mM NaCl). These biopolymer particles may therefore be suitable for application in a number of food products as delivery systems, clouding agents, or texture modifiers.  相似文献   

7.
The age/density-dependent decrease in K-Cl cotransport (KCC), PP1 and PP2A activities in normal and sickle human erythrocytes, and the effect of urea, a known KCC activator, were studied using discontinuous, isotonic gradients. In normal erythrocytes, the densest fraction (d 33.4 g/dl) has only about 5% of the KCC and 4% of the membrane (mb)-PP1 activities of the least-dense fraction (d 24.7 g/dl). In sickle and normal erythrocytes, density-dependent decreases for mb-PP1 activity were similar (d50% 28.1 ± 0.4 vs. 27.2 ± 0.2 g/dl, respectively), whereas those for KCC activity were not (d50% 31.4 ± 0.9 vs. 26.8 ± 0.3 g/dl, respectively, P = 0.004). Excluding the 10% least-dense cells, a very tight correlation exists between KCC and mb-PP1 activities in normal (r2 = 0.995) and sickle erythrocytes (r2 = 0.93), but at comparable mb-PP1 activities, KCC activity is higher in sickle erythrocytes, suggesting a defective, mb-PP1-independent KCC regulation. In normal, least-dense but not in densest cells, urea stimulates KCC (two- to fourfold) and moderately increases mb-PP1 (20–40%). Thus mb-PP1 appears to mediate part of urea-stimulated KCC activity. phosphorylation; protein phosphatase; urea; cell size; density  相似文献   

8.
Quan GB  Han Y  Liu MX  Fang L  Du W  Ren SP  Wang JX  Wang Y 《Cryobiology》2011,(2):135-144
Although incubation with glucose before freezing can increase the recovery of human red blood cells frozen with polymer, this method can also result in membrane lesions. This study will evaluate whether addition of oligosaccharide (trehalose, sucrose, maltose, or raffinose) can improve the quality of red blood cell membrane after freezing in the presence of glucose and dextran. Following incubation with glucose or the combinations of glucose and oligosaccharides for 3 h in a 37 °C water bath, red blood cells were frozen in liquid nitrogen for 24 h using 40% dextran (W/V) as the extracellular protective solution. The postthaw quality was assessed by percent hemolysis, osmotic fragility, mean corpuscle volume (MCV), distribution of phosphatidylserine, the postthaw 4 °C stability, and the integrity of membrane. The results indicated the loading efficiency of glucose or oligosaccharide was dependent on their concentrations. Moreover, addition of trehalose or sucrose could efficiently decrease osmotic fragility of red blood cells caused by incubation with glucose before freezing. The percentage of damaged cell following incubation with glucose was 38.04 ± 21.68% and significantly more than that of the unfrozen cells (0.95 ± 0.28%, P < 0.01). However, with the increase of the concentrations of trehalose, the percentages of damaged cells were decreased steadily. When the concentration of trehalose was 400 mM, the percentage of damaged cells was 1.97 ± 0.73% and similar to that of the unfrozen cells (P > 0.05). Moreover, similar to trehalose, raffinose can also efficiently prevent the osmotic injury caused by incubation with glucose. The microscopy results also indicated addition of trehalose could efficiently decrease the formation of ghosts caused by incubation with glucose. In addition, the gradient hemolysis study showed addition of oligosaccharide could significantly decrease the osmotic fragility of red blood cells caused by incubation with glucose. After freezing and thawing, when both glucose and trehalose, sucrose, or maltose were on the both sides of membrane, with increase of the concentrations of sugar, the percent hemolysis of frozen red blood cells was firstly decreased and then increased. When the total concentration of sugars was 400 mM, the percent hemolysis was significantly less than that of cells frozen in the presence of dextran and in the absence of glucose and various oligosaccharides (P < 0.01). However, when both glucose and trehalose were only on the outer side of membrane, with increase of the concentrations of sugars, the percent hemolysis was increased steadily. Furthermore, addition of oligosaccharides can efficiently decrease the osmotic fragility and exposure of phosphatidylserine of red blood cells frozen with glucose and dextran. In addition, trehalose or raffinose can also efficiently mitigate the malignant effect of glucose on the postthaw 4 °C stability of red blood cells frozen in the presence of dextran. Finally, addition of trehalose can efficiently protect the integrity of red blood cell membrane following freezing with dextran and glucose. In conclusion, addition of oligosaccharide can efficiently reduce lesions of freezing on red blood cell membrane in the presence of glucose and dextran.  相似文献   

9.
Efficient conversion of hexose and pentose (glucose and xylose) by a single strain is a very important factor for the production of industrially important metabolites using lignocellulose as the substrate. The kinetics of growth and polyol production by Debaryomyces nepalensis NCYC 3413 was studied under single and mixed substrate conditions. In the presence of glucose, the strain produced ethanol (35.8 ± 2.3 g/l), glycerol (9.0 ± 0.2 g/l), and arabitol (6.3 ± 0.2 g/l). In the presence of xylose, the strain produced xylitol (38 ± 1.8 g/l) and glycerol (18 ± 1.0 g/l) as major metabolites. Diauxic growth was observed when the strain was grown with different combinations of glucose/xylose, and glucose was the preferred substrate. The presence of glucose enhanced the conversion of xylose to xylitol. By feeding a mixture of glucose at 100 g/l and xylose at 100 g/l, it was found that the strain produced a maximum of 72 ± 3 g/l of xylitol. A study of important enzymes involved in the synthesis of xylitol (xylose reductase (XR) and xylitol dehydrogenase (XDH)), glycerol (glycerol-3-phosphate dehydrogenase (G3PDH)) and ethanol (alcohol dehydrogenase (ADH)) in cells grown in the presence of glucose and xylose revealed high specific activity of G3PDH and ADH in cells grown in the presence of glucose, whereas high specific activity of XR, XDH, and G3PDH was observed in cells grown in the presence of xylose. To our knowledge, this is the first study to elaborate the glucose and xylose metabolic pathway in this yeast strain.  相似文献   

10.
This study is focused on the effect of the antifungal drug clotrimazole (CLT), also possessing anti-malarial and anticancer activities, on hemin-induced hemolysis and changes in ion permeability and filter-ability of human erythrocytes. In the presence of 10 μM clotrimazole, the hemolytic response of erythrocytes to exogenous hemin at concentrations as low as 2–8 μM was considerably potentiated and their filterability, as measured by passing them through a 5-μm nuclepore filter, dropped sharply. Flavonoids quercetin (Q) and taxifolin (DHQ), unlike the standard antioxidant Trolox, abolished the effects of clotrimazole, suggesting that protection of hemin-treated erythrocytes by flavonoids is not related to their antioxidant properties.  相似文献   

11.
Escherichia coli strain HS3, metabolically engineered to have Met, AHVr, IleL and AECr characteristics, produced 58.0 g/l of l-threonine, but it was neither salt-tolerant nor osmotolerant; and the growth and threonine production of the strain were severely inhibited both by the addition of NaCl with a concentration higher than 2% and by the presence of glucose with a concentration higher than 10%. Therefore, salt-tolerant mutants were isolated. The salt-tolerant mutants, HS454 and HS528 which were derived from strain HS3, were both tolerant to salt (2%) and hyperproductive. The growth and l-threonine production by the mutant strain HS454 were almost unaffected by a glucose concentration lower than 10%, but gradually reduced with increasing glucose concentration, up to 15%. However, the mutant strain HS528 showed slightly enhanced growth and l-threonine production with increasing glucose concentration, up to 10–12.5%. Strains HS454 and HS528 produced 69.8 g/l and 74.0 g/l of l-threonine, respectively in a 5-l jar fermentor. Received: 21 January 2000 / Received revision: 31 March 2000 / Accepted: 5 May 2000  相似文献   

12.
The packed cell volume (PCV), hemoglobin concentration (g/dl) and mean corpuscular volume (MCV) in the Australian lungfish, Neoceratodus fosteri, and in one of three Australian osteoglossids, Scleropages schneichardti, were 32.3 and 29.9; 10.5 and 10.0; and 407 and 176 micron 3 respectively. Total acid-soluble phosphates (TPi) from the red blood cells (RBC) of the lungfish and osteoglossid were 35.3 and 18.1 mumol/cm3 RBC respectively. Inorganic phosphate (Pi), adenosine triphosphate (ATP) and guanosine triphosphate (GTP) represented 16.4, 39.7 and 17.8% of the cell phosphates in the lungfish respectively. Inositol bisphosphate was not present in extracts of the red cells of N. fosteri, in contrast to the red cells of Lepidosiren paradoxa and Protopterus aethiopicus, in which it was first observed. In the osteoglossid, Pi and ATP represented 37.6 and 46.4% of the erythrocyte phosphate, respectively, with only traces of GTP present. ATP is the predominant organic phosphate in the red cells of both species. The osmotic fragility of erythrocytes of N. fosteri are quite resistant to hemolysis, with hemolysis beginning at 35-30 mM and a complete hemolysis occurring at 20 mM NaCl. The red cells of S. schneichardti begin to hemolyze at 95-90 mM with hemolysis continuing to completion at 60 mM NaCl.  相似文献   

13.
Nanosilver of 10-nm size was prepared by the NaBH4–sodium citrate procedure, and it was modified by a single-strand DNA (ssDNA) aptamer to fabricate an AgssDNA probe for melamine. The probe was stabile at pH 7.0 Na2HPO4–NaH2PO4 buffer solutions and in the presence of 25.0 mmol/L NaCl. Upon the addition of melamine, it interacted with the probe to aggregate big clusters, which led to the resonance scattering (RS) intensity at 470 nm increasing greatly. Under the selected conditions, the increased RS intensity (ΔI 470 nm) is linear to melamine concentration in the range of 6.31–378.4 μg/L, with a regression equation of DI470 nm = 1.124c + 10.8 \Delta {I_{{47}0{\rm{ nm}}}} = {1}.{124}c + { 10}.{8} and a detection limit of 3.1 μg/L. The aptamer-modified nanosilver RS assay has been applied for the determination of melamine in milk, with satisfactory results.  相似文献   

14.
15.
The influence of the carbon oxidation–reduction state (CORS) of organic pollutants on their biodegradation in enclosed algal–bacterial photobioreactors was evaluated using a consortium of enriched wild-type methanotrophic bacteria and microalgae. Methane, methanol and glucose (with CORS −4, −2 and 0, respectively) were chosen as model organic pollutants. In the absence of external oxygen supply, microalgal photosynthesis was not capable of supporting a significant methane and methanol biodegradation due to their high oxygen demands per carbon unit, while glucose was fully oxidized by photosynthetic oxygenation. When bicarbonate was added, removal efficiencies of 37 ± 4% (20 days), 65 ± 4% (11 days) and 100% (2 days) were recorded for CH4, CH3OH and C6H12O6, respectively due to the additional oxygen generated from photosynthetic bicarbonate assimilation. The use of NO3 instead of NH4+ as nitrogen source (N oxidation–reduction state of +5 vs. −3) resulted in an increase in CH4 degradation from 0 to 33 ± 3% in the absence of bicarbonate and from 37 ± 4% to 100% in the presence of bicarbonate, likely due to a decrease in the stoichiometric oxygen requirements and the higher photosynthetic oxygen production. Hypothetically, the CORS of the substrates might affect the CORS of the microalgal biomass composition (higher lipid content). However, the total lipid content of the algal–bacterial biomass was 19 ± 7% in the absence and 16 ± 2% in the presence of bicarbonate.  相似文献   

16.
Li X  Yu HY 《Folia microbiologica》2012,57(5):447-453
A halophilic isolate Thalassobacillus sp. LY18 producing extracellular amylase was isolated from the saline soil of Yuncheng Salt Lake, China. Production of the enzyme was synchronized with bacterial growth and reached a maximum level during the early stationary phase. The amylase was purified to homogeneity with a molecular mass of 31 kDa. Major products of soluble starch hydrolysis were maltose and maltotriose, indicating an α-amylase activity. Optimal enzyme activity was found to be at 70°C, pH 9.0, and 10 % NaCl. The α-amylase was highly stable over broad temperature (30–90°C), pH (6.0–12.0), and NaCl concentration (0–20 %) ranges, showing excellent thermostable, alkalistable, and halotolerant nature. The enzyme was stimulated by Ca2+, but greatly inhibited by EDTA, indicating it was a metalloenzyme. Complete inhibition by diethyl pyrocarbonate and β-mercaptoethanol revealed that histidine residue and disulfide bond were essential for enzyme catalysis. The surfactants tested had no significant effects on the amylase activity. Furthermore, it showed high activity and stability in the presence of water-insoluble organic solvents with log P ow ≥ 2.13.  相似文献   

17.
Immobilization of cis-epoxysuccinate hydrolase-containing E. coli for d(−)-tartaric acid production was screened by various methods. The highest recovery of activity was obtained by entrapment in κ-carrageenan gel. 23.6 g biomass/l and 43.4 g κ-carrageenan/l were the best immobilization conditions optimized by response surface methodology with 83% yield (114 U/g). Cell autolysis was observed after immobilization. Immobilized cells showed high pH (5–10) stability, thermal (up to 65°C) stability, conversion rate (>99.5%), enantioselectivity (ee > 99.6%), and were less affected by metal ions and surfactants compared with free cells. Conversion rate for immobilized cells preserved 93% after 10 repeated batches (5% for free cells).  相似文献   

18.
A hyperthermophilic heterotrophic archaeon (strain WB1) was isolated from a thermal pool in the Washburn hot spring group of Yellowstone National Park, USA. WB1 is a coccus, 0.6–1.2 μm in diameter, with a tetragonal S-layer, vacuoles, and occasional stalk-like protrusions. Growth is optimal at 84°C (range 64–93°C), pH 5–6 (range 3.5–8.5), and <1 g/l NaCl (range 0–4.6 g/l NaCl). Tests of metabolic properties show the isolate to be a strict anaerobe that ferments complex organic substrates. Phylogenetic analysis of the 16S rRNA gene sequence places WB1 in a clade of previously uncultured Desulfurococcaceae and shows it to have ≤96% 16S rRNA sequence identity to Desulfurococcus mobilis, Staphylothermus marinus, Staphylothermus hellenicus, and Sulfophobococcus zilligii. The 16S rRNA gene contains a large insertion similar to homing endonuclease introns reported in Thermoproteus and Pyrobaculum species. Growth is unaffected by the presence of S0 or SO4 2−, thereby differentiating the isolate from its closest relatives. Based on phylogenetic and physiological differences, it is proposed that isolate WB1 represents the type strain of a novel genus and species within the Desulfurococcaceae, Thermogladius shockii gen. nov., sp. nov. (RIKEN = JCM-16579, ATCC = BAA-1607, Genbank 16S rRNA gene = EU183120).  相似文献   

19.
The effects of Cu(II) supplementation on glycemic parameters, advanced glycation end products (AGEs), antioxidant status (glutathione; GSH and total antioxidant capacity; TAOC) and lipid peroxidative damage (thiobarbituric acid-reactive substances, TBARS) were investigated in streptozotocin (STZ) induced diabetic rats. The study was carried out on Wistar albino rats grouped as control (n = 10), CuCl2 treated (n = 9), STZ (n = 10) and STZ,CuCl2 treated (n = 9). STZ was administered intraperitoneally at a single dose of 65 mg/kg and CuCl2, 4 mg copper/kg, subcutaneously, every 2 days for 60 days. At the end of this period, glucose(mg/dl), Cu(μg/dl), TBARS(μmol/l), TAOC(mmol/l) were measured in plasma, GSH(mg/gHb) in erythrocytes and glycated hemoglobin (GHb)(%) in blood. Plasma AGE-peptides(%) were measured by HPLC flow system with spectrofluorimetric and spectrophotometric detectors connected on-line. Data were analyzed by the non-parametric Kruskal–Wallis and Mann–Whitney U test. In the STZ group glucose, GHb and AGE-peptide levels were all significantly higher than the control group (P < 0.01, P < 0.05, and P < 0.01, respectively). CuCl2 treated group had significantly lower glucose but significantly higher GHb, TAOC and TBARS levels than the control group (P < 0.05, P < 0.001, P < 0.05 and P < 0.001, respectively). STZ,CuCl2 treated group had significantly higher GHb, TAOC and TBARS levels compared with the control group (P < 0.001, P < 0.05 and P < 0.05, respectively); but only TAOC level was significantly higher than the STZ group (P < 0.01). This experimental study provides evidence that copper intake increases total antioxidant capacity in both nondiabetic and diabetic states. However despite the potentiated antioxidant defence, lipid peroxidation and glycation enhancing effects of CuCl2 are evident under nondiabetic conditions.  相似文献   

20.
In developed countries, medical awareness about the disease and how to deal with it is less acknowledged. With diabetes mellitus the situation becomes more serious due to the fact that it affects nearly all parts of the body and may lead to loss of vision. In this study, the variation of blood glucose level of type 2 diabetic patients was considered, and its effect(s) on their blood erythrocyte membranes was studied by Fourier transform infrared spectroscopy. Patients with type 2 diabetes mellitus were classified into two groups with mean fasting blood glucose level of 185 mg/dl (D-185 group) and 285 mg/dl (D-285 group). For comparison, healthy individuals were involved where their mean fasting blood glucose level is 86 mg/dl. Type 2 diabetes mellitus was found to induce change in the lipid and protein components and causing some important structural changes in the protein secondary structure with change in the β-sheet and β-turn structures at D-285 mg/dl group. Erythrocyte membrane disorder was increased associated with restriction in the vibrational motion around the phospholipids interface region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号