首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Urine flow increased with acute temperature increases and showed temperature acclimation. When measured at 20 °C the urine flow of 10 °C acclimated fish was 3.2 times greater than the urine flow of 30 °C acclimated fish. In fish acclimated to 24 °C renal reabsorption of Na and Cl was independent of temperature over an intermediate range of temperatures (14–24 °C) but near the lower lethal temperature (6.5 °C) renal Na and Cl reabsorption was inhibited. Water permeability of the renal tubules was not affected by acute temperature change between 6.5 and 24 °C. Urine osmolality and urine Na, K and Cl concentrations showed nearly perfect temperature compensation in fish acclimated to 10 °C and 30 °C. The rate of renal excretion of Na and Cl showed temperature acclimation in that Na and Cl ecxretion measured at 20 °C was 7 to 8 times greater in 10 °C acclimated fish than in 30 °C acclimated fish. The rate of excretion of Na and Cl measured at 30 °C in 30 °C acclimated fish was approximately 1.7 times the rate of excretion measured at 10 °C in 10 °C acclimated fish.The branchial uptake of Na, measured in tap water, of fish acclimated to 10, 20 and 30 °C in demineralized water increased with acute increases in temperature. When the three acclimation groups were compared at an intermediate temperature (20 °C), the 10 °C acclimated group showed the highest rate of net uptake, and the 30 °C group the lowest rate of uptake. This apparent temperature acclimation of Na uptake was correlated with differences in the plasma Na concentration of the three acclimation groups. Plasma Cl concentrations were also correlated with acclimation temperature in fish acclimated in demineralized water, but the rate of net Cl uptake was considerably less than that for Na. Sodium and Cl uptake in fish which had been acclimated in tap water was very variable and was not clearly affected by acute changes in temperature. Uptake of Na and Cl by fish held in tap water did not show temperature acclimation. The difference between uptake and excretion of fish acclimated in tap water was not significantly different from zero, indicating that the fish were in salt balance.The study was supported by National Institutes of Health Grant GM 16932-02 to Dr. Bodil Schmidt-Nielsen. I am grateful to Dr. Schmidt-Nielsen for many useful discussions during the course of this work.  相似文献   

2.
The effects of temperature on the salinity tolerance of Mozambique-Wami tilapia hybrids (Oreochromis mossambicus x O. urolepis hornorum) were investigated by transferring 35 g/l, 25 degrees C-acclimated fish to 35, 43, 51 or 60 g/l salinity at 15, 25 or 35 degrees C for 24 h, and by assaying gill tissue for branchial Na(+), K(+)-ATPase activity at the three temperatures after acclimating the fish to 15, 25 or 35 degrees C for 2 weeks. Tilapia survived all salinities at 25 and 35 degrees C; however, at 15 degrees C, mortality was 85.7% and 100% in the 51 g/l and 60 g/l groups, respectively. There was a significant interaction between temperature and salinity, as plasma osmolality, [Na(+)] and [Cl(-)] were significantly increased at 51 and 60 g/l salinity in 35 degrees C water (P<0.001). Additionally, muscle water content was significantly reduced at 43 g/l, 15 degrees C relative to pre-transfer values (P<0.001). Branchial Na(+), K(+)-ATPase activity was reduced at 15 degrees C regardless of acclimation temperature, and 25 degrees C-acclimated gill tissue did not show an increase in activity when assayed at 35 degrees C. Results indicate that the effects of a combined temperature-salinity transfer on plasma osmolality and ion concentrations, as well as muscle water content, are greater than when either challenge is given alone. Additionally, branchial Na(+), K(+)-ATPase activity is altered when assayed at varying temperatures; in the case of 15 degrees C, regardless of acclimation temperature. Our enzyme activity data may indicate the presence of a high temperature isoform of branchial Na(+), K(+)-ATPase enzyme.  相似文献   

3.
The effects of ovine prolactin (oPRL) and striped bass prolactin (sbPRL; Morone saxatilis) on plasma osmolality, electrolyte balance, and gill Na(+),K(+)-ATPase activity were investigated in hypophysectomized (Hx), freshwater (FW)-acclimated, hybrid striped bass (M. saxatilisxMorone chrysops). They were kept in dilute (isoosmotic) seawater for about 10 days after surgery. Seven days after transfer to FW, Hx fish had lower plasma osmolality and lower levels of Na(+), Cl(-), and Ca(2+) than sham-operated and intact fish. Fish were injected four times with oPRL (1, 5, or 20 microg/g body mass), sbPRL (10 or 100 ng/g), or hormone vehicle (0.9% NaCl) at 48-h intervals (days 0, 2, 4, and 6) in FW and then sampled for blood plasma 24 h after the fourth injection (day 7). In Hx fish, oPRL (5 and 20 microg/g) and sbPRL (10 and 100 ng/g) were effective in maintaining plasma osmolality and levels of Na(+), Cl(-), and Ca(2+) above values seen in saline-injected controls. Hypophysectomy did not affect branchial Na(+),K(+)-ATPase activity, but enzyme activity was significantly reduced in Hx fish receiving oPRL (20 mug/g) or sbPRL (10 or 100 ng/g). These results indicate that PRL acts to maintain plasma osmotic and ionic balance in FW-adapted hybrid striped bass, and that this may involve downregulation of branchial Na(+),K(+)-ATPase activity.  相似文献   

4.
This study was carried out to determine the effects of gradual salinity increase on osmoregulatory ability of the Caspian roach Rutilus caspicus, under conditions which mimic stocking conditions of hatchery-raised fish. Initially, 30 juvenile fish (mean ± S.D. 3.20 ± 0.34 g) were transferred to 20 l circular tanks, in which salinities were changed in a stepwise fashion, from 0 to 5, 10 or 15 at 48 h intervals. The fish at salinity 15 were held for an additional 48 h at this salinity. Forty-eight hours after salinity transfer, survival rate, haematocrit, plasma Cl(-) , Na(+) and K(+) concentrations, osmolality and gill Na(+) /K(+) -ATPase (NKA) activity were measured. The only effect of exposure to 5 was a significant reduction in haematocrit compared to the freshwater control group. Exposure to salinity 10 raised haematocrit, Cl(-) and Na(+) concentrations and osmolality. At 48 h exposure to salinity 15, haematocrit, Cl(-) and Na(+) concentrations and osmolality were significantly higher than freshwater controls, and gill NKA activity was significantly lower, but the effect on NKA was no longer evident at 96 h exposure. There were no effects on survival. These results indicate that R. caspicus juveniles experience an initial non-lethal iono-osmotic perturbation following salinity increase but can adapt to brackish water at salinity 15.  相似文献   

5.
The electrophysiological and ion-transporting properties of cultured gill epithelia from freshwater (FW) rainbow trout were examined in the presence of dilute cell culture media as an environmental or physiological simulant. Gill epithelia were cultured on cell culture inserts under symmetrical conditions (L15 apical-L15 basolateral) for 6-7 d. The following experiments were then conducted. (1) To mimic a gradual lowering of environmental salinity, apical L15 medium was progressively diluted with FW (first to 2/3 L15 for 8 h and then to 1/3 L15 for 6 h) before the introduction of apical FW (FW apical-L15 basolateral, analogous to a fish in a natural FW environment). Dilute apical media had no significant effect on the electrophysiological properties of preparations compared with symmetrical culture conditions, and no evidence for active Na(+) or Cl(-) transport was observed. Preparations subsequently exposed to apical FW exhibited a negative transepithelial potential and evidence of active Cl(-) uptake and slight Na(+) extrusion. (2) To mimic the extracellular fluid dilution that occurs in euryhaline fish after abrupt transfer from saline to FW, the osmolality or ionic strength (or both) of basolateral media was reduced by 20-40% (using either FW or FW + mannitol) while simultaneously replacing apical media with FW. Under these conditions, Na(+) and Cl(-) influx rates were low compared with efflux rates, while the Ussing flux ratio analysis generally indicated active Cl(-) uptake and Na(+) extrusion. The Na(+)-K(+) adenosine triphosphatase activity was not affected by alterations in basolateral osmolality. Our studies indicate that cultured trout gill epithelia are tolerant of media dilution from both the apical and the basolateral direction; however, neither treatment alone appeared to increase ion influx rates or stimulate active Na(+) uptake in cultured trout gill epithelia.  相似文献   

6.
The Mozambique tilapia, Oreochromis mossambicus, is capable of surviving a wide range of salinities and temperatures. The present study was undertaken to investigate the influence of environmental salinity and temperature on osmoregulatory ability, organic osmolytes and plasma hormone profiles in the tilapia. Fish were acclimated to fresh water (FW), seawater (SW) or double-strength seawater (200% SW) at 20, 28 or 35 degrees C for 7 days. Plasma osmolality increased significantly as environmental salinity and temperature increased. Marked increases in gill Na(+), K(+)-ATPase activity were observed at all temperatures in the fish acclimated to 200% SW. By contrast, Na(+), K(+)-ATPase activity was not affected by temperature at any salinity. Plasma glucose levels increased significantly with the increase in salinity and temperature. Significant correlations were observed between plasma glucose and osmolality. In brain and kidney, content of myo-inositol increased in parallel with plasma osmolality. In muscle and liver, there were similar increases in glycine and taurine, respectively. Glucose content in liver decreased significantly in the fish in 200% SW. Plasma prolactin levels decreased significantly after acclimation to SW or 200% SW. Plasma levels of cortisol and growth hormone were highly variable, and no consistent effect of salinity or temperature was observed. Although there was no significant difference among fish acclimated to different salinity at 20 degrees C, plasma IGF-I levels at 28 degrees C increased significantly with the increase in salinity. Highest levels of IGF-I were observed in SW fish at 35 degrees C. These results indicate that alterations in gill Na(+), K(+)-ATPase activity and glucose metabolism, the accumulation of organic osmolytes in some organs as well as plasma profiles of osmoregulatory hormones are sensitive to salinity and temperature acclimation in tilapia.  相似文献   

7.
The present study examined the effect of salinity and temperature on the rate of oxygen consumption and total body osmolality of the triclad turbellarian Procerodes littoralis, a common marine flatworm normally found in areas where freshwater streams run out over intertidal areas. Extremes in environmental factors encountered by P. littoralis were recorded at the study site. These were salinity (0-44 psu), temperature (2.7-24.9 °C) and oxygen concentration (2.8-16.1 mg l−1). Respirometry experiments showed minimal oxygen consumption rates at the salinity extremes encountered by the study species (0 and 40 psu). Further experiments showed relatively constant oxygen consumption rates over the temperature range 5-20 °C and elevated consumption rates at temperatures above 25 °C. Total body osmolality of P. littoralis increased with increasing salinity. The study illustrates how a marine flatworm uses integrated physiological and behavioural mechanisms to successfully inhabit an environment that is predominantly freshwater for up to 75% of the tidal cycle.  相似文献   

8.
Nile crocodiles of three age classes, hatched in captivity and reared in fresh water, when exposed acutely to water of 17 and 35 ppt NaCl, suffered marked dehydration, were lethargic, ceased to feed and lost mass. When exposed to gradually increasing salinities (3-35 ppt), with a short acclimation period at each salinity, crocodiles survived, continued to feed and increased in mass and size. All age classes had a relatively constant plasma osmolality across the salinity spectrum. Cloacal urine osmolality varied throughout the acclimation experiment, but did not increase with increasing salinity. No significant increase was found in plasma concentrations of any of the osmolytes. There was a trend of decreasing cloacal urine [Na(+)] and [Cl(-)] and increasing cloacal urine [K(+)] with increased salinity, indicating that urine was not an important route for Na(+) and Cl(-) excretion. Crocodiles exposed to saline conditions maintained relatively constant plasma uric acid concentrations, but urinary uric acid concentrations increased markedly with increasing salinities. This suggests that uric acid is the main constituent of nitrogenous waste excretion in saline exposed Nile crocodiles. As in Crocodylus porosus, C.niloticus has the physiological ability to survive and thrive in periodically hyper-osmotic environments. However, its euryhalinity is restricted, in that acute exposure to sea water leads to dehydration, but with an acclimation period at lower salinities, it survives and thrives in sea water.  相似文献   

9.
Sperm motility in fishes. (II) Effects of ions and osmolality: a review   总被引:2,自引:0,他引:2  
The spermatozoa of most fish species are immotile in the testis and seminal plasma. Therefore, motility is induced after the spermatozoa are released into the aqueous environment during natural reproduction or into the diluent during artificial reproduction. There are clear relationships between seminal plasma composition and osmolality and the duration of fish sperm motility. Various parameters such as ion concentrations (K+, Na+, and Ca2+), osmotic pressure, pH, temperature and dilution rate affect motility. In the present paper, we review the roles of these ions on sperm motility in Salmonidae, Cyprinidae, Acipenseridae and marine fishes, and their relationship with seminal plasma composition. Results in the literature show that: 1. K+ is a key ion controlling sperm motility in Salmonidae and Acipenseridae in combination with osmotic pressure; this control is more simple in other fish species: sperm motility is prevented when the osmotic pressure is high (Cyprinidae) or low (marine fishes) compared to that of the seminal fluid. 2. Cations (mostly divalent, such as Ca2+) are antagonistic with the inhibitory effect of K+ on sperm motility. 3. In many species, Ca2+ influx and K+ or Na+ efflux through specific ionic channels change the membrane potential and eventually lead to an increase in cAMP concentration in the cell, which constitutes the initiation signal for sperm motility in Salmonidae. 4. Media that are hyper- and hypo-osmotic relative to seminal fluid trigger sperm motility in marine and freshwater fishes, respectively. 5. The motility of fish spermatozoa is controlled through their sensitivity to osmolality and ion concentrations. This phenomenon is related to ionic channel activities in the membrane and governs the motility mechanisms of axonemes.  相似文献   

10.
The medaka, Oryzias latipes, is a well-recognized fish model for biomedical research. An understanding of gamete characteristics is necessary for experimental manipulations such as artificial fertilization and sperm cryopreservation. The goal of this study was to investigate sperm characteristics of motility initiation, duration, and retention in medaka. First, motility was initiated by osmolality values ranging from 25 to 686 mOsm/kg, which included deionized water and hypotonic, isotonic, and hypertonic Hanks’ balanced salt solution. The percentage of motile sperm was >80% when osmolality was <315 mOsm/kg and decreased as osmolality increased. This is different from most fish with external fertilization in which sperm motility can be initiated by hypotonic (for freshwater fish) or hypertonic (for marine fish) solutions or by altering the concentration of specific ions such as potassium (e.g., in salmonids). Second, upon activation, the sperm remained continuously motile, with reserve capacity, for as long as 1 wk during storage at 4 °C. This was also different from other externally fertilizing fish, in which motility is typically maintained for seconds to several minutes. Third, after changing the osmolality to 46 to 68 mOsm/kg by adding deionized water, the motility of sperm held at 274 to 500 mOsm/kg was higher than the original motility (P ≤ 0.035) after 24, 48, and 72 h of storage at 4 °C. Fourth, the addition of glucose had no effect on maintaining sperm motility during refrigerated storage. To our knowledge, this combination of sperm motility characteristics is reported for the first time in fish and may be unique to medaka or may represent an undescribed modality of sperm behavior within euryhaline fish.  相似文献   

11.
The cytoplasmic solutes of vertebrates and invertebrates, other than Na, K and Cl, are surveyed in relation to their influence on ionic regulation through osmolality and charge balance. The most abundant include MgATP, phosphagens, amino acids, various other nitrogen and phosphorus compounds and sometimes anaerobic end products and antifreeze agents. Differences in muscle osmolality, e.g. between marine and non-marine animals, affect mainly nitrogenous solutes of no net charge, such as certain amino acids, taurine, betaine, trimethylamine oxide and urea. The high osmolality of axoplasm in marine invertebrates is due more to anions such as aspartate, glutamate and isethionate.  相似文献   

12.
The effects of variations in preparative procedures on the volume and content of resealed red cell ghosts have been investigated. Following hypotonic lysis at 0 degrees C, and after a variable delay time (td), concentrated buffer was added to restore isotonicity; resealing was then induced by incubation at 37 degrees C for one hour. Using this procedure, both the resealed ghost volume and the residual hemoglobin (Hb) content decreased for increasing td. If ghosts were maintained at 0 degree C (i.e., no 37 degrees C incubation), they remained nearly spherical until isotonicity was restored. Their volume then fell abruptly, but subsequently increased toward an intermediate level. The fall in volume was greater and the final level achieved was smaller for longer delay times. At 0 degree C, return to isotonicity also halted the otherwise gradual loss of residual Hb from unsealed ghosts. In addition, ghosts with internal osmolality of 40 to 300 mosmol/kg were prepared by adding different amounts of concentrated buffer before resealing for one hour at 37 degrees C. Under these conditions, the final ghost volume was inversely related to the resealing osmolality (i.e., lower osmolality yielded a larger volume). Ghost volume also increased, along with Hb content, if the quantity or concentration of the red cell suspension added to the lysing medium was increased. We conclude that resealed ghost volume is influenced by the ratio of lysate to resealing medium osmolality and by the colloid osmotic pressure of the residual ghost Hb. These data indicate methods by which ghosts with desired characteristics can be prepared, and have potential application for studies of ghost mechanical and biophysical behavior.  相似文献   

13.
Summary The temperature dependence of fluid transport acrossin vitro preparations of goldfish gallbladder was measured using a gravimetric technique. Fluid transport showed a direct dependence on incubation temperature when the adaptation temperature was kept constant. For constant incubation temperature, transport fell as the adaptation temperature rose. The width of intercellular channels varied with incubation and adaptation temperature as expected if fluid were to cross the tissue by this route. The structure of the gallbladder was otherwise unaffected by changes of temperature. Intracellular concentrations of Na, K and Cl also depended on the environmental temperature of the fish. The levels of Na and Cl increased and the level of K decreased, at constant incubation temperature, as the adaptation temperature rose from 8 to 30°C. These changes took two to three weeks to become apparent while fluid transport regulated within 20 hours of raising the environmental temperature. The osmotic permeability of the gallbladder remained independent of both incubation and adaptation temperature.The outcome of adaptation was to maintain constant both the ionic composition of the epithelium and the rate at which it could transport fluid, when these parameters were measured at incubation temperatures equal to the previous environmental temperature of the fish. The significance of these findings is discussed and a mechanism for regulation postulated which involves an initial regulation of salt entry into the mucosa followed by long term changes in the pumping ability of newly synthesized cells.  相似文献   

14.
Summary The intracellular electrolyte concentrations in the isolated cornea of the American bullfrog were determined in thin freeze-dried cryosections using energy-dispersive X-ray microanalysis. Stimulation of Cl secretion by isoproterenol resulted in a significant increase in the intracellular Na concentration but did not change the intracellular Cl concentration. Similar results were obtained when Cl secretion was stimulated by the Ca ionophore A23187. Inhibition of Cl secretion by ouabain produced a large increase in the intracellular Na concentration and an equivalent fall in the K concentration. Again, no increase or decrease in the intracellular Cl concentration was detectable. Clamping of the transepithelial potential to ±50 mV resulted in parallel changes in the transepithelial current and intracellular Na concentration, but, with the exception of the outermost cell layer, in no changes of the Cl concentration. Only when Cl secretion was inhibited by bumetanide or furosemide, together with a decrease in the Na concentration, was a large fall in the Cl concentration observed. Application of loop diuretics also produced significant increases in the P concentration and dry weight, consistent with some shrinkage of the epithelial cells. The results suggest the existence of a potent regulatory mechanism which maintains a constant intracellular Cl concentration and, thereby, a constant epithelial cell volume. Through the operation of this system any variation in the apical Cl efflux is compensated for by an equal change in the rate of Cl uptake across the basolateral membrane. Cl uptake is sensitive to loop diuretics, directly coupled to an uptake of Na, and dependent on the Na and K concentration gradients across the basolateral membrane. Isoproterenol and A23187 seem to increase the Cl permeability of the apical membrane and thus stimulate Cl efflux. Ouabain inhibits Cl secretion by abolishing the driving Na concentration gradient for Cl uptake across the basolateral membrane.  相似文献   

15.
Alcolapia grahami is a unique ureotelic tilapia that lives in the highly alkaline, saline Lake Magadi, Kenya (pH, approximately 10.0; alkalinity, approximately 380 mmol L(-1); Na(+), approximately 350 mmol L(-1); Cl(-), approximately 110 mmol L(-1); osmolality, approximately 580 mosm kg(-1)). The fish survived well upon gradual exposure to dilute lake water (down to 1%, essentially freshwater). Urea excretion continued, and there was no ammonia excretion despite favorable conditions, indicating that ureotelism is obligatory. Levels of most ornithine-urea cycle enzymes in the liver were unchanged relative to controls kept for the same period in 100% lake water. The fish exhibited good abilities for hypo- and hyperregulation, maintaining plasma Na(+), Cl(-), and osmolality at levels typical of marine and freshwater teleosts in 100% and 1% lake water, respectively. Plasma total CO(2) did not change with environmental dilution. Routine oxygen consumption (Mo(2)) was extremely high in 100% lake water but decreased by 40%-68% after acclimation to dilute lake water. At every fixed swimming speed, Mo(2) was significantly reduced (by 50% at high speeds), and critical swimming speed was elevated in fish in 10% lake water relative to 100% lake water. Osmotic and Cl(-) concentration gradients from water to plasma were actually increased, and osmotic and Na(+) gradients were reversed, in 10% and 1% dilutions relative to 100% lake water, whereas acid-base gradients were greatly reduced. We suggest that approximately 50% of the animal's high metabolic demand originates from the cost of acid-base regulation in the highly alkaline Lake Magadi. When this load is reduced by environmental dilution, the energy saved can be diverted to enhanced swimming performance.  相似文献   

16.
The effects of thermal acclimation in two Nototheniid species, the stenothermal Antarctic Trematomous bernacchii and the eurythermal New Zealand Notothenia angustata, were investigated. Serum osmolality, gill Na/K-ATPase activity, sodium pump density and ouabain affinity were determined. Both fish were acclimated at their upper and lower viable thermal temperatures. Warm acclimation (+4 degrees C) of the T. bernacchii significantly decreased their serum osmolality from 550 to 450 mOsm/kg compared to cold-acclimation (-1.5 degrees C) and this was accompanied by a two-fold increase in gill Na/K-ATPase activity. Warm-acclimation (+14 degrees C) of N. angustata did not significantly change their serum osmolality from 330 mOsm/kg or gill Na/K-ATPase activity compared to the cold-acclimated (+4 degrees C) N. angustata. Using [(3)H]ouabain binding techniques, the B(max) and K(d) values of gill Na/K-ATPase enzymes were determined. No difference in the B(max) or K(d) of the warm-acclimated T. bernacchii accounted for the increase in Na/K-ATPase activity. We conclude that the change in gill Na/K-ATPase activity in the warm-acclimated T. bernacchii is not mediated by an increase in the number of enzyme sites and is not reflected in a change in ouabain affinity for Na/K-ATPase.  相似文献   

17.
White Plymouth Rock hens were fed a high- and a low-NaCl content of the diet. The two groups were exposed to moderate dehydration, to intra-arterial hyperosmotic NaCl-loading, or to injection of physiological doses of arginine vasotocin (AVT). The plasma levels of AVT and prolactin were measured by accurate and sensitive radioimmunoassay and the osmolality and Na, K (and Cl) concentrations also measured for 48 h after dehydration, and for 60-90 min after NaCl-loading or AVT-injection. The plasma concentration of AVT after a given increase of plasma osmolality was in all experiments found higher in the low- as compared to the high-NaCl diet group. The average difference was 0.2 pg/ml X mOsm. The intra-arterial injection of AVT resulted in a strictly mono-exponential fall over the next hour with an average half-life of 6.3 min without any difference between the high- and the low-NaCl diet groups. It is concluded (a) that the release of prolactin after osmotic stimulation is most likely caused by a direct effect of osmolality (or Na concentration) and not by AVT, (b) that the release of AVT is influenced by the NaCl-intake in a direction which tends to maintain extracellular volume.  相似文献   

18.
The osmolality and ionic composition of the blood of juvenile Atlantic cod Gadus morhua and their response to conditions of reduced temperature and salinity in summer‐ and winter‐acclimated individuals was investigated. Haematocrit percentage was relatively stable throughout the experimental procedures. Summer‐acclimated juvenile Atlantic cod had higher plasma osmolality than winter‐acclimated fish in ambient conditions. Plasma Na+ levels were, however, higher in winter conditions, while Cl did not vary between seasons. Temperature reduction (12, 9 and 6° C in summer and to 6 and 4° C in winter) induced a significant response in plasma osmolality and Na+ levels in summer, but only in Na+ levels in winter‐acclimated fish. A pronounced effect was seen in the summer 6° C treatment. Salinity treatments (24, 16 and 8) had a significant effect on almost all the variables in both summer and winter and resulted generally in dilution of ionic and osmotic concentrations of the plasma. This effect was pronounced in the lowest temperature treatments, with the greatest reduction observed in the summer 6° C treatment. This could suggest that winter‐acclimated fish are physiologically adapted to cope with lower seawater temperatures as opposed to summer‐acclimated fish.  相似文献   

19.
The kinetics of association and dissociation for the ouabain-Na+,K+- dependent ATPase complex have been studied in intact turkey erythrocytes as a function of external Na+ concentration, K+ concentration, and temperature. At free ligand concentrations substantially exceeding the concentration of available binding sites, the association reaction exhibits pseudo-first-order kinetics with an association rate constant (k1) that is conveniently determined over a wide range of temperatures (5-37 degrees C). The dissociation reaction exhibits strict first-order kinetics with a dissociation rate constant (k-1) that has the unusual property, in the turkey cell, of being sufficiently great to permit its direct determination even at temperatures as low as 5 degrees C. Values for the equilibrium binding constant for the ouabain-ATPase complex (KA) predicted from the ratio of the association and dissociation rate constants agree closely with independently measured values of KA determined directly under conditions of equilibrium binding. KA is a sensitive function of the composition of the external ionic environment, rising with increasing Na+ concentration and falling with increasing K+ concentration. These changes in KA are shown to be quantitatively attributable to changes in the rate constant k1, k-1 in contrast being unaffected at any given temperature by even very large changes in Na+ or K+ concentration. Arrhenius plots of k1 and k-1 both yield straight lines over the entire temperature range corresponding to activation energies for association and dissociation of 29.5 and 24.2 kcal/mol, respectively. These observations have made it possible to calculate the following standard values for the ouabain binding reaction in the presence of 150 mM Na+: delta G degree = -9.8 kcal/mol; delta H degree = +5.3 kcal/mol; delta S degree = +48.7 cal/degree/mol. The large positive value of delta S degree presumably reflects a highly ordered configuration of the ouabain-free ATPase molecule that is lost upon ouabain binding and that "drives" the reaction despite the positive value of delta H degree.  相似文献   

20.
We investigated the effect of environmental salinity on the upper thermal tolerance of green sturgeon (Acipenser medirostris), a threatened species whose natural habitat is vulnerable to temperature and salinity variation as a result of global climate change. Freshwater (FW)-reared sturgeon were gradually acclimated to salinities representing FW, estuary water (EST), or San Francisco Bay water (BAY) at 18 degrees C, and their critical thermal maximum (CTMax) was measured by increasing temperature 0.3 degrees C/min until branchial ventilation ceased. CTMax was 34.2+/-0.09 degrees C in EST-acclimated fish, with FW- and BAY-acclimated fish CTMax at 33.7+/-0.08 and 33.7+/-0.1 degrees C, respectively. Despite the higher CTMax in EST-acclimated fish, FW-acclimated sturgeon ventilation rate reached a peak that was 2 degrees C higher than EST- and BAY-acclimated groups and had a greater range of temperatures within which they exhibited normal ventilatory function as assessed by Q(10) calculation. The osmoregulatory consequences of exposure to near-lethal temperatures were assessed by measuring plasma osmolality and hematocrit, as well as white muscle, brain, and heart tissue water contents. Hematocrit was increased following CTMax exposure, most likely owing to the elevated metabolic demands of temperature increase, and plasma osmolality was significantly increased in EST- and BAY-acclimated fish, which was likely the result of a greater osmotic gradient across the gill as metabolism increased. To our knowledge, this represents the first evidence for an effect of salinity on the upper thermal tolerance of sturgeon, as well as the first investigation of the osmoregulatory consequences of exposure to near-lethal temperatures. J. Exp. Zool. 309A:477-483, 2008. (c) 2008 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号