首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An 1800-km South to North transect (N 53°43′ to 69°43′) through Western Siberia was established to study the interaction of nitrogen and carbon cycles. The transect comprised all major vegetation zones from steppe, through taiga to tundra and corresponded to a natural temperature gradient of 9.5°C mean annual temperature (MAT). In order to elucidate changes in the control of C and N cycling along this transect, we analyzed physical and chemical properties of soils and microbial structure and activity in the organic and in the mineral horizons, respectively. The impact of vegetation and climate exerted major controls on soil C and N pools (e.g., soil organic matter, total C and dissolved inorganic nitrogen) and process rates (gross N mineralization and heterotrophic respiration) in the organic horizons. In the mineral horizons, however, the impact of climate and vegetation was less pronounced. Gross N mineralization rates decreased in the organic horizons from south to north, while remaining nearly constant in the mineral horizons. Especially, in the northern taiga and southern tundra gross nitrogen mineralization rates were higher in the mineral compared to organic horizons, pointing to strong N limitation in these biomes. Heterotrophic respiration rates did not exhibit a clear trend along the transect, but were generally higher in the organic horizon compared to mineral horizons. Therefore, C and N mineralization were spatially decoupled at the northern taiga and tundra. The climate change implications of these findings (specifically for the Arctic) are discussed.  相似文献   

2.
3.
Net ecosystem production is the residual of two much larger fluxes: photosynthesis and respiration. While photosynthesis is a single process with a well‐established theoretical underpinning, respiration integrates the variety of plant and microbial processes by which CO2 returns from ecosystems to the atmosphere. Limits to current capacity for predicting ecosystem respiration fluxes across biomes or years result from the mismatch between what is usually measured – bulk CO2 fluxes – and what process‐based models can predict – fluxes of CO2 from plant (autotrophic) or microbial (heterotrophic) respiration. Papers in this Thematic Issue and in the recent literature, document advances in methods for separating respiration into autotrophic and heterotrophic components using three approaches: (1) continuous measurements of CO2 fluxes and assimilation of these data into process‐based models; (2) application of isotope measurements, particularly radiocarbon; and (3) manipulation experiments. They highlight the role of allocation of C fixed by plants to respiration, storage, growth or transfer to other organisms as a control of seasonal and interannual variability in soil respiration and the oxidation state of C in the terrestrial biosphere. A second theme is the potential for comparing C isotope signatures in organic matter, CO2 evolved in incubations and microbial biomarkers to elucidate the pathways (respiration, recycling, or transformation) of C during decomposition. Together, these factors determine the continuum of timescales over which C is returned to the atmosphere by respiration and enable testing of theories of plant and microbial respiration that go beyond empirical models and allow predictions of future respiration responses to future change in climate, pollution and land use.  相似文献   

4.
5.
火烧对森林土壤有机碳的影响研究进展   总被引:3,自引:0,他引:3  
对国内外火烧影响森林土壤有机碳动态的研究成果进行了综合述评。较多研究表明低强度火烧不会造成土壤有机碳贮量的明显变化,但火烧非常强烈而彻底,土壤有机碳明显减少。有限研究表明火烧对森林土壤呼吸的影响结果有增加、降低或无影响,因火烧强度、火后观测时间、森林类型、火烧迹地上植被恢复进程和气候条件等而异。同时,火烧对土壤有机碳组分(活性有机碳和黑碳)也具有不同程度的影响。随着全球变化研究的深入,火烧作为森林主要管理措施对大气CO2浓度影响亦愈来愈受重视,今后应着重开展以下几方面研究:(1)扩大气候和经营管理的变化对森林土壤有机碳贮量时空动态影响研究;(2)深入探讨火烧影响土壤CO2释放的过程及机理;(3)加强火烧历史和频率对黑碳影响的研究;(4)从广度和深度上加强火烧等经营措施对亚热带森林土壤碳动态影响的研究。  相似文献   

6.
Brigalow (Acacia harpophylla)–Dawson gum (Eucalyptus cambageana) open forests are predominantly supported by solodic soils in central Queensland. This report describes relations between some physical, chemical and morphological properties of surface soils (0–0.10 m) within a virgin brigalow–Dawson gum forest. Soil property gradients were found to radiate horizontally from tree-dominated to non-vegetated areas, indicative of a vegetation-induction process. These reflect the importance of litterfall organic matter in determining soil fertility and soil physical conditions at this site. The decomposition of litterfall is probably responsible for significant increases in soil organic carbon (C), total nitrogen (N) and total sulphur (S) concentrations with increasing vegetation canopy cover. The composition of soil organic matter appears constant across the study area, as similar soil C:N:S ratios were recorded across all vegetation canopy classes. Soil salinity, total phosphorus, mineral nitrogen, cation exchange capacity, exchangeable calcium and exchangeable potassium levels also increased with increasing vegetation canopy cover. Surface soil physical properties were also related to vegetation canopy cover. Bulk density and the < 20 μm dispersion ratio decreased while soil micro-relief and A hor?izon depth increased with increasing vegetation canopy cover. Organic C, through inverse relations with bulk density and the < 20 μm dispersion ratio, appears to enhance soil porosity and aggregate stability, indicating the role of organic matter in the stabilization of larger virgin soil aggregates. The close association between virgin forest and surface soil fertility is seen to have implications for changes in land-use, with a decline in nutrient availability, soil aggregate stability and productivity following forest clearing.  相似文献   

7.
Temperate forests of North America are thought to besignificant sinks of atmospheric CO2. Wedeveloped a below-ground carbon (C) budget forwell-drained soils in Harvard Forest Massachusetts, anecosystem that is storing C. Measurements of carbonand radiocarbon (14C) inventory were used todetermine the turnover time and maximum rate ofCO2 production from heterotrophic respiration ofthree fractions of soil organic matter (SOM):recognizable litter fragments (L), humified lowdensity material (H), and high density ormineral-associated organic matter (M). Turnover timesin all fractions increased with soil depth and were2–5 years for recognizable leaf litter, 5–10 years forroot litter, 40–100+ years for low density humifiedmaterial and >100 years for carbon associated withminerals. These turnover times represent the timecarbon resides in the plant + soil system, and mayunderestimate actual decomposition rates if carbonresides for several years in living root, plant orwoody material.Soil respiration was partitioned into two componentsusing 14C: recent photosynthate which ismetabolized by roots and microorganisms within a yearof initial fixation (Recent-C), and C that is respiredduring microbial decomposition of SOM that resides inthe soil for several years or longer (Reservoir-C).For the whole soil, we calculate that decomposition ofReservoir-C contributes approximately 41% of thetotal annual soil respiration. Of this 41%,recognizable leaf or root detritus accounts for 80%of the flux, and 20% is from the more humifiedfractions that dominate the soil carbon stocks.Measurements of CO2 and 14CO2 in thesoil atmosphere and in total soil respiration werecombined with surface CO2 fluxes and a soil gasdiffusion model to determine the flux and isotopicsignature of C produced as a function of soil depth. 63% of soil respiration takes place in the top 15 cmof the soil (O + A + Ap horizons). The average residencetime of Reservoir-C in the plant + soil system is8±1 years and the average age of carbon in totalsoil respiration (Recent-C + Reservoir-C) is 4±1years.The O and A horizons have accumulated 4.4 kgC m–2above the plow layer since abandonment by settlers inthe late-1800's. C pools contributing the most to soilrespiration have short enough turnover times that theyare likely in steady state. However, most C is storedas humified organic matter within both the O and Ahorizons and has turnover times from 40 to 100+ yearsrespectively. These reservoirs continue to accumulatecarbon at a combined rate of 10–30 gC mminus 2yr–1. This rate of accumulation is only 5–15% of the total ecosystem C sink measured in this stand using eddy covariance methods.  相似文献   

8.
Soil respiration is derived from heterotrophic (decomposition of soil organic matter) and autotrophic (root/rhizosphere respiration) sources, but there is considerable uncertainty about what factors control variations in their relative contributions in space and time. We took advantage of a unique whole‐ecosystem radiocarbon label in a temperate forest to partition soil respiration into three sources: (1) recently photosynthesized carbon (C), which dominates root and rhizosphere respiration; (2) leaf litter decomposition and (3) decomposition of root litter and soil organic matter >1–2 years old. Heterotrophic sources and specifically leaf litter decomposition were large contributors to total soil respiration during the growing season. Relative contributions from leaf litter decomposition ranged from a low of ~1±3% of total soil respiration (6± 3 mg C m?2 h?1) when leaf litter was extremely dry, to a high of 42±16% (96± 38 mg C m?2 h?1). Total soil respiration fluxes varied with the strength of the leaf litter decomposition source, indicating that moisture‐dependent changes in litter decomposition drive variability in total soil respiration fluxes. In the surface mineral soil layer, decomposition of C fixed in the original labeling event (3–5 years earlier) dominated the isotopic signature of heterotrophic respiration. Root/rhizosphere respiration accounted for 16±10% to 64±22% of total soil respiration, with highest relative contributions coinciding with low overall soil respiration fluxes. In contrast to leaf litter decomposition, root respiration fluxes did not exhibit marked temporal variation ranging from 34±14 to 40±16 mg C m?2 h?1 at different times in the growing season with a single exception (88±35 mg C m?2 h?1). Radiocarbon signatures of root respired CO2 changed markedly between early and late spring (March vs. May), suggesting a switch from stored nonstructural carbohydrate sources to more recent photosynthetic products.  相似文献   

9.
Radiocarbon signatures (Δ14C) of carbon dioxide (CO2) provide a measure of the age of C being decomposed by microbes or respired by living plants. Over a 2‐year period, we measured Δ14C of soil respiration and soil CO2 in boreal forest sites in Canada, which varied primarily in the amount of time since the last stand‐replacing fire. Comparing bulk respiration Δ14C with Δ14C of CO2 evolved in incubations of heterotrophic (decomposing organic horizons) and autotrophic (root and moss) components allowed us to estimate the relative contributions of O horizon decomposition vs. plant sources. Although soil respiration fluxes did not vary greatly, differences in Δ14C of respired CO2 indicated marked variation in respiration sources in space and time. The 14C signature of respired CO2 respired from O horizon decomposition depended on the age of C substrates. These varied with time since fire, but consistently had Δ14C greater (averaging ~120‰) than autotrophic respiration. The Δ14C of autotrophically respired CO2 in young stands equaled those expected for recent photosynthetic products (70‰ in 2003, 64‰ in 2004). CO2 respired by black spruce roots in stands >40 years old had Δ14C up to 30‰ higher than recent photosynthates, indicating a significant contribution of C stored at least several years in plants. Decomposition of O horizon organic matter made up 20% or less of soil respiration in the younger (<40 years since fire) stands, increasing to ~50% in mature stands. This is a minimum for total heterotrophic contribution, since mineral soil CO2 had Δ14C close to or less than those we have assigned to autotrophic respiration. Decomposition of old organic matter in mineral soils clearly contributed to soil respiration in younger stands in 2003, a very dry year, when Δ14C of soil respiration in younger successional stands dropped below those of the atmospheric CO2.  相似文献   

10.
Carbon pools and fluxes along an environmental gradient in northern Arizona   总被引:15,自引:4,他引:11  
Carbon pools and fluxes were quantified along an environmentalgradient in northern Arizona. Data are presented on vegetation, litter, andsoil C pools and soil CO2 fluxesfrom ecosystems ranging from shrub-steppe through woodlands to coniferousforest and the ecotones in between. Carbon pool sizes and fluxes in thesesemiarid ecosystems vary with temperature and precipitation and are stronglyinfluenced by canopy cover. Ecosystem respiration is approximately 50percent greater in the more mesic, forest environment than in the dryshrub-steppe environment. Soil respiration rates within a site varyseasonally with temperature but appear to be constrained by low soilmoisture during dry summer months, when approximately 75% of totalannual soil respiration occurs. Total annual amount of CO2 respired across all sites ispositively correlated with annual precipitation and negatively correlatedwith temperature. Results suggest that changes in the amount and periodicityof precipitation will have a greater effect on C pools and fluxes than willchanges in temperature in the semiarid Southwestern United States.  相似文献   

11.
对皖西大别山区2种森林植被类型土壤呼吸速率进行统计分析,结果表明,不同季节2种植被类型土壤呼吸速率随时间呈先升后降的变化趋势;土壤呼吸速率与地下5 cm、10 cm的土壤温度有较好的相关性;杉木林土壤呼吸速率与5~10 cm土层有机质含量呈极显著相关,相关系数为0.978(p<0.01);麻栎林土壤呼吸速率与0~5 cm土层有机质含量呈显著相关,相关系数为0.928(p<0.05)。  相似文献   

12.
The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (<1.6 g cm−3) of free particulate organic matter (FPOM) and occluded particulate organic matter (OPOM), plus a heavy fraction (>1.6 g cm−3) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg−1. Higher SOC contents (320 g kg−1) were found in OPOM while MOM had the lowest SOC contents (29 g kg−1). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0–30 cm depth) account for 10.4 kg m−2, compared to 3.4 kg m−2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.  相似文献   

13.
Aims Root and heterotrophic respiration may respond differently to environmental variability, but little evidence is available from large-scale observations. Here we aimed to examine variations of root and heterotrophic respiration across broad geographic, climatic, soil and biotic gradients.Methods We conducted a synthesis of 59 field measurements on root and heterotrophic respiration across China's forests.Important findings Root and heterotrophic respiration varied differently with forest types, of which evergreen broadleaf forest was significantly different from those in other forest types on heterotrophic respiration but without statistically significant differences on root respiration. The results also indicated that root and heterotrophic respiration exhibited similar trends along gradients of precipitation, soil organic carbon and satellite-indicated vegetation growth. However, they exhibited different relationships with temperature: root respiration exhibited bimodal patterns along the temperature gradient, while heterotrophic respiration increased monotonically with temperature. Moreover, they showed different relationships with MOD17 GPP, with increasing trend observed for root respiration whereas insignificant change for heterotrophic respiration. In addition, root and heterotrophic respiration exhibited different changes along the age sequence, with insignificant change for root respiration and decreasing trend for heterotrophic respiration. Overall, these results suggest that root and heterotrophic respiration may respond differently to environmental variability. Our findings could advance our understanding on the different environmental controls of root and heterotrophic respiration and also improve our ability to predict soil CO2 flux under a changing environment.  相似文献   

14.
Arctic ecosystems are important in the context of climate change because they are expected to undergo the most rapid temperature increases, and could provide a globally significant release of CO2 to the atmosphere from their extensive bulk soil organic carbon reserves. Understanding the relative contributions of bulk soil organic matter and plant‐associated carbon pools to ecosystem respiration is critical to predicting the response of arctic ecosystem net carbon balance to climate change. In this study, we determined the variation in ecosystem respiration rates from birch forest understory and heath tundra vegetation types in northern Sweden through a full annual cycle. We used a plant biomass removal treatment to differentiate bulk soil organic matter respiration from total ecosystem respiration in each vegetation type. Plant‐associated and bulk soil organic matter carbon pools each contributed significantly to ecosystem respiration during most phases of winter and summer in the two vegetation types. Ecosystem respiration rates through the year did not differ significantly between vegetation types despite substantial differences in biomass pools, soil depth and temperature regime. Most (76–92%) of the intra‐annual variation in ecosystem respiration rates from these two common mesic subarctic ecosystems was explained using a first‐order exponential equation relating respiration to substrate chemical quality and soil temperature. Removal of plants and their current year's litter significantly reduced the sensitivity of ecosystem respiration to intra‐annual variations in soil temperature for both vegetation types, indicating that respiration derived from recent plant carbon fixation was more temperature sensitive than respiration from bulk soil organic matter carbon stores. Accurate assessment of the potential for positive feedbacks from high‐latitude ecosystems to CO2‐induced climate change will require the development of ecosystem‐level physiological models of net carbon exchange that differentiate the responses of major C pools, that account for effects of vegetation type, and that integrate over summer and winter seasons.  相似文献   

15.
Soil carbon (C) stocks consist of inorganic and organic components, ~1.7 times larger than the total of the C stored in vegetation and the atmosphere together. Significant soil C losses could thus offset any C sink in vegetation, creating a positive feedback to climate change. However, compared with the susceptible sensitivity of organic matter decay to climate warming, soil inorganic carbon (SIC) stocks are often assumed to be relatively stable. Here, we evaluated SIC changes across China's grasslands over the last two decades using data from a recent regional soil survey during 2001–2005 and historical national soil inventory during the 1980s. Our results showed that SIC stocks in the top 10 cm decreased significantly between the two sampling periods, with a mean rate of 26.8 (95% confidence interval: 15.8–41.7) g C m?2 yr?1. The larger decreases in SIC stocks were observed in those regions with stronger soil acidification and richer soil carbonates. The lost SIC could be released to the atmosphere as carbon dioxide, redistributed to the deeper soil layer, and transferred to the nearby regions. The fraction of soil carbonates entering into the atmosphere may diminish the strength of terrestrial C sequestration and amplify the positive C‐climate feedback.  相似文献   

16.
Wildfires have shaped the biogeography of south Chilean Araucaria–Nothofagus rainforest vegetation patterns, but their impact on soil properties and associated nutrient cycling remains unclear. Nitrogen (N) availability shows a site‐specific response to wildfire events indicating the need for an increased understanding of underlying mechanisms that drive changes in soil N cycling. In this study, we selected unburned and burned sites in a large area of the National Park Tolhuaca that was affected by a stand‐replacing wildfire in February 2002. We conducted net N cycling flux measurements (net ammonification, net nitrification and net N mineralization assays) on soils sampled 3 years after fire. In addition, samples were physically fractionated and natural abundance of C and N, and 13C‐NMR analyses were performed. Results indicated that standing inorganic N pools were greater in the burned soil, but that no main differences in net N cycling fluxes were observed between unburned and burned sites. In both sites, net ammonification and net nitrification fluxes were low or negative, indicating N immobilization. Multiple linear regression analyses indicated that soil N cycling could largely be explained by two parameters: light fraction (LF) soil organic matter N content and aromatic Chemical Oxidation Resistant Carbon (CORECarom), a relative measure for char. The LF fraction, a strong NH4+ sink, decreased as a result of fire, while CORECarom increased in the burned soil profile and stimulated NO3 production. The absence of increased total net nitrification might relate to a decrease in heterotrophic nitrification after wildfire. We conclude that (i) wildfire induced a shift in N transformation pathways, but not in total net N mineralization, and (ii) stable isotope measurements are a useful tool to assess post‐fire soil organic matter dynamics.  相似文献   

17.
The accumulation of soil carbon (C) is regulated by a complex interplay between abiotic and biotic factors. Our study aimed to identify the main drivers of soil C accumulation in the boreal forest of eastern North America. Ecosystem C pools were measured in 72 sites of fire origin that burned 2–314 years ago over a vast region with a range of ? mean annual temperature of 3°C and one of ? 500 mm total precipitation. We used a set of multivariate a priori causal hypotheses to test the influence of time since fire (TSF), climate, soil physico‐chemistry and bryophyte dominance on forest soil organic C accumulation. Integrating the direct and indirect effects among abiotic and biotic variables explained as much as 50% of the full model variability. The main direct drivers of soil C stocks were: TSF >bryophyte dominance of the FH layer and metal oxide content >pH of the mineral soil. Only climate parameters related to water availability contributed significantly to explaining soil C stock variation. Importantly, climate was found to affect FH layer and mineral soil C stocks indirectly through its effects on bryophyte dominance and organo‐metal complexation, respectively. Soil texture had no influence on soil C stocks. Soil C stocks increased both in the FH layer and mineral soil with TSF and this effect was linked to a decrease in pH with TSF in mineral soil. TSF thus appears to be an important factor of soil development and of C sequestration in mineral soil through its influence on soil chemistry. Overall, this work highlights that integrating the complex interplay between the main drivers of soil C stocks into mechanistic models of C dynamics could improve our ability to assess C stocks and better anticipate the response of the boreal forest to global change.  相似文献   

18.
Changes in the carbon stocks of stem biomass, organic layers and the upper 50 cm of the mineral soil during succession and afforestation of spruce (Picea abies) on former grassland were examined along six chronosequences in Thuringia and the Alps. Three chronosequences were established on calcareous and three on acidic bedrocks. Stand elevation and mean annual precipitation of the chronosequences were different. Maximum stand age was 93 years on acid and 112 years on calcareous bedrocks. Stem biomass increased with stand age and reached values of 250–400 t C ha?1 in the oldest successional stands. On acidic bedrocks, the organic layers accumulated linearly during forest succession at a rate of 0.34 t C ha?1 yr?1. On calcareous bedrocks, a maximum carbon stock in the humus layers was reached at an age of 60 years. Total carbon stocks in stem biomass, organic layers and the mineral soil increased during forest development from 75 t C ha?1 in the meadows to 350 t C ha?1 in the oldest successional forest stands (2.75 t C ha?1 yr?1). Carbon sequestration occurred in stem biomass and in the organic layers (0.34 t C ha?1 yr?1on acid bedrock), while mineral soil carbon stocks declined. Mineral soil carbon stocks were larger in areas with higher precipitation. During forest succession, mineral soil carbon stocks of the upper 50 cm decreased until they reached approximately 80% of the meadow level and increased slightly thereafter. Carbon dynamics in soil layers were examined by a process model. Results showed that sustained input of meadow fine roots is the factor, which most likely reduces carbon losses in the upper 10 cm. Carbon losses in 10–20 cm depth were lower on acidic than on calcareous bedrocks. In this depth, continuous dissolved organic carbon inputs and low soil respiration rates could promote carbon sequestration following initial carbon loss. At least 80 years are necessary to regain former stock levels in the mineral soil. Despite the comparatively larger amount of carbon stored in the regrowing vegetation, afforestation projects under the Kyoto protocol should also aim at the preservation or increase of carbon in the mineral soil regarding its greater stability of compared with stocks in biomass and humus layers. If grassland afforestation is planned, suitable management options and a sufficient rotation length should be chosen to achieve these objectives. Maintenance of grass cover reduces the initial loss.  相似文献   

19.
Management options for reducing CO2 emissions from agricultural soils   总被引:18,自引:0,他引:18  
Crop-based agriculture occupies 1.7 billion hectares, globally, with a soil C stock of about 170 Pg. Of the past anthropogenic CO2 additions to the atmosphere, about 50 Pg C came from the loss of soil organic matter (SOM) in cultivated soils. Improved management practices, however, can rebuild C stocks in agricultural soils and help mitigate CO2 emissions.Increasing soil C stocks requires increasing C inputs and/or reducing soil heterotrophic respiration. Management options that contribute to reduced soil respiration include reduced tillage practices (especially no-till) and increased cropping intensity. Physical disturbance associated with intensive soil tillage increases the turnover of soil aggregates and accelerates the decomposition of aggregate-associated SOM. No-till increases aggregate stability and promotes the formation of recalcitrant SOM fractions within stabilized micro- and macroaggregate structures. Experiments using13 C natural abundance show up to a two-fold increase in mean residence time of SOM under no-till vs intensive tillage. Greater cropping intensity, i.e., by reducing the frequency of bare fallow in crop rotations and increasing the use of perennial vegetation, can increase water and nutrient use efficiency by plants, thereby increasing C inputs to soil and reducing organic matter decomposition rates.Management and policies to sequester C in soils need to consider that: soils have a finite capacity to store C, gains in soil C can be reversed if proper management is not maintained, and fossil fuel inputs for different management practices need to be factored into a total agricultural CO2 balance.  相似文献   

20.
Geological factors influence biological cycling of organic carbon in soils but are not well represented in our understanding of Arctic carbon dynamics. Landscape age, for instance, directly affects quantity and quality of soil carbon, which are two strong controls of the temperature sensitivity of soil organic matter. We investigated soil carbon storage, respiration potential, and organic matter quality for microbial decomposition across a climate and landscape age gradient in southwest Greenland that deglaciated during the Holocene. We measured soil respiration during a 370-day laboratory incubations of active layer soils collected from four study areas across this gradient (ages 1.8 × 102, 6.8 × 103, and 1.0 × 104, coinciding with a climate gradient from drier inland to wetter coastal terrain) and used a soil respiration model comparison approach to assess the substrate quality of stored organic matter for microbial decomposers. Soils store more than three times greater organic carbon at the 10,000-year-old, maritime climate study areas than the 180-year-old, continental climate study areas. Respiration rates were highest in the surface soils of the coastal areas. Model comparisons reveal important heterogeneity in the quality of organic matter for microbial decomposition between areas: coastal soils were best modeled by both one- and two-pooled models, and inland soils were best represented by one-pooled respiration models. Together, the measures of carbon quality (C:N, CO2 production, and model parameters estimating initial CO2 production rates from different organic matter pools) show that shallow soils at the southern coastal area, Kobbefjord, had the highest respiration rates from the recalcitrant carbon pool. This study reveals differences in carbon storage and turnover associated with landscape age and climate factors in western Greenland. When applied to thermodynamic theory, which predicts that temperature sensitivity increases with carbon recalcitrance, our findings suggest that carbon stored in coastal soils may be more sensitive to climate warming than inland soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号