首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. Epidermal cells were harvested from the dorsal skin of adult mice by trypsinization and were sedimented through continuous density gradients of Percoll, formulated to separate basal cells of different buoyant density. Five fractions from the gradients were characterized with regard to the number of cells present, their viability and morphology and their basal origin. Suprabasal keratinocytes remained primarily at the top of the gradient; basal keratinocytes sedimented throughout. With increasing density, a relative enrichment was observed: (i) for [3H]-thymidine and [3H]-benzo[a]pyrene label-retaining (slowly cycling) keratinocytes; (ii) for keratinocytes that could proliferate in vitro in the continuous presence of 0–1 μ g ml-1 of 12-0-tetradecanoylphorbol-13-acetate; (iii) for cells from untreated as well as initiated epidermis able to proliferate under conditions where calcium induces terminal differentiation; and (iv) for primary in vitro clonogenic keratinocytes from normal epidermis. The relative enrichment for epidermal basal cells having characteristics thought to be associated with immaturity and with the initiation and promotion of skin carcinogenesis suggests that density gradient sedimentation could be used in conjunction with other methods for the eventual purification of epidermal progenitors.  相似文献   

2.
A population of neonatal mouse keratinocytes (epidermal basal cells) was obtained by gentle, short-term trypsin separation of the epidermal and dermal skin compartments and discontinuous Ficoll gradient purification of the resulting epidermal cells. Over 4--6 wk of culture growth at 32--33 degrees C, the primary cultures formed a complete monolayer that exhibited entire culture stratification and upper cell layer shedding. Transmission and scanning electron microscopy demonstrated that the keratinocyte cultures progressed from one to two cell layers through a series of stratification and specialization phenomena to a six to eight cell layer culture containing structures characteristic of epidermal cells and resembling in vivo epidermal development. The temporal development of primary epidermal cell culture specialization was confirmed by use of two histological techniques which differentially stain the specializing upper cell layers of neonatal mouse skin. No detectable dermal fibroblast co-cultivation was demonstrated by use of the leucine aminopeptidase histochemical technique and routine electron microscope surveillance of the cultures. Incorporation of [3H]thymidine ([3H]Tdr) was greater than 85% into DNA and was inhibited by both 20 micron cytosine arabinoside (Ara-C) and low temperature. Autoradiography and 90% inhibition of [3H]Tdr incorporation by 2 mM hydroxyurea indicated that keratinocyte culture DNA synthesis was scheduled (not a repair phenomenon). The primary keratinocytes showed an oscillating pattern of [3H]Tdr incorporation into DNA over the initial 23--25 days of growth. Autoradiography demonstrated that the cultures contained 10--30% proliferative stem cells from days 2-25 of culture. The reproducibility of both the proliferation and specialization patterns of the described primary epidermal cell culture system indicates that these cultures are a useful tool for investigations of functioning epidermal cell homeostatic control mechanisms.  相似文献   

3.
Reconstituted skin from murine embryonic stem cells   总被引:16,自引:0,他引:16  
Embryonic stem (ES) cell lines can be expanded indefinitely in culture while maintaining their potential to differentiate into any cell type. During embryonic development, the skin forms as a result of reciprocal interactions between mesoderm and ectoderm. Here, we report the in vitro differentiation and enrichment of keratinocytes from murine ES cells seeded on extracellular matrix (ECM) in the presence of Bone Morphogenic Protein-4 (BMP-4) or ascorbate. The enriched preparation of keratinocytes was able to form an epidermal equivalent composed of a stratified epithelium when cultured at the air-liquid interface on a collagen-coated acellular substratum. Interestingly, an underlying cellular compartment that belongs to the fibroblast lineage was systematically formed between the reconstituted epidermis and the inert membrane. The resulting tissue displayed morphological patterns similar to normal embryonic skin, as evidenced by light and transmission electron microscopy. Immunohistochemical studies revealed expression patterns of cytokeratins, basement membrane (BM) proteins and late differentiation markers of epidermis, as well as fibroblast markers, similar to native skin. The results demonstrate the capacity of ES cells to reconstitute in vitro a fully differentiated skin. This ES-derived bioengineered skin provides a powerful tool for studying the molecular mechanisms controlling epidermal and dermal commitments.  相似文献   

4.
In order to initiate studies on chemical carcinogenesis in an in vitro system analogous to mouse epidermis, primary epidermal cell cultures from perinatal mouse skin were established. A standardized method for the large-scale isolation of epidermal cells from late embryonic or newborn mouse dorsal skin has been developed. The epidermal cells were separated from fibroblasts by two series of discontinuous Ficoll density gradients. Using 80 to 100 animals/experiment, an average yield of 3×106 viable epidermal cells/animal was obtained. The viability of the purified cell suspension exceeded 85%, and the plating efficiency, representing the growing cell fraction 24 h after plating, was about 43%.The cultures started as epithelial monolayers without fibroblast contamination. Their epidermal nature and origin was proved immunologically by an in vivo absorbed rabbit anti-mouse epidermis antiserum. The purity of the epidermal cells was quantitatively determined in trypsinized suspensions by the indirect immunofluorescence test yielding more than 95% epidermal antigen-positive cells. About half of the remaining antigen-negative cells could be identified as melanocytes. These highly purified epidermal cells grew in vitro for 2–3 weeks without dermal constituents or diffusible mesenchymal factors. The monolayers differentiated in culture giving rise to keratinizing cell sheets on top of the proliferating basal layer. By morphological, histochemical and physical methods, it could be evidenced that the differentiation processes in vitro are quite similar to keratinization in vivo.  相似文献   

5.
Human keratinocytes isolated from a skin biopsy and cultured in vitro reconstitute a stratified squamous epithelium suitable for grafting on burned patients. Melanocytes coisolated from the same skin biopsy also proliferate under these culture conditions and maintain differentiated functions (i.e., synthesize melanin granules, regularly intersperse in the basal layer of the cultured epidermis, and transfer melanosomes in the cytoplasm of contiguous keratinocytes) (De Luca, M., A. T. Franzi, F. D'Anna, A. Zicca, E. Albanese, S. Bondanza, and R. Cancedda. 1988. Eur. J. Cell Biol. 46:176-180). Isolated melanocytes in culture grow in the presence of specific growth factors with a mean population doubling time of 4-10 d. In this paper we show that (a) human keratinocytes and oral epithelial cells possess strong and specific melanocyte growth stimulating activity (doubling time, 24 h); (b) melanocyte growth is not autonomous but requires close keratinocyte contact and is regulated to maintain a physiological melanocytes/keratinocytes ratiol and (c) pure skin keratinocytes, but not oral epithelial cells, have all the information required for the proper physiological location and differentiation of melanocytes in the epidermis.  相似文献   

6.
In order to initiate studies on chemical carcinogenesis in an in vitro system analogous to mouse epidermis, primary epidermal cell cultures from perinatal mouse skin were established. A standardized method for the large-scale isolation of epidermal cells from late embryonic or newborn mouse dorsal skin has been developed. The epidermal cells were separated from fibroblasts by two series of discontinuous Ficoll density gradients. Using 80 to 100 animals/experiment, an average yield of 3×106 viable epidermal cells/animal was obtained. The viability of the purified cell suspension exceeded 85%, and the plating efficiency, representing the growing cell fraction 24 h after plating, was about 43%.The cultures started as epithelial monolayers without fibroblast contamination. Their epidermal nature and origin was proved immunologically by an in vivo absorbed rabbit anti-mouse epidermis antiserum. The purity of the epidermal cells was quantitatively determined in trypsinized suspensions by the indirect immunofluorescence test yielding more than 95% epidermal antigen-positive cells. About half of the remaining antigen-negative cells could be identified as melanocytes. These highly purified epidermal cells grew in vitro for 2–3 weeks without dermal constituents or diffusible mesenchymal factors. The monolayers differentiated in culture giving rise to keratinizing cell sheets on top of the proliferating basal layer. By morphological, histochemical and physical methods, it could be evidenced that the differentiation processes in vitro are quite similar to keratinization in vivo.  相似文献   

7.
An in vitro system of isolated skin cells has been developed in order to address the understanding on the factors that control the shedding cycle and differentiation of lizard epidermis. The skin from the regenerating lizard tail has been separated in epidermis and dermis, cells have been dissociated, cultivated in vitro, and studied ultrastructurally after 1–30 days of culture condition. Dissociated keratinocytes after 12 days in culture show numerous cell elongations and contain bundles of keratin or sparse keratin filaments. These cells often contain one to three 0.5–3 μm large and dense “keratinaceous bodies”, an organelle representing tonofilament disassembling. Most keratinocytes have sparse tonofilaments in the cytoplasm and form shorter bundles of keratin in the cell periphery. The dissociated dermis mainly consists of mesenchymal cells containing sparse bundles of intermediate filaments. These cells proliferate and form multi-stratified layers and a dermal pellicle in about 2–3 weeks in vitro in our basic medium. Conversely, cultures of keratinocytes do not expand but eventually reduce to few viable cells within 2–3 weeks of in vitro condition. It is suggested that dermal cells sustain themselves through the production of growth factors but that epidermal cells requires specific growth factors still to be identified before setting-up an in vitro system that allows analyzing the control of the shedding cycle in lizards.  相似文献   

8.
Summary A method for the separation of guinea pig epidermal keratinocytes, in which the Feulgen-stainable material suffers minimal damage, has been investigated. The principal stage involves trypsin treatment of the epidermal sheet, stripped from the dermis with ethylenediamine tetraacetic acid. The epidermal cells thus isolated are separated into three groups by centrifugation on a continuous colloidal silica (Percoll) density gradient. The resulting arrangement of the keratinocytes in the centrifuge tube corresponds to their arrangement in situ, with basal cells at the bottom and the more differentiated cells above. By morphological examination, it can be shown that relatively pure fractions of basal cells, spinous cells, and granular cells are obtained by this method. With respect to DNA distribution pattern, there was good agreement between that of keratinocytes separated by the microdissection-ultrasonic irradiation method, or by the chymotrypsin method as reported previously by us, and that obtained by the present method.  相似文献   

9.
Frozen human cadaver skin obtained from the skin bank was thawed and incubated in serum-free medium for 1–2 days, after which the original epidermis could be removed mechanically. Transmission electron microscopic observations showed that the dermal matrix remaining behind contained intact bundles of collagen fibrils but no live cells and that a continuous lamina densa persisted in the basement membrane region. Indirect immunofluorescence analyses demonstrated linear staining of the basement membrane region by antibodies against laminin and type IV collagen and discontinuous staining with antibodies against fibronectin. Scanning electron microscopic observations revealed a normal topographical arrangement of dermal matrix papilla and interspersed crypts on the surface of the matrix. Epidermal cells placed on the dermal matrix attached in 1–2 h and spread by 24 h. After 1 week of culture the epidermis was reconstituted, at which time approximately 30% of the epidermal cells were basal keratinocytes and the remainder were more differentiated keratinocytes. A high degree of differentiation of the reconstituted epidermis was shown by the formation of hemidesmosomes along the basement membrane, the formation of desmosomes characterized by intercellular dense lines, and the presence of a cell layer containing keratohyalin granules. At various times during epidermal reconstitution, cells were harvested and tested in short-term assays for adhesion to fibronectin substrata. During the first several days there was a transient activation of basal keratinocyte spreading analogous to the modulation of keratinocyte spreading that we have observed during epidermal reconstitution in vivo.  相似文献   

10.
Summary Binding of N-acetyl galactosamine (GalNAc)-specific Dolichos biflorus agglutinin (DBA) conjugates to frozen sections of normal epidermis and of psoriatic uninvolved and lesional skin was studied in fluorescence microscopy. The DBA conjugates bound only to single basal cell layer in normal and uninvolved psoriatic epidermis from patients with different blood group status. In the lesional area of psoriatic skin a similar reaction with a single basal cell layer was revealed. Other lectin-conjugates applied, presenting also GalNAc specificity, reacted with most cell layers of normal and both uninvolved and lesional psoriatic epidermis and gave an attenuated reaction with the middle epidermal layers. The results show that the basal cell characteristics are confined only to the cells along the basal membrane also in psoriatic epidermis, although cells in three lowest layers may be able to proliferate.  相似文献   

11.
CD98, a novel marker of transient amplifying human keratinocytes   总被引:1,自引:0,他引:1  
Identification of plasma membrane markers of basal keratinocytes is essential for sorting basal cells and, subsequently, adult epidermal stem cells. In this study, we isolated caveolin-1-enriched microdomains from human HaCaT keratinocytes and identified proteins representing potential cell surface markers of the epidermis by a proteomic approach. The purification of this caveolae domain allowed us to characterize 53 proteins of which 26% were transmembrane and 32% associated-membrane proteins. One of them, CD98, was found to be co-localized with beta1 integrin at the plasma membrane of the basal keratinocytes of healthy human epidermis. We then isolated CD98-positive keratinocytes from fresh skin biopsies. Using clonogenic assays, we demonstrate that CD98 may be considered as a marker of transient amplifying human keratinocytes.  相似文献   

12.
A method for the separation of guinea pig epidermal keratinocytes, in which the Feulgen-stainable material suffers minimal damage, has been investigated. The principal stage involves trypsin treatment of the epidermal sheet, stripped from the dermis with ethylenediamine tetraacetic acid. The epidermal cells thus isolated are separated into three groups by centrifugation on a continuous colloidal silica (Percoll) density gradient. The resulting arrangement of the keratinocytes in the centrifuge tube corresponds to their arrangement in situ, with basal cells at the bottom and the more differentiated cells above. By morphological examination, it can be shown that relatively pure fractions of basal cells, spinous cells, and granular cells are obtained by this method. With respect to DNA distribution pattern, there was good agreement between that of keratinocytes separated by the microdissection-ultrasonic irradiation method, or by the chymotrypsin method as reported previously by us, and that obtained by the present method.  相似文献   

13.
Corneal epithelium transdifferentiation into a hair-bearing epidermis provides a particularly useful system for studying the possibility that transient amplifying (TA) cells are able to activate different genetic programs in response to a change in their fibroblast environment, as well as to follow the different steps of rebuilding an epidermis from induced stem cells. Corneal stem and TA cells are found in different locations - stem cells at the periphery, in the limbus, and TA cells more central. Moreover, the TA cells already express the differentiating corneal-type keratin pair K3/K12, whereas the limbal keratinocytes express the basal keratin pair K5/K14. In contrast, suprabasal epidermal keratinocytes express keratin pair K1-2/K10, and basal keratinocytes the keratin pair K5/K14. The results of tissue recombination experiments show that adult central corneal cells are able to respond to specific information originating from embryonic dermis. First, the cells located at the base of the corneal epithelium show a decrease in expression of K12 keratin, followed by an increase in K5 expression; they then proliferate and form hair follicles. The first K10 expressing cells appear at the junction of the new hair follicles and the covering corneal epithelium. Their expansion finally gives rise to epidermal strata, which displace the corneal suprabasal keratinocytes. Corneal TA cells can thus be reprogrammed to form epidermal cells, first by reverting to a basal epithelial-type, then to hair pegs and probably concomitantly to hair stem cells. This confirms the role of the hair as the main reservoir of epidermal stem cells and raises the question of the nature of the dermal messages which are both involved in hair induction and stem cell specification.  相似文献   

14.
Binding of N-acetyl galactosamine (GalNAc)-specific Dolichos biflorus agglutinin (DBA) conjugates to frozen sections of normal epidermis and of psoriatic uninvolved and lesional skin was studied in fluorescence microscopy. The DBA conjugates bound only to single basal cell layer in normal and uninvolved psoriatic epidermis from patients with different blood group status. In the lesional area of psoriatic skin a similar reaction with a single basal cell layer was revealed. Other lectin-conjugates applied, presenting also GalNAc specificity, reacted with most cell layers of normal and both uninvolved and lesional psoriatic epidermis and gave an attenuated reaction with the middle epidermal layers. The results show that the basal cell characteristics are confined only to the cells along the basal membrane also in psoriatic epidermis, although cells in three lowest layers may be able to proliferate.  相似文献   

15.
The presence of pre-existing basement membrane (BM) components improves the morphogenesis of epidermis and BM in constructing a human living skin-equivalent (LSE). De-epithelialized amniotic membrane (AM) retains key BM components. We have therefore investigated the usefulness of AM for constructing LSE. De-epithelialized AM was overlaid on type I collagen gel embedded with fibroblasts. Normal human keratinocytes (NHKs) were then seeded onto the epithelial side of the AM to construct an AM-LSE. A conventional LSE was constructed by seeding NHKs on a fibroblast-populated type I collagen gel. When the keratinocytes reached confluence, the LSE was lifted to the air-liquid interface and cultured for up to 3 weeks. Samples were harvested at various times and investigated morphologically, immunohistochemically, and ultrastructurally. In AM-LSE, the epidermis was better stratified, with more compact, polarized, columnar basal cells, and the expression of differentiation and proliferation markers was more similar to that of normal human skin than was that of LSE without AM. A more continuous BM and better-developed hemidesmosomes were found in AM-LSE. The epidermis of AM-LSE outgrew much faster than that of LSE without AM. When transplanted onto nude mice, both LSEs took well; however, the AM-LSE graft showed better morphogenesis of the epidermis, BM, and hemidesmosomes. The better epidermal morphology and better-developed BM in AM-LSE in vitro and in vivo indicates its superiority over LSE without AM for clinical applications.This work was partly supported by Health Sciences Research Grants for Research on Specific Diseases from the Ministry of Health, Labor, and Welfare of Japan (to K.H.) and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to K.H. and Y.S.).L. Yang and Y. Shirakata contributed equally to this work.  相似文献   

16.
Abstract. The human skin equivalent (HSE) is an in vitro reconstructed model that resembles skin morphologically and biochemically. The HSE is formed by overlaying a fibroblast-populated collagen matrix with a suspension of epidermal cells. Basal keratinocytes attach to the dermal equivalent via a newly formed basement membrane and multiply to form a stratified, differentiated epidermis. The aim of the studies described here was to characterize the basal cells of the HSE in terms of their cell cycling potential. The experiments utilized long-term labelling of the cells with tritiated thymidine ([3H]dT), followed by irradiation with ultraviolet light. [3H]dT incorporation was analysed via routine autoradiography. Irradiation with 100 J/m2 UV light increased the number of labelled basal cells by 58% over the control, the maximal stimulation observed. Decreased numbers of labelled basal cells were observed at doses of UV light greater than 100 J/m2. The maximal number of labelled basal cells was observed on day 14 and decreased over time; the number of labelled suprabasal cells increased concomitantly. Label-retaining cells (12%) persisted in the stratum basale of control HSEs after 32 days in culture. Labelled cells were observed in the apical layers of the stratum granulosum of control HSEs after 22 days in culture. These data suggest that the stratum basale of the HSE contains a population of slow-cycling cells whose characteristics resemble a subpopulation of slowly cycling cells found in normal human skin.  相似文献   

17.
The present study shows the localization of epidermal and dermal proteins produced in lizard skin cultivated in vitro. Cells from the skin have been cultured for up to one month to detect the expression of keratins, actin, vimentin and extracellular matrix proteins (fibronectin, chondroitin sulphate proteoglycan, elastin and collagen I). Keratinocytes and dermal cells weakly immunoreact for Pan-Cytokeratin but not with the K17-antibody at the beginning of the cell culture when numerous keratin bundles are present in keratinocyte cytoplasm. The dense keratin network disappears after 7-12 days in culture, and K17 becomes detectable in both keratinocytes and mesenchymal cells isolated from the dermis. While most epidermal cells are lost after 2 weeks of in vitro cultivation dermal cells proliferate and form a pellicle of variable thickness made of 3-8 cell layers. The fibroblasts of this dermal equivalent produces an extracellular matrix containing chondroitin sulphate proteoglycan, collagen I, elastic fibers and fibronectin, explaining the attachment of the pellicle to the substratum. The study indicates that after improving keratinocyte survival a skin equivalent for lizard epidermis would be feasible as a useful tool to analyze the influence of the dermis on the process of epidermal differentiation and the control of the shedding cycle in squamates.  相似文献   

18.

Objectives

Sprouty (SPRY) 1 is one of the SPRY proteins that inhibits signalling from various growth factors pathways and has also been known as a tumour suppressor in various malignancies. However, no study elucidates the role of SPRY1 in the skin. Our study was conducted to determine the function of SPRY1 in human keratinocytes and the epidermis.

Materials and methods

In vitro primary cultured epidermal keratinocytes were used to investigate the proliferation, differentiation and apoptosis of these cells. We also established overexpression of SPRY1 in vitro and K14‐SPRY1 transgenic mice.

Results

SPRY1 was mainly located in the cytoplasm of the epidermal keratinocytes from the granular epidermal layer of the skin and cultured cells. Overexpressed SPRY1 in keratinocytes resulted in up‐regulation of P21, P27 and down‐regulation of cyclin B1; decrease in MMP3 and integrin α6. SPRY1‐overexpressed primary keratinocytes exhibited a lower proliferation and migration capability and higher rates of apoptosis. Epidermis of SPRY1‐TG mice represented delayed wound healing. Proteomics analysis and GO enrichment showed DEPs of SPRY1 TG mice epidermis is significantly enriched in immune‐ and inflammatory‐associated biological process.

Conclusions

In summary, SPRY1 expression was inversely correlated with cell proliferation, migration and promote cell apoptosis of keratinocytes. SPRY1 maybe a negative feedback regulator in normal human epidermal keratinocytes and cutaneous inflammatory responses. Our study raised the possibility that enhancing expression of SPRY1 may have the potential to promote anti‐inflammatory effects.
  相似文献   

19.
20.
Summary The internal epithelium of mouse forestomach represents a fully keratinized tissue that has many morphological aspects in common with the integumental epidermis. In the present study we have, therefore, analyzed keratin expression in the total epithelium, in subfractions of basal cells and in living and dead suprabasal cells that were obtained by Percoll density gradient centrifugation of trypsin-dissociated forestomach keratinocytes. The keratin analysis revealed that basal forestomach keratinocytes synthesize the same keratin types as basal epidermal cells (60 000, 52 000 and 47 000 daltons), whereas differentiating cells contain both the epidermal suprabasal keratin pair (67 000 and 59 000 daltons) and the suprabasal keratin pair characteristic for other internal squamous epithelia (57 000 and 47 000 daltons). Indirect immunofluorescence using an antibody recognizing the members of the epidermal-type suprabasal keratin pair and in-situ-hybridization experiments using specific cDNA probes for the members of the internal-type keratin pair showed that the two keratin pairs are uniformly coexpressed in living suprabasal forestomach keratinocytes. Furthermore, it could be shown that distinct cells in the basal cell layer acquire the ability to express both the 67 000/59 000 dalton and the 57 000/47 000 dalton keratin pair and that some basal cells apparently lose the ability to synthesize mRNAs for basal keratins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号