首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Owing to the markedly increased reactivity of amino functional groups versus hydroxyls, the 5′-amino-5′-deoxy nucleoside and nucleotide analogs have proven widely useful in biological, pharmaceutical and genomic applications. However, synthetic procedures leading to these analogs have not been fully explored, which may possibly have limited the scope of their utility. Here we describe the synthesis of the 5′-amino-2′,5′-dideoxy analogs of adenosine, cytidine, guanosine, inosine and uridine from their respective naturally occurring nucleosides via the reduction of 5′-azido-2′,5′-dideoxy intermediates using the Staudinger reaction, and the high yield conversion of these modified nucleosides and 5′-amino-5′-deoxythymidine to the corresponding 5′-N-triphosphates through reaction with trisodium trimetaphosphate in the presence of tris(hydroxymethyl)aminomethane (Tris). We also show that each of these nucleotide analogs can be efficiently incorporated into DNA by the Klenow fragment of Escherichia coli DNA polymerase I when individually substituted for its naturally occurring counterpart. Mild acid treatment of the resulting DNA generates polynucleotide fragments that arise from specific cleavage at each modified nucleotide, providing a sequence ladder for each base. Because the ladders are generated after the extension, the corresponding products may be manipulated by enzymatic and/or purification processes. The potential utility of this extension–cleavage procedure in genomic sequence analysis is discussed.  相似文献   

2.
We report an approach using solid phase capturable biotinylated dideoxynucleotides (biotin-ddNTPs) in single base extension for multiplex genotyping by mass spectrometry (MS). In this method, oligonucleotide primers that have different molecular weights and that are specific to the polymorphic sites in the DNA template are extended with biotin-ddNTPs by DNA polymerase to generate 3′-biotinylated DNA products. These products are then captured by streptavidin-coated solid phase magnetic beads, while the unextended primers and other components in the reaction are washed away. The pure extension DNA products are subsequently released from the solid phase and analyzed by matrix-assisted laser desorption/ionization time-of-flight MS. The mass of the extension products is determined using a stable oligonucleotide as a common internal mass standard. Since only the pure extension DNA products are introduced to the MS for analysis, the resulting mass spectrum is free of non-extended primer peaks and their associated dimers, which increases the accuracy and scope of multiplexing in single nucleotide polymorphism (SNP) analysis. The solid phase purification approach also facilitates desalting of the captured oligonucleotides, which is essential for accurate mass measurement by MS. We selected four biotin-ddNTPs with distinct molecular weights to generate extension products that have a 2-fold increase in mass difference compared to that with conventional ddNTPs. This increase in mass difference provides improved resolution and accuracy in detecting heterozygotes in the mass spectrum. Using this method, we simultaneously distinguished six nucleotide variations on synthetic DNA templates mimicking mutations in the p53 gene and two disease-associated SNPs in the human hereditary hemochromatosis gene.  相似文献   

3.
A novel series of charge-modified, dye-labeled 2′,3′-dideoxynucleoside-triphosphate terminators were synthesized and evaluated as reagents for DNA sequencing. These terminators possess an advantage over existing reagents in that no purification is required to remove unreacted nucleotide or associated breakdown products prior to electrophoretic separation of the sequencing fragments. This obviates the need for a time consuming post-reaction work up, allowing direct loading of DNA sequencing reaction mixtures onto a slab gel. Thermo Sequenase™ II DNA polymerase poorly incorporates the charge-modified terminators compared with regular dye-labeled terminators. However, extending the linker arm between dye and nucleotide and using a mutant form of a related DNA polymerase can in part mitigate the decrease in substrate efficiency. We also present evidence that these charge-modified terminators can relieve gel compression artefacts when used with dGTP in sequencing reactions.  相似文献   

4.
High-throughput procedures are an important requirement for future large-scale genetic studies such as genotyping of single nucleotide polymorphisms (SNPs). Matrix-assisted laser desorption/ ionisation mass spectrometry (MALDI-MS) has revolutionised the analysis of biomolecules and, in particular, provides a very attractive solution for the rapid typing of DNA. The analysis of DNA by MALDI can be significantly facilitated by a procedure termed ‘charge-tagging’. We show here a novel approach for the generation of charge-tagged DNA using a photocleavable linker and its implementation in a molecular biological procedure for SNP genotyping consisting of PCR, primer extension, photocleavage and a chemical reaction prior to MALDI target preparation and analysis. The reaction sequence is amenable to liquid handling automation and requires no stringent purification procedures. We demonstrate this new method on SNPs in two genes involved in complex traits.  相似文献   

5.
Universal DNA base analogs having photocleavable properties would be of great interest for development of new nucleic acid fragmentation tools. The photocleavable 7-nitroindole 2′-deoxyribonucleoside d(7-Ni) was previously shown to furnish a highly efficient approach to photochemically trigger DNA backbone cleavage at preselected position when inserted in a DNA fragment. In the present report, we examine its potential use as universal DNA nucleoside, by analogy with the 5-nitroindole analog that is generally considered as universal base. The d(7-Ni) phosphoramidite was incorporated into oligonucleotides. Hybridization properties of resulting 11mer duplexes indicated a behavior close to that of the 5-nitroindole analog. Enzymatic recognition by Klenow fragment exonuclease-free using 40mers containing the unnatural bases as templates indicated notably a decrease of the polymerase activity with preferential incorporation of dAMP opposite both the 7-Ni and 5-Ni bases. Incorporation of the d(7-Ni) triphosphate was also studied indicating absence of significant differences between the incorporation kinetics opposite each natural base in the template. All the hybridization and enzymatic data indicate that 7-nitroindole can be considered as a cleavable base analog, although not strictly fulfilling, like the 5-nitro isomer, all properties required for a universal base.  相似文献   

6.
Combinatorial fluorescence energy transfer (CFET) tags, constructed by exploiting energy transfer and combinatorial synthesis, allow multiple biological targets to be analyzed simultaneously. We here describe a multiplex single nucleotide polymorphism (SNP) assay based on single base extension (SBE) using CFET tags and biotinylated dideoxynucleotides (biotin-ddNTPs). A library of CFET-labeled oligonucleotide primers was mixed with biotin-ddNTPs, DNA polymerase and the DNA templates containing the SNPs in a single tube. The nucleotide at the 3′-end of each CFET-labeled oligonucleotide primer was complementary to a particular SNP in the template. Only the CFET-labeled primer that is fully complementary to the DNA template was extended by DNA polymerase with a biotin-ddNTP. We isolated the DNA extension fragments that carry a biotin at the 3′-end by capture with streptavidin-coated magnetic beads, while the unextended primers were eliminated. The biotinylated fluorescent DNA fragments were subsequently analyzed in a multicolor fluorescence electrophoresis system. The distinct fluorescence signature and electrophoretic mobility of each DNA extension product in the electropherogram coded the SNPs without the use of a sizing standard. We simultaneously distinguished six nucleotide variations in synthetic DNA templates and a PCR product from the retinoblastoma tumor suppressor gene. The use of CFET-labeled primers and biotin-ddNTPs coupled with the specificity of DNA polymerase in SBE offered a multiplex method for detecting SNPs.  相似文献   

7.
8.
A facile, sensitive method for detecting specific sequences of oligonucleotides was developed. Detection of DNA sequences with single nucleotide discrimination is achieved by combining the selectivity of hybridization with an efficient cross-linking reaction. Readily synthesized bifunctional oligonucleotide probes containing a modified pyrimidine that is capable of forming interstrand cross-links under mild oxidative conditions internally, and biotin at their 5′-termini were used to discriminate between 16-nt long sites in plasmid DNA that differ by a single nucleotide. The target sequence was detected via fluorescence spectroscopy by utilizing conjugates of avidin and horseradish peroxidase in a microtiter plate assay. The method is able to detect as little as 250 fmol of target without using PCR and exhibits single nucleotide discrimination that approaches 200:1. In principle, this method is capable of probing any target sequence containing a 2′-deoxyadenosine.  相似文献   

9.
Two novel dATP analogs for DNA photoaffinity labeling   总被引:1,自引:0,他引:1       下载免费PDF全文
Two new photoreactive dATP analogs, N6-[4-azidobenzoyl–(2-aminoethyl)]-2′-deoxyadenosine-5′-triphosphate (AB-dATP) and N6-[4-[3-(trifluoromethyl)-diazirin-3-yl]benzoyl-(2-aminoethyl)]-2′-deoxyadenosine-5′-triphosphate (DB-dATP), were synthesized from 2′-deoxyadenosine-5′-monophosphate in a six step procedure. Synthesis starts with aminoethylation of dAMP and continues with rearrangement of N1-(2-aminoethyl)-2′-deoxyadenosine-5′-monophosphate to N6-(2-aminoethyl)-2′-deoxyadenosine-5′-monophosphate (N6-dAMP). Next, N6-dAMP is converted into the triphosphate form by first protecting the N-6 primary amino group before coupling the pyrophosphate. After pyrophosphorylation, the material is deprotected to yield N6-(2-aminoethyl)-2′-deoxyadenosine-5′-triphosphate (N6-dATP). The N-6 amino group is subsequently used to attach either a phenylazide or phenyldiazirine and the photoreactive nucleotide is then enzymatically incorporated into DNA. N6-dATP and its photoreactive analogs AB-dATP and DB-dATP were successfully incorporated into DNA using the exonuclease-free Klenow fragment of DNA polymerase I in a primer extension reaction. UV irradiation of the primer extension reaction with AB-dATP or DB-dATP showed specific photocrosslinking of DNA polymerase I to DNA.  相似文献   

10.

The efficiency of DNA labeling was assessed for 2'-deoxyuridine 5'-triphosphate (dUTP) derivatives containing the Cy7 cyanine dye as a fluorophore. Two fluorescent Cy7-labeled dUTP analogs differed in the chemical structure of the linker between the fluorophore and nucleotide moieties. The efficiency of the polymerase chain reaction (PCR) and inhibition with modified nucleotides were estimated by real-time PCR. The efficiency of labeled nucleotide incorporation in PCR products was measured by quantitative electrophoresis. The efficiency of target DNA labeling was evaluated by binding the fluorescently labeled PCR products to a microarray of oligonucleotide probes immobilized in hydrogel drops (a biochip). The near-infrared hybridization signal was detected by digital luminescence microscopy. An increase in linker length was found to provide more efficient incorporation of the labeled nucleotide. Both of the compounds provided high sensitivity and high specificity of DNA testing via allele-specific hybridization on a biochip.

  相似文献   

11.
DNA polymerases must select nucleotides that preserve Watson-Crick base pairing rules and choose substrates with the correct (deoxyribose) sugar. Sugar discrimination represents a great challenge because ribonucleotide triphosphates are present at much higher cellular concentrations than their deoxy-counterparts. Although DNA polymerases discriminate against ribonucleotides, many therapeutic nucleotide analogs that target polymerases have sugar modifications, and their efficacy depends on their ability to be incorporated into DNA. Here, we investigate the ability of DNA polymerase β to utilize nucleotides with modified sugars. DNA polymerase β readily inserts dideoxynucleoside triphosphates but inserts ribonucleotides nearly 4 orders of magnitude less efficiently than natural deoxynucleotides. The efficiency of ribonucleotide insertion is similar to that reported for other DNA polymerases. The poor polymerase-dependent insertion represents a key step in discriminating against ribonucleotides because, once inserted, a ribonucleotide is easily extended. Likewise, a templating ribonucleotide has little effect on insertion efficiency or fidelity. In contrast to insertion and extension of a ribonucleotide, the chemotherapeutic drug arabinofuranosylcytosine triphosphate is efficiently inserted but poorly extended. These results suggest that the sugar pucker at the primer terminus plays a crucial role in DNA synthesis; a 3′-endo sugar pucker facilitates nucleotide insertion, whereas a 2′-endo conformation inhibits insertion.  相似文献   

12.
Single nucleotide polymorphisms (SNPs) are now widely used for many DNA analysis applications such as linkage disequilibrium mapping, pharmacogenomics and traceability. Many methods for SNP genotyping exist with diverse strategies for allele-distinction. Mass spectrometers are used most commonly in conjunction with primer extension procedures with allele-specific termination. Here we present a novel concept for allele-preparation for SNP genotyping. Primer extension is carried out with an extension primer positioned immediately upstream of the SNP that is to be genotyped, a complete set of four ribonucleotides and a ribonucleotide incorporating DNA polymerase. The allele-extension products are then treated with alkali, which results in the cleavage immediately after the first added ribonucleotide. In addition, to obtain fragments easily detectable by mass spectrometry, we have included a ribonucleotide in the primer usually at the fourth nucleotide from the 3′ terminus. The method was tested on four SNPs each with a different combination of nucleotides. The advantage over other mass spectrometry-based SNP genotyping assays is that this one only requires a PCR, a primer extension reaction with a universal extension mix and an inexpensive facile cleavage reaction, which makes it overall very cost effective and easy in handling.  相似文献   

13.
We compared the efficiency of PCR amplification using primers containing either a nucleotide analog or a mismatch at the 3' base. To determine the distribution of bases inserted opposite eight different analogs, 3' analog primers were used to amplify four different templates. The products from the reactions with the highest amplification efficiency were sequenced.Analogs allowing efficient amplification followed by insertion of a new base at that position are herein termed 'convertides'. The three convertides with the highest amplification efficiency were used to convert sequences containing C, T, G and A bases into products containing the respective three remaining bases. Nine templates were used to generate conversion products, as well as non-conversion control products with no base change. We compared the ability of natural bases to convert specific sites with and without a preconversion step using nucleotide analog primers. Conversion products were identified by a ligation detection reaction using primers specific for the converted sequence. We found that conversions resulting in transitions were easier to accomplish than transversions and that sequence context influences conversion. Specifically, primer slippage appears to be an important mechanism for producing artifacts via polymerase extension of a 3' base or analog transiently base paired to neighboring bases of the template. Nucleotide analogs could often reduce conversion artifacts and increase the yield of the expected product. While new analogs are needed to reliably achieve transversions, the current set have proven effective for creating transition conversions.  相似文献   

14.
Completion of RNA synthesis by viral RNA replicases   总被引:1,自引:0,他引:1  
Tayon R  Kim MJ  Kao CC 《Nucleic acids research》2001,29(17):3576-3582
How the 5′-terminus of the template affects RNA synthesis by viral RNA replicases is poorly understood. Using short DNA, RNA and RNA–DNA chimeric templates that can direct synthesis of replicase products, we found that DNA templates tend to direct the synthesis of RNA products that are shorter by 1 nt in comparison to RNA templates. Template-length RNA synthesis was also affected by the concentration of nucleoside triphosphates, the identity of the bases at specific positions close to the 5′-terminus and the C2′-hydroxyl of a ribose at the third nucleotide from the 5′-terminal nucleotide. Similar requirements are observed with two bromoviral replicases, but not with a recombinant RNA-dependent RNA polymerase. These results begin to define the interactions needed for the viral replicase to complete synthesis of viral RNA.  相似文献   

15.
Recent developments of unique nucleotide probes have expanded our understanding of DNA polymerase function, providing many benefits to techniques involving next-generation sequencing (NGS) technologies. The cyclic reversible termination (CRT) method depends on efficient base-selective incorporation of reversible terminators by DNA polymerases. Most terminators are designed with 3′-O-blocking groups but are incorporated with low efficiency and fidelity. We have developed a novel class of 3′-OH unblocked nucleotides, called Lightning Terminators™, which have a terminating 2-nitrobenzyl moiety attached to hydroxymethylated nucleobases. A key structural feature of this photocleavable group displays a ‘molecular tuning’ effect with respect to single-base termination and improved nucleotide fidelity. Using Therminator™ DNA polymerase, we demonstrate that these 3′-OH unblocked terminators exhibit superior enzymatic performance compared to two other reversible terminators, 3′-O-amino-TTP and 3′-O-azidomethyl-TTP. Lightning Terminators™ show maximum incorporation rates (kpol) that range from 35 to 45 nt/s, comparable to the fastest NGS chemistries, yet with catalytic efficiencies (kpol/KD) comparable to natural nucleotides. Pre-steady-state kinetic studies of thymidine analogs revealed that the major determinant for improved nucleotide selectivity is a significant reduction in kpol by >1000-fold over TTP misincorporation. These studies highlight the importance of structure–function relationships of modified nucleotides in dictating polymerase performance.  相似文献   

16.
Biotinylation of RNA allows its tight coupling to streptavidin and is thus useful for many types of experiments, e.g., pull-downs. Here we describe three simple techniques for biotinylating the 3′ ends of RNA molecules generated by chemical or enzymatic synthesis. First, extension with either the Schizosaccharomyces pombe noncanonical poly(A) polymerase Cid1 or Escherichia coli poly(A) polymerase and N6-biotin-ATP is simple, efficient, and generally applicable independently of the 3′-end sequences of the RNA molecule to be labeled. However, depending on the enzyme and the reaction conditions, several or many biotinylated nucleotides are incorporated. Second, conditions are reported under which splint-dependent ligation by T4 DNA ligase can be used to join biotinylated and, presumably, other chemically modified DNA oligonucleotides to RNA 3′ ends even if these are heterogeneous as is typical for products of enzymatic synthesis. Third, we describe the use of ϕ29 DNA polymerase for a template-directed fill-in reaction that uses biotin-dUTP and, thanks to the enzyme''s proofreading activity, can cope with more extended 3′ heterogeneities.  相似文献   

17.
Covalent photocleavable attachment of small molecules or peptides to oligonucleotides is an integral strategic element in the selection of novel nucleic acid enzymes. Here, we report the synthesis of a multipurpose, photocleavable bifunctional linker (PCBL) suitable for nucleic acid selections and other biotechnology applications. PCBL contains a photocleavable O-nitrobenzyl group flanked on one side by an N-hydroxysuccinimidyl ester (reactive toward primary amines) and on the other side by a sulfhydryl. To demonstrate the utility of PCBL, the linker was used to couple an analog of the antibiotic chloramphenicol (Cam) to the 5' end of an amino-modified 8-mer DNA oligo. Coupling was confirmed by MALDI-TOF spectrophotometry. Decoupling was performed by irradiating the coupled species with near-UV light (approximately 360 nm), regenerating the original amino-modified oligo. Ligation of the Cam-PCBL-DNA conjugate to random-sequence RNA generated a diversity library appropriate for the selection of new ribozymes that catalyze reactions involving the tethered substrate. Coupling and decoupling of the Cam analog from the library was monitored on a trilayered organomercurial polyacrylamide gel. The coupling/decoupling strategy described here is readily generalized to many combinations of macromolecules and small molecules. For example, analogs of this small molecule-DNA conjugate can be generated as synthons for ligation to nucleic acid diversity libraries during each round of novel ribozyme selections, or they can be immobilized onto chips for addresssably reversible microarray analysis.  相似文献   

18.
Genotyping by apyrase-mediated allele-specific extension   总被引:7,自引:2,他引:5       下载免费PDF全文
This report describes a single-step extension approach suitable for high-throughput single-nucleotide polymorphism typing applications. The method relies on extension of paired allele-specific primers and we demonstrate that the reaction kinetics were slower for mismatched configurations compared with matched configurations. In our approach we employ apyrase, a nucleotide degrading enzyme, to allow accurate discrimination between matched and mismatched primer-template configurations. This apyrase-mediated allele-specific extension (AMASE) protocol allows incorporation of nucleotides when the reaction kinetics are fast (matched 3′-end primer) but degrades the nucleotides before extension when the reaction kinetics are slow (mismatched 3′-end primer). Thus, AMASE circumvents the major limitation of previous allele-specific extension assays in which slow reaction kinetics will still give rise to extension products from mismatched 3′-end primers, hindering proper discrimination. It thus represents a significant improvement of the allele-extension method. AMASE was evaluated by a bioluminometric assay in which successful incorporation of unmodified nucleotides is monitored in real-time using an enzymatic cascade.  相似文献   

19.
The active site conformation of the mutagenic fluoroaminofluorene-deoxyguanine adduct (dG-FAF, N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene) has been investigated in the presence of Klenow fragment of Escherichia coli DNA polymerase I (Kfexo) and DNA polymerase β (pol β) using 19F NMR, insertion assay, and surface plasmon resonance. In a single nucleotide gap, the dG-FAF adduct adopts both a major-groove- oriented and base-displaced stacked conformation, and this heterogeneity is retained upon binding pol β. The addition of a non-hydrolysable 2′-deoxycytosine-5′-[(α,β)-methyleno]triphosphate (dCMPcPP) nucleotide analog to the binary complex results in an increase of the major groove conformation of the adduct at the expense of the stacked conformation. Similar results were obtained with the addition of an incorrect dAMPcPP analog but with formation of the minor groove binding conformer. In contrast, dG-FAF adduct at the replication fork for the Kfexo complex adopts a mix of the major and minor groove conformers with minimal effect upon the addition of non-hydrolysable nucleotides. For pol β, the insertion of dCTP was preferred opposite the dG-FAF adduct in a single nucleotide gap assay consistent with 19F NMR data. Surface plasmon resonance binding kinetics revealed that pol β binds tightly with DNA in the presence of correct dCTP, but the adduct weakens binding with no nucleotide specificity. These results provide molecular insights into the DNA binding characteristics of FAF in the active site of DNA polymerases and the role of DNA structure and sequence on its coding potential.  相似文献   

20.
In the yeast Saccharomyces cerevisiae, DNA polymerase ζ (Polζ) is required in a major lesion bypass pathway. To help understand the role of Polζ in lesion bypass, we have performed in vitro biochemical analyses of this polymerase in response to several DNA lesions. Purified yeast Polζ performed limited translesion synthesis opposite a template TT (6-4) photoproduct, incorporating A or T with similar efficiencies (and less frequently G) opposite the 3′ T, and predominantly A opposite the 5′ T. Purified yeast Polζ predominantly incorporated a G opposite an acetylaminofluorene (AAF)-adducted guanine. The lesion, however, significantly inhibited subsequent extension. Furthermore, yeast Polζ catalyzed extension DNA synthesis from primers annealed opposite the AAF-guanine and the 3′ T of the TT (6-4) photoproduct with varying efficiencies. Extension synthesis was more efficient when A or C was opposite the AAF-guanine, and when G was opposite the 3′ T of the TT (6-4) photoproduct. In contrast, the 3′ T of a cissyn TT dimer completely blocked purified yeast Polζ, whereas the 5′ T was readily bypassed. These results support the following dual-function model of Polζ. First, Polζ catalyzes nucleotide incorporation opposite AAF-guanine and TT (6-4) photoproduct with a limited efficiency. Secondly, more efficient bypass of these lesions may require nucleotide incorporation by other DNA polymerases followed by extension DNA synthesis by Polζ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号