首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A strain of endothelial cells derived from a single cell cloned from a line of normal adult rat lung parenchyma has been maintained in tissue culture for more than 3 years. These cells have been identified as endothelial cells based on the combination of their growth characteristics, cell morphology as observed with both light and electron microscopy, and their physiological properties. They have continued to produce granules, which stain specifically for glycosaminoglycans with Alcian blue, for over 2 1/2 years. During the same period of time, glycosaminoglycans were identified biochemically in both cells and medium. They have maintained the ability to degrade bradykinin over this period as well. This work was supported in part by NIH Program Project HL 15832.  相似文献   

2.
A difference in the expression and metabolism of sulfated glycosaminoglycans between rat mammary tumor cells derived from a primary tumor and those from its metastatic lesions has been observed. Cells from the primary tumor possessed about equal quantities of chondroitin sulfate and heparan sulfate on their cell surfaces but released fourfold more chondroitin sulfate than heparan sulfate into their medium. In contrast, cells from distal metastatic lesions expressed approximately 5 times more heparan sulfate than chondroitin sulfate in both medium and cell surface fractions. This was observed to be the result of differential synthesis of the glycosaminoglycans and not of major structural alterations of the individual glycosaminoglycans. The degree of sulfation and size of heparan sulfate were similar for all cells examined. However, chondroitin sulfate, observed to be only chondroitin 4-sulfate, from the metastases-derived cells had a smaller average molecular weight on gel filtration chromatography and showed a decreased quantity of sulfated disaccharides upon degradation with chondroitin ABC lyase compared to the primary tumor derived cells. Major qualitative or quantitative alterations were not observed for hyaluronic acid among the various 13762NF cells. The metabolism of newly synthesized sulfated glycosaminoglycans was also different between cells from primary tumor and metastases. Cells from the primary tumor continued to accumulate glycosaminoglycans in their medium over a 72-h period, while the accumulation of sulfated glycosaminoglycans in the medium of metastases-derived cells showed a plateau after 18-24 h. A pulse-chase kinetics study demonstrated that both heparan sulfate and chondroitin sulfate were degraded by the metastases-derived cells, whereas the primary tumor derived cells degraded only heparan sulfate and degraded it at a slower rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A cloned bovine corneal endothelial cell line was transformed in vitro by simian virus 40, and the subendothelial extracellular matrix-associated sulfated glycosaminoglycans synthesized by the cells were isolated and compared with their untransformed counterpart. The transformed endothelial cells grew at faster rates to higher stationary cell densities in the absence of fibroblast growth factor than did the untransformed cells. On a per-cell basis, the transformed cells produced slightly lower amounts of sulfated glycosaminoglycans. The rate of production of sulfated glycosaminoglycans in extracellular matrix increased during seven days of culture. At confluency the extracellular matrix-associated sulfated glycosaminoglycans synthesized by the untransformed endothelial cells consisted of about 80% heparan sulfate and about 20% chondroitin sulfate. Extracellular matrix-associated sulfated glycosaminoglycans of transformed endothelial cells were composed of about 70% heparan sulfate and about 30% chondroitin sulfate plus dermatan sulfate. High-speed gel permeation chromatography profiles on Fractogel TSK HW-55(S) of matrix-associated heparan sulfate from untransformed and transformed endothelial cells were very similar, and gave single peaks (Kav = 0.19). Apparent Mr estimated from the eluting position of the peaks were approximately 47000. Heparan sulfate from both untransformed and transformed endothelial cells was degraded by incubation with a metastatic B16 melanoma cell lysate containing heparanase (heparan-sulfate-specific endo-beta-glucuronidase). The eluting position of the heparan sulfate degradation products on gel permeation column were similar (Kav = 0.43). Size analysis and anion-exchange chromatography of the degradation products after nitrous acid deamination at low pH indicated that the degree of N-sulfation of heparan sulfate was similar in untransformed and transformed endothelial cells. The results indicated that transformation of endothelial cells only slightly changes the molecular nature of subendothelial matrix-associated sulfated glycosaminoglycans.  相似文献   

4.
Using cultured cells from bovine and rat aortas, we have examined the possibility that endothelial cells might regulate the growth of vascular smooth muscle cells. Conditioned medium from confluent bovine aortic endothelial cells inhibited the proliferation of growth-arrested smooth muscle cells. Conditioned medium from exponential endothelial cells, and from exponential or confluent smooth muscle cells and fibroblasts, did not inhibit smooth muscle cell growth. Conditioned medium from confluent endothelial cells did not inhibit the growth of endothelial cells or fibroblasts. In addition to the apparent specificity of both the producer and target cell, the inhibitory activity was heat stable and not affected by proteases. It was sensitive flavobacterium heparinase but not to hyaluronidase or chondroitin sulfate ABC lyase. It thus appears to be a heparinlike substance. Two other lines of evidence support this conclusion. First, a crude isolate of glycosaminoglycans (TCA-soluble, ethanol-precipitable material) from endothelial cell-conditioned medium reconstituted in 20 percent serum inhibited smooth muscle cell growth; glycosaminoglycans isolated from unconditioned medium (i.e., 0.4 percent serum) had no effect on smooth muscle cell growth. No inhibition was seen if the glycosaminoglycan preparation was treated with heparinase. Second, exogenous heparin, heparin sulfate, chondroitin sulfate B (dermatan sulfate), chondroitin sulfate ABC, and hyaluronic acid were added to 20 percent serum and tested for their ability to inhibit smooth muscle cell growth. Heparin inhibited growth at concentrations as low as 10 ng/ml. Other glycosaminoglycans had no effect at doses up to 10 μg/ml. Anticoagulant and non- anticoagulant heparin were equally effective at inhibiting smooth muscle cell growth, as they were in vivo following endothelial injury (Clowes and Karnovsk. Nature (Lond.). 265:625-626, 1977; Guyton et al. Circ. Res. 46:625-634, 1980), and in vitro following exposure of smooth muscle cells to platelet extract (Hoover et al. Circ. Res. 47:578-583, 1980). We suggest that vascular endothelial cells may secrete a heparinlike substance in vivo which may regulate the growth of underlying smooth muscle cells.  相似文献   

5.
Endothelial cells are indispensable components of the vascular system, and play pivotal roles during development and in health and disease. Their properties have been studied extensively by in vivo analysis of genetically modified mice. However, further analysis of the molecular and cellular phenotypes of endothelial cells and their heterogeneity at various developmental stages, in vascular beds and in various organs has often been hampered by difficulties in culturing mouse endothelial cells. In order to overcome these difficulties, we developed a new transgenic mouse line expressing the SV40 tsA58 large T antigen (tsA58T Ag) under the control of a binary expression system based on Cre/loxP recombination. tsA58T Ag-positive endothelial cells in primary cultures of a variety of organs proliferate continuously at 33 degrees C without undergoing cell senescence. The resulting cell population consists of blood vascular and lymphatic endothelial cells, which could be separated by immunosorting. Even when cultured for two months, the cells maintained endothelial cell properties, as assessed by expression of endothelium-specific markers and intracellular signaling through the vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3, as well as their physiological characteristics. In addition, lymphatic vessel endothelial hyaluronan receptor-1 (Lyve-1) expression in liver sinusoidal endothelial cells in vivo was retained in vitro, suggesting that an organ-specific endothelial characteristic was maintained. These results show that our transgenic cell culture system is useful for culturing murine endothelial cells, and will provide an accessible method and applications for studying endothelial cell biology.  相似文献   

6.
Growing interest in the sources of origin of blood vessel related diseases has led to an increasing knowledge about the heterogeneity and plasticity of endothelial cells lining arteries and veins. So far, most of these studies were performed on animal models. Here, we hypothesized that the plasticity of human fetal endothelial cells depends on their vascular bed of origin i.e. vein or artery and further that the differences between arterial and venous endothelial cells would extend to phenotype and genotype. We established a method for the isolation of fetal arterial and venous endothelial cells from the human placenta and studied the characteristics of both cell types. Human placental arterial endothelial cells (HPAEC) and human placental venous endothelial cells (HPVEC) express classical endothelial markers and differ in their phenotypic, genotypic, and functional characteristics: HPAEC are polygonal cells with a smooth surface growing in loose arrangements and forming monolayers with classical endothelial cobblestone morphology. They express artery-related genes (hey-2, connexin 40, depp) and more endothelial-associated genes than HPVEC. Functional testing demonstrated that vascular endothelial growth factors (VEGFs) induce a higher proliferative response on HPAEC, whereas placental growth factors (PlGFs) are only effective on HPVEC. HPVEC are spindle-shaped cells with numerous microvilli at their surface. They grow closely apposed to each other, form fibroblastoid swirling patterns at confluence and have shorter generation and population doubling times than HPAEC. HPVEC overexpress development-associated genes (gremlin, mesenchyme homeobox 2, stem cell protein DSC54) and show an enhanced differentiation potential into adipocytes and osteoblasts in contrast to HPAEC. These data provide collective evidence for a juvenile venous and a more mature arterial phenotype of human fetal endothelial cells. The high plasticity of the fetal venous endothelial cells may reflect their role as tissue-resident endothelial progenitors during embryonic development with a possible benefit for regenerative cell therapy.  相似文献   

7.
There is currently great excitement and expectation in the stem cell community following the discovery that multipotent stem cells can be cultured from human fetal tissue and retain their ability to give rise to a variety of differentiated cell types found in all three embryonic germ layers. Although the earliest sites of hematopoietic cell and endothelial cell differentiation in the yolk sac blood islands were identified about 100 years ago, cells with hemangioblast properties have not yet been identified in vivo. Endothelial cells differentiate from angioblasts in the embryo and from endothelial progenitor cells, mesoangioblasts and multipotent adult progenitor cells in the adult bone marrow. Circulating endothelial progenitor cells (EPC) have been detected in the circulation after vascular injury and during tumor growth. The molecular and cellular mechanisms underlying EPC recruitment and differentiation are not yet understood, and remain as one of the central issues in stem cell biology. For many years, the prevailing dogma stated that the vessels in the embryo develop from endothelial progenitors, whereas sprouting of vessels in the adult results only from division of differentiated endothelial cells. Recent evidence, however, indicates that EPC contribute to vessel growth in the embryo and in ischemic, malignant or inflammed tissues in the adult, and can even be therapeutically used to stimulate vessel growth in ischemic tissues.  相似文献   

8.
Confluent monolayer cultures of rabbit corneal endothelial and stromal cells were incubated independently with [35S]sulphate and [3H]glucosamine for 3 days. AFter incubation, labelled glycosaminoglycans were isolated from the growth medium and from a cellular fraction. These glycosaminoglycans were further characterized by DEAE-cellulose column chromatography and by sequential treatment with various glycosamino-glycan-degrading enzymes. Both endothelial and stromal cultures synthesized hyaluronic acid as the principal product. The cell fraction from the stromal cultures, however, had significantly less hyaluronic acid than that from the endothelial cultures. In addition, both types of cells synthesized a variety of sulphated glycosaminoglycans. The relative amounts of each sulphated glycosaminoglycan in the two cell lines were similar, with chondroitin 4-sulphate, chondroitin 6-sulphate and dermatan sulphate as the major components. Heparan sulphate was present in smaller amounts. Keratan sulphate was also identified, but only in very small amounts (1-3%). The presence of dermatan sulphate and the high content of hyaluronic acid are similar to the pattern of glycosaminoglycans seen in regenerating or developing tissues, including cornea.  相似文献   

9.
Cultures of thymic epithelial cells were generated and maintained in valine-free minimum essential medium (MEM) supplemented with 690 mg/liter of D-valine. These cultures have been maintained for 1 year through multiple passages by trypsinization of 60-70% confluent monolayers. Large and small epithelial cells were present in early cultures. They were separated into two stable subpopulations based on (1) their differential growth rates and (2) their differential adherence to the culture substratum. These morphologically distinct cell populations, TECS and TECL, were 100% keratin positive and contained cells with desmosomes and tonofilaments, all characteristics of epithelial cells. Esterase analysis of both cell populations revealed a 1 and 9% esterase-positive cell population in cultures of keratin-positive small (TECS) and large (TECL) cells, respectively. The percentages of esterase-positive cells corresponded to the 2 and 10% populations of TECS and TECL, respectively, that contained both desmosomes and phagolysosomes. These results establish conditions for the long-term propagation of pure thymic epithelial cells. Such cultures can be used to study the functional interactions between epithelial cells and lymphoid cells. Morphologic and histochemical analyses have identified subsets of these cells which may prove to have differential effects on thymocyte proliferative and developmental processes.  相似文献   

10.
We have isolated endothelial cells derived from bovine parathyroid tissue. These cells have been cloned and maintained by serial passage for more than 40 months without showing signs of senescence. Prolonged culture was accomplished by using a medium favoring endothelial cell growth and methods for enriching endothelial cells in primary culture. The cloned parathyroid endothelial cells contained factor VIII-related antigen, took up acetylated low-density lipoproteins and parathyroid hormone, and showed morphological features comparable to other endothelial cells. Bovine parathyroid endothelial cells replicated with a mean doubling time of 65 h. Fibroblast growth factors, platelet-derived growth factor, and calcium acted as mitogens for parathyroid endothelial cells, whereas transforming growth factor beta inhibited proliferation.  相似文献   

11.
AIM: To establish and characterize a spontaneously immortalized human dermal microvascular endothelial cell line, iHDME1.METHODS: We developed a spontaneous immortalization method. This approach is based on the application of optimized culture media and culture conditions without addition of any exogenous oncogenes or carcinogens. Using this approach, we have successfully established a microvascular endothelial cell line, iHDME1, from primary human dermal microvascular endothelial cells. iHDME1 cells have been maintained in culture dishes for more than 50 passages over a period of 6 mo. Using a GFP expressing retrovirus, we generated a GFP-stable cell line (iHDME1-GFP).RESULTS: iHDME1 retain endothelial morphology and uniformly express endothelial markers such as VEGF receptor 2 and VE-cadherin but not α-smooth muscle actin (α-SM-actin) and cytokeratin 18, markers for smooth muscle cells and epithelial cells respectively. These cells retain endothelial properties, migrate in response to VEGF stimulation and form 3-D vascular structures in Matrigel, similar to the parental cells. There is no significant difference in cell cycle profile between the parental cells and iHDME1 cells. Further analysis indicates enhanced stemness in iHDME1 cells compared to parental cells. iHDME1 cells display elevated expression of CD133 and hTERT.CONCLUSION: iHDME1 cells will be a valuable source for studying angiogenesis.  相似文献   

12.
13.
Vascular endothelial cells cultured in the presence of fibroblast growth factor (FGF) devide actively when seeded at low or clonal cell densities and upon reachin confluence adopt a morphologic appearance and differentiated properties similar to those of the vascular endothelium in vovi. In this review, we present some of our recent observations regarding the characteristics (both structural and functional) of these endothelial cells and the role of FGF in controlling their proliferation and normal differentation. At confluence the endothelial cells from a monolayer of closely apposed and nondividing cell that have a nonthrombogenic apical surface and can no longer internalize bound ligands such as low-density lipoprotein (LDL). The adoption of these properties is correlated and possibly causally related to changes in the cell surface such as the appearance of a 60,000 molecular weight protein (CSP-60); the disappearance of fibronectin from the apical cell surface and its concomitant accumulation in the basal lamina; and a restriction of the lateral mobility of various cell surface receptor sites. In contrast, endothelial cells that are maintained in the absence of FGF undergo within three passages alterations that are incompatible with their in vivo morphologic apperarance and physiologic beharior. They grow at confluence on top of each other and hence can no longer adopt both the structural (CSP-60, cell surface polarity) and functional (barrier function, nonthrombogenicity) attributes of differentiated endothelial cell. Since these characteristics can be reacquired in response to readdition of FGF, in addition to being a mitogen FGF may also be involved in controlling the differentitation and phenotypic expression of the vascular endothelium.  相似文献   

14.
Cell replacement therapies have been limited by the availability of sufficient quantities of cells for transplantation. Human ES (hES) cell lines have recently been generated by several laboratories. When maintained for over 1 year in vitro, they remain karyotypically and phenotypically stable and may therefore provide an excellent source material for cell therapies. Currently, data is available for 26 hES cell lines. Although limited characterization has been performed on most of these lines, there are remarkable similarities in expression of markers. hES cell lines derived in different laboratories show similar expression profiles of surface markers, including SSEA-4, Tra-1-60, and Tra-1-81. In addition, markers associated with pluripotent cells such as OCT-4 are expressed at in all cell lines tested. These cells express high levels of telomerase and appear to have indefinite growth potential. The generation of the large quantities of cells necessary for cell replacement therapies will require a cell population which is stable over long term culture. We have characterized the properties of multiple hES cell lines that have been maintained in culture for extended periods. Quantitative analyses demonstrate that all of the cell lines examined show consistent marker expression and retain a normal karyotype after long-term culture. hES cells have been differentiated into the derivatives of all three germ layers. Specifically this includes cardiomyocytes, neural cells, hepatocyte-like cells, endothelial cells and hematopoietic progenitor cells. These data demonstrating the karyotypic and phenotypic stability of hES cells and their extensive differentiative capacity indicate that they may be an appropriate source of cells for multiple regenerative medicine applications.  相似文献   

15.
Smooth muscle cell proliferation can be inhibited by heparan sulfate proteoglycans whereas the removal or digestion of heparan sulfate from perlecan promotes their proliferation. In this study we characterized the glycosaminoglycan side chains of perlecan isolated from either primary human coronary artery smooth muscle or endothelial cells and determined their roles in mediating cell adhesion and proliferation, and in fibroblast growth factor (FGF) binding and signaling. Smooth muscle cell perlecan was decorated with both heparan sulfate and chondroitin sulfate, whereas endothelial perlecan contained exclusively heparan sulfate chains. Smooth muscle cells bound to the protein core of perlecan only when the glycosaminoglycans were removed, and this binding involved a novel site in domain III as well as domain V/endorepellin and the α2β1 integrin. In contrast, endothelial cells adhered to the protein core of perlecan in the presence of glycosaminoglycans. Smooth muscle cell perlecan bound both FGF1 and FGF2 via its heparan sulfate chains and promoted the signaling of FGF2 but not FGF1. Also endothelial cell perlecan bound both FGF1 and FGF2 via its heparan sulfate chains, but in contrast, promoted the signaling of both growth factors. Based on this differential bioactivity, we propose that perlecan synthesized by smooth muscle cells differs from that synthesized by endothelial cells by possessing different signaling capabilities, primarily, but not exclusively, due to a differential glycanation. The end result is a differential modulation of cell adhesion, proliferation and growth factor signaling in these two key cellular constituents of blood vessels.  相似文献   

16.
Rat aortic endothelial cells have been isolated by the explantation technique and grown in culture. They have been identified morphologically using standard staining techniques, biochemically by identification of angiotensin convertase and have been positively stained for Factor VIII-related antigen by immunofluorescence using both anti-human and anti-rat Factor VIII antibodies. The explantation technique is a successful alternative to enzyme digestion which is not applicable to rat aortic endothelial cells because of the nature of their attachment to the subendothelial layer.  相似文献   

17.
Summary An endothelial cell line has been established from a primary culture of cerebral microvessels isolated from Swiss-Webster mice. The microvessels were isolated by a mechanical dispersion and filtration technique. The cells that emerged from these microvessels, maintained in organoid cultures, proliferated and formed plaques of a single or mixed cell type. The endothelial cell line, designated ME-2, was isolated from one such morphologically homogeneous cell plaque, using both cloning ring techniques and C6 glioma-conditioned medium. An endothelial specific antiserum was made in rabbits and was used immunocytochemically to confirm the cell type of origin of the ME-2 cell line. Not only did the cell type specific antiserum react exclusively with endothelial cells in vivo, but in the brain the antiserum localized preferentially to the luminal membrane of the endothelium. The ME-2 endothelial cells have retained several of their unique properties such as cytomorphology, growth characteristics, and cell type specific surface antigens throughout the life of the line (in one case 40 passages before senescence). This work was supported in part by an Arteriosclerosis Specialized Center of Research grant from the National Heart, Lung and Blood Institute, National Institutes of Health, Grant HL-14230, and Grant 584-127703 from the Veterans Adminsitration. This paper is dedicated to the memory of Steve Frommes, Electron Microscopist and Photographer.  相似文献   

18.
《Organogenesis》2013,9(3):77-88
Broadly multipotent stem cells can be isolated from amniotic fluid by selection for the expression of the membrane stem cell factor receptor c-Kit, a common marker for multipotential stem cells. They have clonogenic capability and can be directed into a wide range of cell types representing the three primary embryonic lineages. Amniotic fluid stem cells maintained for over 250 population doublings retained long telomeres and a normal karyotype. Clonal human lines verified by retroviral marking were induced to differentiate into cell types representing each embryonic germ layer, including cells of adipogenic, osteogenic, myogenic, endothelial, neuronal and hepatic lineages. AFS cells could be differentiate toward cardiomyogenic lineages, when co-cultured with neonatal cardiomyocytes, and have the potential to generate myogenic and hematopoietic lineages both in vitro and in vivo. Very recently first trimester AFS cells could be reprogrammed without any genetic manipulation opening new possibilities in the field of fetal/neonatal therapy and disease modeling. In this review we are aiming to summarize the knowledge on amniotic fluid stem cells and highlight the most promising results.  相似文献   

19.
Anoikis is a form of programmed cell death induced by loss of contact from neighboring cells or from their extracellular matrix (ECM). Many tumorigenic cells are anoikis resistant, facilitating cancer progression and metastasis. Trastuzumab is a monoclonal antibody used for the treatment of breast and gastric cell cancer, but its mechanism of action is not well elucidated and its target molecules not well defined. Heparan sulfate proteoglycans (HSPGs) and glycosaminoglycans (GAGs) play important roles in tumor development and in response of cancer cells to drugs. This study investigates the effect of trastuzumab on the expression of HSPGs and sulfated glycosaminoglycans (SGAGs) in anoikis-resistant endothelial cells. After trastuzumab treatment, endothelial cells resistant to anoikis show an increase in adhesion to fibronectin followed by a decrease in invasion, proliferation, and angiogenic capacity. In addition, a significant increase in the number of cells in the S phase of the cell cycle was also observed. In relation to HSPGs and SGAGs expression, we observed a decrease in syndecan-4 and perlecan expression, as well as in the heparan sulfate biosynthesis in anoikis-resistant endothelial cells after exposure to trastuzumab. Our results suggest that trastuzumab interacts with GAGs and proteoglycans of the cell surface and ECM and through this interaction controls cellular events in anoikis-resistant endothelial cells.  相似文献   

20.
Spontaneous transformation and immortalization of human endothelial cells   总被引:37,自引:0,他引:37  
Summary A new cell line from the human umbilical vein has been established and maintained for more than 5 yr (180 generations; 900 population doublings). This strain, designated ECV304, is characterized by a cobblestone monolayer growth pattern, high proliferative potential without any specific growth factor requirement, and anchorage dependency with contact inhibition. Karyotype analysis of this cell line reveals it to be of human chromosomal constitution with a high trisomic karyotype (mode 80). Ultrastructurally, endothelium-specific Weibel-Palade bodies were identified. Although one of the endothelial cell markers, Factor VIII-related antigen (VIIIR:Ag) was negative in this cell line, immunocytochemical staining for the lectin Ulex europaeus I (UEA-I), and PHM5 (anti-human endothelium as well as glomerular epithelium monoclonal antibody) was positive, and angiotensin-converting enzyme (ACE) activity was also demonstrated. In addition, ECV304 displayed negativity for alkaline and acid phosphatase and for the epithelial marker keratin. All of these findings suggest that ECV304 cells originated from umbilical vein endothelial cells by spontaneous transformation. Ultrastructurally, no viruslike particles have been detected intracellularly. Nude mouse tumorigenicity and rabbit cornea tests were both positive. This is a report on a novel case of phenotypic alteration of normal venous endothelial cells of human origin in vitro, and generation of a transformant with indefinite life spans. This line may be useful in studies of some physiologically active factors available for medical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号