首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Testosterone (T) is known to play an important masculinizing role in the developing brain of rat, including the regulation of 5α-reductase (5α-R) isozymes. However, the effects of dihydrotesterone (DHT), a more potent androgen than T, have not been elucidated. In this study, DHT was administered from day 5 through day 20 of postnatal life (period of postnatal sexual differentiation of the central nervous system) at doses of: 12 mg/kg/d on days 5, 6, 7, 8, 19, and 20; 15 mg/kg/d on days 9, 10, 11, 12, 16, 17, and 18; and 18 mg/kg/d on days 13, 14, and 15. In adulthood, quantitative RT-PCR was used to measure mRNA levels of 5α-R1 and 5α-R2 isozymes in the prefrontal cortex (PFC) of male and female rats with varied androgenic status. Under our study conditions, neonatal DHT administration influenced on adult PFC 5α-R isozymes levels and their regulation pattern by androgens, and this pattern was the inverse of that reported in adult neonatally T-treated rats.  相似文献   

2.
Summary The distribution and development of serotonin-and RFamide-like immunoreactivities in the nervous system of Chaetognatha, Paraspadella gotoi, were examined in whole-mount preparations. In adults, a single serotonin-like immunoreactive (5HTLI) neuron and numerous RFamide-like immunoreactive (RFaLI) neurons were found in the central nervous system. Based on the structure of the fins, hooks, and eyes, seven postembryonic developmental stages were recognized. The most obvious features of the stages are: stage 1, newly hatched young; stage 2, elongation of a continuous lateral tail fin; stage 3, separation of the lateral and tail fins; stage 4, appearance of hooks; stage 5, pigmentation of eyes, stage 6, attachment by tail adhesive fins; stage 7, prey capture. Stage 1 did not show any immunoreactivity. The 5HTLI neuron first appeared at stage 4 and its axonal pathway became similar to the adult at stage 6. On the other hand, the RFaLI neurons appeared at stage 3 in the ventral ganglion. Some of their somata disappeared at stage 5 and the neuronal architecture resembled the adult at stage 7 although the RFaLI neurons in the cerebral ganglion were complete at the juvenile stage.We are sad to announce that Dr. M. Yoshida died on 29 October 1988  相似文献   

3.
Novel chemical and electrical connections form between neurons not normally connected in the buccal ganglia of the snail Helisoma. We examined the cellular and environmental conditions required for the formation of each type of connection. Previous work in situ showed that novel electrical connections could form in response to axotomy. We have now found that axotomy can evoke the formation of novel unidirectional chemical connections between neurons B5 and B4 in addition to a novel electrical connection. The novel chemical connections display all of the normal properties of chemical synapses in Helisoma ganglia. These connections, however, are transient in nature and break 4 days following axotomy. Previous work has shown that conjoint outgrowth is required for the formation of electrical connections. In cell culture we have investigated whether conjoint outgrowth is also required for chemical synaptogenesis. Using neurons B5 and B19 we have found that when neuron pairs make contact in cell culture, under conditions of synchronous neurite extension, both electrical and chemical synapses form. However, if one neuron has ceased extension prior to contact by a growing neuron, electrical synapses never form (Hadley et al., 1983, 1985) but chemical synapses do form. Furthermore, the addition of serotonin (10(-6) M) to culture medium to inhibit neurite extension of B19, but not that of B5, selectively prevents the formation of electrical connections while permitting the formation of chemical synapses. Thus, the timing of contact in relation to the state of neurite extension can specify the type of connection a given neuron can form.  相似文献   

4.
NeuN, a neuronal specific nuclear protein in vertebrates.   总被引:66,自引:0,他引:66  
A battery of monoclonal antibodies (mAbs) against brain cell nuclei has been generated by repeated immunizations. One of these, mAb A60, recognizes a vertebrate nervous system- and neuron-specific nuclear protein that we have named NeuN (Neuronal Nuclei). The expression of NeuN is observed in most neuronal cell types throughout the nervous system of adult mice. However, some major cell types appear devoid of immunoreactivity including cerebellar Purkinje cells, olfactory bulb mitral cells, and retinal photoreceptor cells. NeuN can also be detected in neurons in primary cerebellar cultures and in retinoic acid-stimulated P19 embryonal carcinoma cells. Immunohistochemically detectable NeuN protein first appears at developmental timepoints which correspond with the withdrawal of the neuron from the cell cycle and/or with the initiation of terminal differentiation of the neuron. NeuN is a soluble nuclear protein, appears as 3 bands (46-48 x 10(3) M(r)) on immunoblots, and binds to DNA in vitro. The mAb crossreacts immunohistochemically with nervous tissue from rats, chicks, humans, and salamanders. This mAb and the protein recognized by it serve as an excellent marker for neurons in the central and peripheral nervous systems in both the embryo and adult, and the protein may be important in the determination of neuronal phenotype.  相似文献   

5.
The nervous system in many species consists of multiple neuronal cell layers, each forming specific connections with neurons in other layers or other regions of the brain. How layer-specific connectivity is established during development remains largely unknown. In the Drosophila adult visual system, photoreceptor (R cell) axons innervate one of two optic ganglia layers; R1-R6 axons connect to the lamina layer, while R7 and R8 axons project through the lamina into the deeper medulla layer. Here, we show that the receptor tyrosine kinase Off-track (Otk) is specifically required for lamina-specific targeting of R1-R6 axons. Otk is highly expressed on R1-R6 growth cones. In the absence of otk, many R1-R6 axons connect abnormally to medulla instead of innervating lamina. We propose that Otk is a receptor or a component of a receptor complex that recognizes a target-derived signal for R1-R6 axons to innervate the lamina layer.  相似文献   

6.
Malin SA  Davis BM 《生理学报》2008,60(5):571-578
The neurotrophin and glial cell line-derived neurotrophic factor (GDNF) family of growth factors have been extensively studied because of their proven ability to regulate development of the peripheral nervous system. The neurotrophin family,which includes nerve growth factor (NGF), NT-3, NT4/5 and BDNF, is also known for its ability to regulate the function of adult sensory neurons. Until recently, little was known concerning the role of the GNDF-family (that includes GDNF, artemin, neurturin and persephin) in adult sensory neuron function. Here we describe recent data that indicates that the GDNF family can regulate sensory neuron function, that some of its members are elevated in inflammatory pain models and that application of these growth factors produces pain in vivo. Finally we discuss how these two families of growth factors may converge on a single membrane receptor, TRPV 1, to produce long-lasting hyperalgesia.  相似文献   

7.
Neuregulin 1 (Nrg1) functions in neuronal migration, survival and differentiation as well as synaptogenesis during ontogenetic development and maintenance of synaptic functions in the adult mammalian brain. The neural adhesion molecule L1 (L1CAM) functions in similar overlapping, but also non-overlapping roles in the nervous system. In the present study, we therefore investigated some aspects of the functional relationship between Nrg1 and L1 in mammalian neural cells. Nrg1 regulates the expression of L1 in cultures of both human neuroblastoma SK-N-SH cells and mouse cortical and hippocampal neurons. To analyze the role of Nrg1 on L1 expression in vivo, young adult male mice received intraperitoneal injections of Nrg1 or PBS (vehicle control). The correlation between Nrg1 and L1 expression was tested by qPCR, Western blot analysis, and immunocytology. Our data indicate that neuregulin 1-β (Nrg1β) increases L1 expression in neurons of the cerebral cortex, and decreases expression in neurons of the hippocampus in vitro and in vivo. In addition, Nrg1 induces phosphorylation of its receptors, ErbB2 and ErbB4, the predominant ErbB receptors in the nervous system. These results show that Nrg1β affects expression of L1 in the central nervous system and in parallel activates the ErbB receptors for Nrg1, suggesting a crosstalk between molecules that are of prime importance for nervous system functions.  相似文献   

8.
L Avery  H R Horvitz 《Neuron》1989,3(4):473-485
Using a laser microbeam to kill specific subsets of the pharyngeal nervous system of C. elegans, we found that feeding was accomplished by two separately controlled muscle motions, isthmus peristalsis and pumping. The single neuron M4 was necessary and sufficient for isthmus peristalsis. The MC neurons were necessary for normal stimulation of pumping in response to food, but pumping continued and was functional in MC- worms. The remaining 12 neuron types were also unnecessary for functional pumping. No operation we did, including destruction of the entire pharyngeal nervous system, abolished pumping altogether. When we killed all pharyngeal neurons except M4, the worms were viable and fertile, although retarded and starved. Since feeding is one of the few known essential actions controlled by the nervous system, we suggest that most of the C. elegans nervous system is dispensable in hermaphrodites under laboratory conditions. This may explain the ease with which nervous system mutants are isolated and handled in C. elegans.  相似文献   

9.
美洲大蠊中枢DUM神经元的分离和电压门控Na+电流的记录   总被引:1,自引:0,他引:1  
许鹏  孙芹  陈超  程洁  高蓉  姜志宽  肖杭 《昆虫学报》2009,52(4):380-385
【目的】建立美洲大蠊Periplaneta americana中枢神经系统背侧不成对中间神经元(dorsal unpaired median neurons, DUM neurons)的分离方法和DUM神经元电生理实验模型。【方法】IA型胶原酶法消化美洲大蠊末端腹神经节, 机械吹打得到DUM神经元细胞, 运用膜片钳技术记录DUM神经元细胞电压门控Na+电流。【结果】分离得到的DUM神经元细胞状态良好, 具有DUN神经元典型的梨状形态和表面特征。以膜片钳全细胞方式记录到的Na+电流符合钠通道电流特征。【结论】IA型胶原酶消化得到美洲大蠊DUM神经元细胞的方法可靠, 能稳定地记录到Na+电流。本文描述的方法为昆虫神经细胞的电生理机制研究提供一个可用的实验模型。  相似文献   

10.
Chicken acidic leucine-rich EGF-like domain containing brain protein (CALEB) was identified by combining binding assays with immunological screens in the chicken nervous system as a novel member of the EGF family of differentiation factors. cDNA cloning indicates that CALEB is a multidomain protein that consists of an NH2-terminal glycosylation region, a leucine-proline–rich segment, an acidic box, a single EGF-like domain, a transmembrane, and a short cytoplasmic stretch. In the developing nervous system, CALEB is associated with glial and neuronal surfaces. CALEB is composed of a 140/130-kD doublet, an 80-kD band, and a chondroitinsulfate-containing 200-kD component. The latter two components are expressed in the embryonic nervous system and are downregulated in the adult nervous system. CALEB binds to the extracellular matrix glycoproteins tenascin-C and -R. In vitro antibody perturbation experiments reveal a participation of CALEB in neurite formation in a permissive environment.  相似文献   

11.
The restoration of the cercal afferent projection of crickets was examined after severing the cercal nerve or amputating the cercus and reimplanting it. After either maneuver the sensory neurons regenerated arborizations in the central nervous system (CNS) within about 1 month. In order to assess the role of the pathway taken to the CNS in controlling the growth of the terminal arborization, we transplantated left cerci to the right side of the host. The operation mismatched the mediolateral axes of host and graft tissues. In one-third of the neurons examined, the axon trajectories of the regenerated neurons were altered. The terminal arborizations in these cases were unusual; for example, one neuron arborized in an abnormal area as well as in its normal area. In rare instances this neuron arborized only in incorrect areas of the CNS. Thus, it appears that axon pathway can have an effect on the central structure of sensory neurons. However, in most cases after the surgery, the neurons were able to reach their proper target areas even by circuitous routes. The proximodistal coordinate of the map is isomorphic with sensory neuron age, because the most distal receptors are produced early in postembryonic development and new ones are added proximally at each molt. We tested the possibility that the order of differentiation was critical for generating the afferent projection with two experiments. First, the distal cercus including the distal members of the clavate array was amputated. The specimen regenerated an entire distal cercus including distal clavate receptors. When newly generated, distal neurons were stained, the terminal arbors were identical to the amputated neurons they replaced. In this case, both age and order of arrival were reversed from normal yet the topographic projection pattern was not altered. Second, we transplanted young cerci onto older specimens and then examined the regenerated arbors of the transplanted sensory neuron. The immature neuron arborized in the adult nervous system exactly as the mature homolog. Thus the age of a sensory neuron did not appear to be a controlling variable in the elaboration of a terminal arborization. The significance of these results is discussed in the context of two models for development of orderly neuronal connections.  相似文献   

12.
By most accounts, the mind arises from the integrated activity of large populations of neurons distributed across multiple brain regions. A contrasting model is presented in the present paper that places the mind/brain interface not at the whole brain level but at the level of single neurons. Specifically, it is proposed that each neuron in the nervous system is independently conscious, with conscious content corresponding to the spatial pattern of a portion of that neuron's dendritic electrical activity. For most neurons, such as those in the hypothalamus or posterior sensory cortices, the conscious activity would be assumed to be simple and unable to directly affect the organism's macroscopic conscious behavior. For a subpopulation of layer 5 pyramidal neurons in the lateral prefrontal cortices, however, an arrangement is proposed to be present such that, at any given moment: (i) the spatial pattern of electrical activity in a portion of the dendritic tree of each neuron in the subpopulation individually manifests a complexity and diversity sufficient to account for the complexity and diversity of conscious experience; (ii) the dendritic trees of the neurons in the subpopulation all contain similar spatial electrical patterns; (iii) the spatial electrical pattern in the dendritic tree of each neuron interacts non-linearly with the remaining ambient dendritic electrical activity to determine the neuron's overall axonal response; (iv) the dendritic spatial pattern is reexpressed at the population level by the spatial pattern exhibited by a synchronously firing subgroup of the conscious neurons, thereby providing a mechanism by which conscious activity at the neuronal level can influence overall behavior. The resulting scheme is one in which conscious behavior appears to be the product of a single macroscopic mind, but is actually the integrated output of a chorus of minds, each associated with a different neuron.  相似文献   

13.
The hydra nervous system shares many features with nervous systems of more complex organisms but serves as a unique model system due to its simplicity and constant regeneration. Development of neuron populations during and after hydra embryogenesis is not well understood. In this study, neurons were identified at prehatching and posthatching stages with RFamide or JD1 antisera. These populations were further subdivided into ganglion, sensory, or unclassifiable neurons, and all identified populations were statistically analyzed over developmental time. RFamide-positive neurons appeared 20 days after the cuticle formed around the embryo. The JD1-positive neuron population appeared just after hatching, but by adulthood it had surpassed the size of the RFamide-positive population. All neuron populations progressively increased through their adult levels. Density of most of the populations, however, did not. For instance, during the 5-fold increase in size that the hydra experienced between 5 days posthatching and adulthood, the number of RFamide-positive neurons rose approximately 2-fold and the number of JD1-positive neurons 4-fold. However, the density of neurons in each of these populations fell. These data do not support the hypothesis that large-scale culling of neurons during development, frequently found in other animals, occurs in hydra.  相似文献   

14.
The Notch signaling pathway is a vitally important pathway in regulating brain development. To explore the involvement of the Notch pathway in neuronal cells of adult rat gut, we investigated the expression of Notch1 and Jagged2 by in situ hybridization (ISH) and immunohistochemistry (IHC). In the enteric nervous system, Notch1 and Jagged2 were expressed in ganglia of the submucosal and myenteric plexus. Notch1 was preferentially expressed in cholinergic neurons lacking calretinin or nitric oxide synthase (NOS), whereas Jagged2 was present in most neuron subtypes. We propose that Notch1 and Jagged2 have a continuing role in the maintenance and function of neuronal cells in the adult enteric nervous system.  相似文献   

15.
The technique of steroid hormone autoradiography has been used to study the cellular distribution of ecdysteroid binding sites in the ventral nervous system of the tobacco hornworm moth, Manduca sexta. The ligand was 26-[125I]iodoponasterone. Tissue was examined from the subesophageal ganglia, thoracic ganglia, and abdominal ganglia of larvae at two times during the larval-pupal transient: the 2nd day of wandering and the prepupal stage. The patterns of neuronal binding seen were compared with those found in earlier autoradiographic studies of hormone binding in tissue sampled on the 1st day of wandering, in the pharate adult, and in the 4-day-old moth (Fahrbach and Truman, '89). The pattern of binding was reproducible but dependent upon developmental stage: whereas only a subset of neurons exhibited nuclear accumulation of radiolabeled ecdysteroids on the 1st day of wandering, less than 24 hours later nearly every neuron in the ventral nervous system was labeled. A limited pattern of binding, however, was seen again in the prepupal nervous system. Thus, the insect nervous system is able to use a single hormone both as a general cue for metamorphic development and as a single targeted to stage-specific subsets of neurons by alternating periods of ubiquitous expression of receptor with periods during which the capacity to bind the steroid hormone is highly restricted.  相似文献   

16.
Nitric oxide (NO) is an unconventional membrane-permeable messenger molecule that has been shown to play various roles in the nervous system. How NO modulates ion channels to affect neuronal functions is not well understood. In gastropods, NO has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of the freshwater pond snail Helisoma trivolvis is active during the hyper-retraction phase of the feeding motor program and is located in the vicinity of NO-producing neurons in the buccal ganglion. Here, we asked whether B19 neurons might serve as direct targets of NO signaling. Previous work established NO as a key regulator of growth cone motility and neuronal excitability in another buccal neuron involved in feeding, the B5 neuron. This raised the question whether NO might modulate the electrical activity and neuronal excitability of B19 neurons as well, and if so whether NO acted on the same or a different set of ion channels in both neurons. To study specific responses of NO on B19 neurons and to eliminate indirect effects contributed by other cells, the majority of experiments were performed on single cultured B19 neurons. Addition of NO donors caused a prolonged depolarization of the membrane potential and an increase in neuronal excitability. The effects of NO could mainly be attributed to the inhibition of two types of calcium-activated potassium channels, apamin-sensitive and iberiotoxin-sensitive potassium channels. NO was found to also cause a depolarization in B19 neurons in situ, but only after NO synthase activity in buccal ganglia had been blocked. The results suggest that NO acts as a critical modulator of neuronal excitability in B19 neurons, and that calcium-activated potassium channels may serve as a common target of NO in neurons.  相似文献   

17.
Immune (y) interferon production by murine T cell lymphomas   总被引:2,自引:0,他引:2  
Various cloned murine T cell hybridomas and T cell lymphomas were evaluated for their ability to produce interferon (IFN). Two T cell tumor clones, L12-R1 and L12-R4, derived from the spontaneously in vitro transformed cell lines L12 originally established from fetal calf serum-primed C57BL/6 spleen cells were found to produce high IFN amounts upon mitogen stimulation. Phorbol myristate acetate led to maximal IFN production (2187 IU) by L12-R4 cells at concentrations of 2 x 10(-7) M, whereas concanavalin A and phytohemagglutinin induced lower levels of IFN synthesis (160 to 243 IU). None of the cell lines tested produced IFN constitutively or upon lipopolysaccharides stimulation. The IFN was characterized as immune (y) by being labile at pH 2 and neutralized by two rabbit anti-murine IFN-y antisera but not by antiserum to murine leukocyte (alpha) and fibroblast (beta) IFN. Phenotypic characterization of IFN-y-producing cells showed the L12 clones to be Thy-1.2+, Lyt-1+, 23-, and Ig-. The L12-R4 tumor cell therefore provide a unique source of IFN-y for purification, and may represent a useful model for studying the molecular mechanisms involved in T cell differentiation leading to IFN-y production.  相似文献   

18.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a bioactive peptide with diverse activities in the nervous system. In addition to its more classic role as a neurotransmitter, PACAP functions as a neurotrophic factor. PACAP exerts these activities by binding to PACAP-selective (PAC1) or nonselective (VPAC1, VPAC2) receptors (-R). Glial cells also exhibit PACAP binding, which is associated with the increased proliferation of astrocytes. The present report demonstrates a distinct spatiotemporal regulation of PACAP, PAC1-R, VPAC1-R, and VPAC2-R expression in primary cultured rat astrocytes. To determine the role of PACAP and PAC1-R expression on glial proliferation, two in vivo models were examined--human brain tumors of glial origin and the reactive gliosis induced by a penetrating stab wound to the mature rat brain. Relative to normal human brain, PAC1-R expression is significantly upregulated in glioma, particularly oligodendrogliomas. While similar polymerase chain reaction (PCR) analysis does not detect PACAP expression, in situ hybridization studies reveal PACAP expression in a limited number of cells within the tumor. In sharp contrast, neither PACAP nor PAC1-R expression are upregulated consequent to injury. These results suggest a distinct role for PACAP and PAC1-R in glioma development and nervous system response to injury.  相似文献   

19.
Homogenates of estrogen-responsive mouse Leydig cell tumors (T 124958-R and T 22137) or 28- and 120-day-old mouse testes were incubated with [3H]progesterone or [14C]4-androstene-3,17-dione in the presence of NADPH, and progesterone metabolism and enzyme activities were estimated. The growth of T 124958-R tumor transplanted in BALB/c mice was markedly stimulated by estrogenization of host mice, but the growth of T 22137 tumor was evidently suppressed by the estrogenization. The major C21-17-OH-steroids and C19-steroids formed from progesterone by both tumors and the testes of immature mice were 5 alpha-steroids, such as 3 alpha,17-dihydroxy-5 alpha-pregnan-20-one, 5 alpha-androstane-3,17-dione, androsterone, 3 beta-hydroxy-5 alpha-androstan-17-one and 5 alpha-androstane-3 alpha,17 beta-diol. In contrast, the major steroids formed by the testes of adult mice were testosterone and 4-androstene-3,17-dione, and no or little 5 alpha-steroids were produced. 5 alpha-Reductase activities in both tumor cells (40-50 nmol/l X 10(8) cells per h) were also found to be approx. 5-6 times higher than that in Leydig cells of adult mouse testes (8 nmol/l X 10(8) Leydig cells per h), though 17-hydroxylase activity was much higher in the Leydig cells of adult testes (730 nmol/l X 10(8) Leydig cells per h) than in both tumor cells (1-7 nmol/l X 10(8) cells per h). Furthermore, the presence of significant amounts of endogenous androsterone and/or 5 alpha-androstane-3 alpha,17 beta-diol was demonstrated in both tumors by radioimmunoassay. The present results demonstrate for the first time that C19-5 alpha-steroids are major C19-steroid products (immature type of testicular androgen production) in Leydig cell tumor lines.  相似文献   

20.
巢蛋白在P19神经元分化过程中的表达   总被引:11,自引:0,他引:11  
Bian W  Yang J  Tang K  Jing NH 《生理学报》1999,51(3):246-252
小鼠巢蛋白(nestin)基因编码了一个中等纤维骨架蛋白,该基因在小鼠中枢神经系统发育过程中的瞬时性表达,为了推测该基因的神经发育过程中可能的功能,我们分析了该基因在RA诱导的P19胚胎性癌细胞体外神经分化过程中的表达规律,结果显示,在上述过程中,巢蛋白基因的表达早于神经前体细胞(neuralprecusorcell)中表达的BMP4,以及在成熟神经元特异表达的标分子神经线(NF160),表明巢蛋  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号