首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calreticulin, which has been proposed to be a C1q receptor on neutrophils, has neither a transmembrane domain nor a GPI-anchor attachment site and must utilize an adaptor molecule to attach to the plasma membrane. The expression of ecto-calreticulin on purified human neutrophils did not result from contamination by soluble or intracellular calreticulin released during cell fractionation because it was expressed on circulating neutrophils, and the expression did not increase significantly with neutrophil isolation. All neutrophils expressed calreticulin with a unimodal distribution. Treatment of neutrophils with either a cholesterol-binding agent or phosphatidylinositol-specific phospholipase C dramatically decreased ecto-calreticulin expression indicating that the adaptor molecule(s) are located in lipid rafts and have a GPI-anchor. Analysis for the co-expression of specific GPI-anchored proteins and ecto-calreticulin in cells that were deficient in specific GPI-anchored proteins, indicated that ecto-calreticulin was best associated with CD59. Calreticulin reciprocally immunoprecipited with CD59, which provided direct evidence that CD59 is an adaptor for ecto-calreticulin. Immunofluorescence and confocal microscopy demonstrated that ecto-calreticulin co-localized with a fraction of CD59 at the cell surface. Cross-linking ecto-calreticulin with antibodies induced a Ca2+ flux, which suggests that ecto-calreticulin is capable of signaling following ligand binding. Ecto-calreticulin has been associated with diverse cellular functions. An appreciation that the adaptors for ecto-calreticulin are GPI-anchored will provide a framework for understanding any common features underlying ecto-calreticulin ligation.  相似文献   

2.
Apoptotic-cell removal is critical for development, tissue homeostasis, and resolution of inflammation. Although many candidate systems exist, only phosphatidylserine has been identified as a general recognition ligand on apoptotic cells. We demonstrate here that calreticulin acts as a second general recognition ligand by binding and activating LDL-receptor-related protein (LRP) on the engulfing cell. Since surface calreticulin is also found on viable cells, a mechanism preventing inadvertent uptake was sought. Disruption of interactions between CD47 (integrin-associated protein) on the target cell and SIRPalpha (SHPS-1), a heavily glycosylated transmembrane protein on the engulfing cell, permitted uptake of viable cells in a calreticulin/LRP-dependent manner. On apoptotic cells, CD47 was altered and/or lost and no longer activated SIRPalpha. These changes on the apoptotic cell create an environment where "don't eat me" signals are rendered inactive and "eat me" signals, including calreticulin and phosphatidylserine, congregate together and signal for removal.  相似文献   

3.
Galectin-9 (Gal-9) is a tandem-repeat-type member of the galectin family associated with diverse biological processes, such as apoptosis, cell aggregation, and eosinophil chemoattraction. Although the detailed sugar-binding specificity of Gal-9 has been elucidated, molecular mechanisms that underlie these functions remain to be investigated. During the course of our binding study by affinity chromatography and surface plasmon resonance (SPR) analysis, we found that human Gal-9 interacts with immobilized Gal-9 in the protein-protein interaction mode. Interestingly, this intermolecular interaction strongly depended on the activity of the carbohydrate recognition domain (CRD), because the addition of potent saccharide inhibitors abolished the binding. The presence of multimers was also confirmed by Ferguson plot analysis of result of polyacrylamide gel electrophoresis and matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Moreover, this intermolecular interaction was observed between Gal-9 and other galectin members, such as Gal-3 and Gal-8, but not Gal-1. Because such properties have not been reported yet, they may explain an unidentified mechanism underlying the diverse functions of Gal-9.  相似文献   

4.
The mechanisms regulating T lymphocyte migration within the extracellular matrix are not understood. We show in this study that the thrombospondin-1 binding site of calreticulin, spanning aa 19-32, is a major triggering factor for T cell motility and migration within a three-dimensional collagen type 1 matrix, and that exogenous motogenic factors such as chemokines can stimulate migration via a calreticulin-thrombospondin-1 pathway. Endogenous calreticulin binding to the N-terminal domain of endogenous thrombospondin-1 elicited a motogenic signal to the T cells through the C-terminal domain of thrombospondin-1 and its cell surface receptor integrin-associated protein (CD47). Our data further revealed that thrombospondin-1 was expressed on the cell surface with a high turnover, and that PI3K and the Janus family of tyrosine kinases were required for T cell motility mediated through calreticulin, thrombospondin-1, and CD47. These results unveil an autocrine mechanism of calreticulin-thrombospondin-1-CD47 interaction for the control of T cell motility and migration within three-dimensional extracellular matrix substrata.  相似文献   

5.
6.
Expression of CD69 on neutrophils and generation of anti-CD69 autoantibodies in patients with rheumatoid arthritis (RA) have been reported. Thus natural ligands for CD69 not yet identified and/or the anti-CD69 autoantibodies possibly affect neutrophils by evoking CD69 signaling, which may further affect joint-composing cells in RA. However, the effect of the CD69 signaling in neutrophils remains largely unclear. To elucidate the issue, we tried to identify proteins affected by the crosslinking of CD69 on neutrophils using a proteomic approach. Specifically, CD69 on granulocyte-macrophage colony stimulating factor (GM-CSF)-activated neutrophils was crosslinked by anti-CD69 monoclonal antibodies, and then intracellular proteins were detected using 2-dimensional electrophoresis and further identified by mass spectrometry and subsequent protein database searching. As a result, we successfully identified multiple proteins that increased their production by the CD69 signaling. Among the proteins, we focused on one of the up-regulated proteins, S100A9 calcium binding protein (S100A9), and investigated proteome changes brought by a recombinant S100A9 in a human synovial sarcoma cell line (SW982), a human chondrosarcoma cell line (OUMS-27), and a human T leukemia cell line (Jurkat). This revealed that the recombinant S100A9 altered proteomes of SW982 and OUMS-27, and to a lesser extent, that of the Jurkat cells. Further, S100A9 induced IL-1beta production from neutrophils and the SW982 cells. These data suggest that unidentified natural ligands for CD69 and/or the anti-CD69 autoantibodies possibly affect joint-composing cell types through the increased production of S100A9 in neutrophils, providing a new insight into functions of CD69 on neutrophils in RA.  相似文献   

7.
Rosiglitazone, one of the thiazolidinedione (TZD), is an oral antidiabetic drug that activates a gamma isoform of peroxisome proliferator-activated receptor (PPARγ). To identify target proteins induced by rosiglitazone in adipocytes, we first performed simultaneous in-depth proteomic profiling of cytosolic proteins and secreted proteins (secretome) from 3T3-L1 adipocytes using a label-free quantification method with nano-UPLC MS/MS. In total, we identified 646 proteins from 3T3-L1 adipocytes, of which 172 and 162 proteins were upregulated and downregulated >1.5-fold, respectively, in rosiglitazone-treated cells, as compared to controls. Some differentially expressed proteins in particular, including fatty acid translocase (FAT)/CD36, fatty acid binding protein, lipoprotein lipase, acetyl CoA acyltransferase, carnitine O-palmitoyltransferase 2, sterol carrier protein, adiponectin, and phosphoenolpyruvate carboxykinase could explain the current action mechanism of TZDs. Furthermore, this study is the first to report on two potential target proteins of rosiglitazone, such as adenomatosis polyposis coli 2 (APC2), and eukaryotic translation initiation factor 5A-1 (eIF5A) related to apoptosis and cell division. Our data clearly suggest that in-depth proteomic approaches using cytosolic and secreted proteins are important and necessary for identification of drug targets at the protein level.  相似文献   

8.
Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis is a chronic disease. Currently, there are no sufficiently validated biomarkers for early diagnosis of TB infection. In this study, a panel of potential serum biomarkers was identified between patients with pulmonary TB and healthy controls by using iTRAQ‐coupled 2D LC‐MS/MS technique. Among 100 differentially expressed proteins screened, 45 proteins were upregulated (>1.25‐fold at p < 0.05) and 55 proteins were downregulated (<0.8‐fold at p < 0.05) in the TB serum. Bioinformatics analysis revealed that the differentially expressed proteins were related to the response to stimulus, the metabolic and immune system processes. The significantly differential expression of apolipoprotein CII (APOCII), CD5 antigen‐like (CD5L), hyaluronan‐binding protein 2 (HABP2), and retinol‐binding protein 4 (RBP4) was further confirmed using immunoblotting and ELISA analysis. By forward stepwise multivariate regression analysis, a panel of serum biomarkers including APOCII, CD5L, and RBP4 was obtained to form the disease diagnostic model. The receiver operation characteristic curve of the diagnostic model was 0.98 (sensitivity = 93.42%, specificity = 92.86%). In conclusion, APOCII, CD5L, HABP2, and RBP4 may be potential protein biomarkers of pulmonary TB. Our research provides useful data for early diagnosis of TB.  相似文献   

9.
Calreticulin is an endoplasmic reticulum resident molecule known to be involved in the folding and assembly of major histocompatibility complex (MHC) class I molecules. In the present study, expression of calreticulin was analyzed in human peripheral blood T lymphocytes. Pulse-chase experiments in [35S]methionine-labeled T cell blasts showed that calreticulin was associated with several proteins in the endoplasmic reticulum and suggested that it was expressed at the cell surface. Indeed, the 60-kDa calreticulin was labeled by cell surface biotinylation and precipitated from the surface of activated T cells together with a protein with an apparent molecular mass of 46 kDa. Cell surface expression of calreticulin by activated T lymphocytes was further confirmed by immunofluorescence and flow cytometry, studies that showed that both CD8+ and CD4+ T cells expressed calreticulin in the plasma membrane. Low amounts of cell surface calreticulin were detected in resting T lymphocytes. By sequential immunoprecipitation using the conformation independent monoclonal antibody HC-10, we provided evidence that the cell surface 46-kDa protein co-precipitated with calreticulin is unfolded MHC I. These results show for the first time that after T cell activation, significant amounts of calreticulin are expressed on the T cell surface, where they are found in physical association with a pool of beta2-free MHC class I molecules.  相似文献   

10.
Liang Y  Tedder TF 《Genomics》2001,72(2):119-127
CD20, high-affinity IgE receptor beta chain (FcepsilonRIbeta), and HTm4 are structurally related cell-surface proteins expressed by hematopoietic cells. In the current study, 16 novel human and mouse genes that encode new members of this nascent protein family were identified. All family members had at least four potential membrane-spanning domains, with N- and C-terminal cytoplasmic domains. This family was therefore named the membrane-spanning 4A gene family, with at least 12 subgroups (MS4A1 through MS4A12) currently representing at least 21 distinct human and mouse proteins. Each family member had unique patterns of expression among hematopoietic cells and nonlymphoid tissues. Four of the 6 human MS4A genes identified in this study mapped to chromosome 11q12-q13.1 along with CD20, FcepsilonRIbeta, and HTm4. Thus, like CD20 and FcepsilonRIbeta, the other MS4A family members are likely to be components of oligomeric cell surface complexes that serve diverse signal transduction functions.  相似文献   

11.
12.
Calreticulin is a 46-kDa Ca(2+)-binding chaperone of the endoplasmic reticulum membranes. The protein binds Ca(2+) with high capacity, affects intracellular Ca(2+) homeostasis, and functions as a lectin-like chaperone. In this study, we describe expression and purification procedures for the isolation of recombinant rabbit calreticulin. The calreticulin was expressed in Pichia pastoris and purified to homogeneity by DEAE-Sepharose and Resource Q FPLC chromatography. The protein was not retained in the endoplasmic reticulum of Pichia pastoris but instead it was secreted into the external media. The purification procedures reported here for recombinant calreticulin yield homogeneous preparations of the protein by SDS-PAGE and mass spectroscopy analysis. Purified calreticulin was identified by its NH(2)-terminal amino acid sequences, by its Ca(2+) binding, and by its reactivity with anti-calreticulin antibodies. The protein contained one disulfide bond between (88)Cys and (120)Cys. CD spectral analysis and Ca(2+)-binding properties of the recombinant protein indicated that it was correctly folded.  相似文献   

13.
CD44 is a polymorphic glycoprotein expressed on the surface of many tissues and cell lines which has been implicated in a number of cellular functions including lymphocyte homing to mucosal lymphoid tissue (Peyers patches), leukocyte activation, lymphopoiesis, and tumor metastasis. The predominant isoform found on human leukocytes, CD44H, is a receptor for hyaluronic acid. Because of the prominent role CD44 plays in diverse biological processes, we set out to identify the hyaluronic acid binding site(s) in the extracellular domain of CD44H. Using truncation and site-directed mutagenesis we identified two regions containing clusters of conserved basic residues which are important in hyaluronic acid binding. One of these regions is situated near the NH2 terminus and is homologous to other hyaluronic acid binding proteins including cartilage link protein. The other more membrane proximal region lies outside the link protein homologous domain. Mutagenesis of basic residues within these regions established their role as determinants in hyaluronic acid binding. Mutation of Arg 41, a position where a basic residue is conserved in all hyaluronic acid binding proteins, completely abolished binding suggesting that this residue plays a critical role in hyaluronic acid binding.  相似文献   

14.
15.
16.
CD34 and podocalyxin are structurally related sialomucins, which are expressed in multiple tissues including vascular endothelium and hematopoietic progenitors. These glycoproteins have been proposed to be involved in processes as diverse as glomerular filtration, inhibition of stem cell differentiation, and leukocyte-endothelial adhesion. Using homologies present in the cytoplasmic tails of these proteins, we have identified a novel member of this family, which we designate endoglycan. This protein shares a similar overall domain structure with the other family members including a sialomucin domain, but also possesses an extremely acidic amino-terminal region. In addition, endoglycan contains several potential glycosaminoglycan attachment sites and is modified with chondroitin sulfate. Endoglycan mRNA and protein were detected in both endothelial cells and CD34(+) bone marrow cells. Thus, CD34, podocalyxin, and endoglycan comprise a family of sialomucins sharing both structural similarity and sequence homology, which are expressed by both endothelium and multipotent hematopoietic progenitors. While the members of this family may perform overlapping functions at these sites, the unique structural features of endoglycan suggest distinct functions for this molecule.  相似文献   

17.
In the last decades, prevalence of autism spectrum disorder (ASD) has been on the rise. However, clear aetiology is still elusive and improvements in early diagnosis are needed. To uncover possible biomarkers present in ASD, we used two‐dimensional polyacrylamide gel electrophoresis and nanoliquid chromatography‐tandem mass spectrometry (nanoLC‐MS/MS), to compare salivary proteome profiling of children with ASD and controls. A total of 889 spots were compared and only those spots with a fold change ≥1.7 and a P‐value <0.05 or a fold change of ≥3.0 between ASD cases and controls were analysed by nanoLC‐MS/MS. Alpha‐amylase, CREB‐binding protein, p532, Transferrin, Zn alpha2 glycoprotein, Zymogen granule protein 16, cystatin D and plasminogen were down‐regulated in ASD. Increased expression of proto‐oncogene Frequently rearranged in advanced T‐cell lymphomas 1 (FRAT1), Kinesin family member 14, Integrin alpha6 subunit, growth hormone regulated TBC protein 1, parotid secretory protein, Prolactin‐inducible protein precursor, Mucin‐16, Ca binding protein migration inhibitory factor‐related protein 14 (MRP14) was observed in individuals with ASD. Many of the identified proteins have previously been linked to ASD or were proposed as risk factors of ASD at the genetic level. Some others are involved in pathological pathways implicated in ASD causality such as oxidative stress, lipid and cholesterol metabolism, immune system disturbances and inflammation. These data could contribute to protein signatures for ASD presence, risk and subtypes, and advance understanding of ASD cause as well as provide novel treatment targets for ASD.  相似文献   

18.
In light of the increasing incidence of renal cell carcinoma (RCC), its molecular mechanisms have been comprehensively explored in numerous recent studies. However, few studies focus on the influence of multi‐factor interactions during the occurrence and development of RCC. This study aims to investigate the quantitative global proteome and the changes in lysine succinylation in related proteins, seeking to facilitate a better understanding of the molecular mechanisms underlying RCC. LC‐MS/MS combined with bioinformatics analysis are used to quantitatively detect the perspectives at the global protein level. IP and WB analysis were conducted to further verify the alternations of related proteins and lysine succinylation. A total of 3,217 proteins and 1,238 lysine succinylation sites are quantified in RCC tissues, and 668 differentially expressed proteins and 161 differentially expressed lysine succinylation sites are identified. Besides, expressions of PGK1 and PKM2 at protein and lysine, succinylation levels are significantly altered in RCC tissues. Bioinformatics analysis indicates that the glycolysis pathway is a potential mechanism of RCC progression and lysine succinylation may plays a potential role in energy metabolism. These results can provide a new direction for exploring the molecular mechanism of RCC tumorigenesis.  相似文献   

19.
CD19 is a member of the Ig superfamily expressed on the surface of B lymphocytes that may be involved in the regulation of B cell function. Immunoprecipitation studies with B cell lines solubilized by digitonin have shown CD19 to be part of a multimolecular complex that includes CD21 (CR2) and other unidentified proteins. In this study, two of the CD19-associated proteins were identified as TAPA-1, which is expressed on most cell types, and Leu-13, which is expressed on subsets of lymphoid cells. TAPA-1 and Leu-13 are physically associated in many cell lineages. CD19 and CD21 mAb each specifically coprecipitated proteins of the same size as those precipitated by TAPA-1 and Leu-13 mAb from B cell lines and cDNA-transfected K562 cell lines. Western blot analysis with a TAPA-1 mAb verified the identity of TAPA-1 in CD19 and CD21 immunoprecipitated materials. In addition, when TAPA-1 or Leu-13 were crosslinked and patched on the cell surface, all of the CD19 comigrated with TAPA-1 and some of the CD19 comigrated with Leu-13. Furthermore, mAb binding to CD19, CD21, TAPA-1, and Leu-13 on B cell lines induced similar biologic responses, including the induction of homotypic adhesion, inhibition of proliferation, and an augmentation of the increase in intracellular [Ca2+] induced by suboptimal cross-linking of surface Ig on B cell lines. Together, these data suggest that TAPA-1 and Leu-13 are broadly expressed members of a signal transduction complex in which lineage-specific proteins, such as CD19 and CD21, provide cell-specific functions.  相似文献   

20.
Astrocytes are the most abundant cells in the CNS, but their function remains largely unknown. Characterization of the whole‐cell proteome and secretome in astrocytes would facilitate the study of their functions in various neurodegenerative diseases and astrocyte–neuron communication. To build a reference proteome, we established a C8‐D1A astrocyte proteome to a depth of 7265 unique protein groups using a novel strategy that combined two‐step digestion, filter‐aided sample preparation, StageTip‐based high pH fractionation, and high‐resolution MS. Nearly, 6000 unique protein groups were identified from conditioned media of astrocyte cultures, constituting the largest astrocyte secretome that has been reported. High‐confidence whole‐cell proteomes and secretomes are valuable resources in studying astrocyte function by label‐free quantitation and bioinformatics analysis. All MS data have been deposited in the ProteomeXchange with identifier PXD000501 ( http://proteomecentral.proteomexchange.org/dataset/PXD000501 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号