首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eide L  Fosberg E  Hoff E  Seeberg E 《FEBS letters》2001,491(1-2):59-62
Endonuclease III of Escherichia coli is normally involved in the repair of oxidative DNA damage. Here, we have investigated a possible role of EndoIII in the repair of alkylation damage because of its structural similarity to the alkylation repair enzyme 3-methyladenine DNA glycosylase II. It was found that overproduction of EndoIII partially relieved the alkylation sensitivity of alkA mutant cells. Site-directed mutagenesis to make the active site of EndoIII more similar to AlkA (K120W) had an adverse effect on the complementation and the mutant protein apparently inhibited repair by competing for the substrate without base release. These results suggest that EndoIII might replace AlkA in some aspect of alkylation repair, although high expression levels are needed to produce this effect.  相似文献   

2.
Radioiodination of proteins by reductive alkylation   总被引:1,自引:0,他引:1  
The use of the aliphatic aldehyde, para-hydroxyphenylacetaldehyde as the reactive moiety in the radioiodination of proteins by reductive alkylation is described. The para-hydroxyphenyl group is radiolabeled with 125I, reacted through its aliphatic aldehyde group with primary amino groups on proteins to form a reversible Schiff base linkage which can then be stabilized with the mild reducing agent NaCNBH3. The introduction of the methylene group between the benzene ring and the aldehyde group increases its reactivity with protein amino groups permitting efficient labeling at low aldehyde concentrations. Using this method, radioiodinated proteins with high specific activity can be produced. The reductive alkylation procedure is advantageous in that the labeling conditions are mild, the reaction is specific for lysyl residues, and the modification of the epsilon-ammonium group of lysine results in ionizable secondary amino groups avoiding major changes in protein charge.  相似文献   

3.
DNA repair mechanisms fulfil a dual role, as they are essential for cell survival and genome maintenance. Here, we studied how cells regulate the interplay between DNA repair and mutation. We focused on the adaptive response that increases the resistance of Escherichia coli cells to DNA alkylation damage. Combination of single-molecule imaging and microfluidic-based single-cell microscopy showed that noise in the gene activation timing of the master regulator Ada is accurately propagated to generate a distinct subpopulation of cells in which all proteins of the adaptive response are essentially absent. Whereas genetic deletion of these proteins causes extreme sensitivity to alkylation stress, a temporary lack of expression is tolerated and increases genetic plasticity of the whole population. We demonstrated this by monitoring the dynamics of nascent DNA mismatches during alkylation stress as well as the frequency of fixed mutations that are generated by the distinct subpopulations of the adaptive response. We propose that stochastic modulation of DNA repair capacity by the adaptive response creates a viable hypermutable subpopulation of cells that acts as a source of genetic diversity in a clonal population.  相似文献   

4.
S(N)1-type alkylating agents, like N-methyl-N-nitrosourea (MNU) and N-ethyl-N-nitrosourea (ENU), are potent mutagens. Exposure to alkylating agents gives rise to O(6)-alkylguanine, a modified base that is recognized by DNA mismatch repair (MMR) proteins but is not repairable, resulting in replication fork stalling and cell death. We used a somatic mutation detection assay to study the in vivo effects of alkylation damage on lethality and mutation frequency in developing zebrafish embryos. Consistent with the damage-sensing role of the MMR system, mutant embryos lacking the MMR enzyme MSH6 displayed lower lethality than wild-type embryos after exposure to ENU and MNU. In line with this, alkylation-induced somatic mutation frequencies were found to be higher in wild-type embryos than in the msh6 loss-of-function mutants. These mutations were found to be chromosomal aberrations that may be caused by chromosomal breaks that arise from stalled replication forks. As these chromosomal breaks arise at replication, they are not expected to be repaired by non-homologous end joining. Indeed, Ku70 loss-of-function mutants were found to be equally sensitive to ENU as wild-type embryos. Taken together, our results suggest that in vivo alkylation damage results in chromosomal instability and cell death due to aberrantly processed MMR-induced stalled replication forks.  相似文献   

5.
After treatment with methyl or ethyl methane sulfonate, T7 amber mutants display a reduced capacity for recombination. Moreover, alkylation reduces recombination frequency involving markers on the right-hand side of the genetic map more than it reduces recombination frequency involving markers on the left-hand side. We interpret this to mean that alkylation can stop DNA injection at any point along the DNA molecule, and that T7 phage injects its DNA in a unique fashion starting from the end carrying the genes for early proteins.  相似文献   

6.
A series of molecular orbital calculations, using MINDO/3 and CNDO/2L methods, have been used to characterize the chemical reaction of protonated aziridine with DNA nucleophilic base sites. The N-7 atom of guanine is found to be the preferred alkylation site only when the O-6 atom of guanine is involved in base-pair hydrogen bonding. Otherwise O-6 is the predicted major site of alkylation. This indirectly suggests that protonated aziridine alkylation processes involve base-paired DNA structures, since N-7 guanine is the observed major site of alkylation. Alkylation of N-3 adenine is predicted to be more favorable than chemical attack of the N-7 adenine position. Both of these sites, however, are predicted to be less reactive than N-7 of guanine. These chemical reactivity studies resolve alkylation specifically not achieved in the DNA–alkylator physical association calculations reported in the preceding paper.  相似文献   

7.
A series of hierarchical chemical reactivity calculations have been performed to elucidate the alkylation properties of a methyldiazonium ion toward DNA base sites. Both MINDO/3 and CNDO/2 approximate methods have been employed. For the isolated bases the O6 of guanine is predicted to be the most reactive site. This prediction may also be relevant to single-stranded DNA chains containing guanine. For base-pairs, the N7 and O6 sites on guanine are about equally favored for alkylation. The previous study of aziridinium ion alkylation gave about the same results with N7 guanine modestly favored as the preferred site of alkylation for base-pairs. In composite we conclude that N7 guanine and/or O6 guanine will be the preferred sites for alkylation by a methyldiazonium ion but cannot distinguish between these two in terms of chemical specificity.  相似文献   

8.
Upon alkylation of the rat liver chromatin with a hexadecadeoxyribothymidylate derivative bearing 4-(N-2-chloroethyl-N-methylamino)benzylamine residue on the 5'-terminal phosphate two nonhistone proteins were modified under conditions of the reagent's forming complementary complexes with poly(A) sequences in DNA. The sequence-specific nature of the reaction is proved by the competition experiments: free oligothymidylate prevented the proteins from alkylation whereas arbitrary oligonucleotide did not. Modification with the reactive oligonucleotide derivatives can be used for the identification of proteins located in the vicinity of the specific open DNA regions in chromatin.  相似文献   

9.
10.
Endogenous DNA damage induced by hydrolysis, reactive oxygen species and alkylation modifies DNA bases and the structure of the DNA duplex. Numerous mechanisms have evolved to protect cells from these deleterious effects. Base excision repair is the major pathway for removing base lesions. However, several mechanisms of direct base damage reversal, involving enzymes such as transferases, photolyases and oxidative demethylases, are specialized to remove certain types of photoproducts and alkylated bases. Mismatch excision repair corrects for misincorporation of bases by replicative DNA polymerases. The determination of the 3D structure and visualization of DNA repair proteins and their interactions with damaged DNA have considerably aided our understanding of the molecular basis for DNA base lesion repair and genome stability. Here, we review the structural biochemistry of base lesion recognition and initiation of one-step direct reversal (DR) of damage as well as the multistep pathways of base excision repair (BER), nucleotide incision repair (NIR) and mismatch repair (MMR).  相似文献   

11.
Dianov GL  Parsons JL 《DNA Repair》2007,6(4):454-460
DNA damaging agents generated as a consequence of endogenous metabolism or via exogenous factors can produce a wide variety of lesions in DNA. These include base damage, sites of base loss (abasic sites) and single strand breaks (SSBs). Moreover, reactive oxygen species (ROS) create more diversity by generating SSBs containing modified 3'-ends, such as those containing phosphate, phosphoglycolate and oxidative base damage. Ionising radiation also generates DNA base lesions in close proximity to SSBs. The majority of these non-bulky lesions in DNA are repaired by proteins involved in the base excision repair (BER) pathway. It is apparent that due to the complexity of these lesions, they may require individual subsets of BER proteins for repair. However, the mechanism unravelling the required enzymes and directing damage-specific repair of SSBs is unclear. In this review we will discuss recent studies that identify new enzymes and activities involved in the repair of SSBs containing modified ends and in particular outline the possible mechanisms involved in the co-ordinated repair of "damaged" SSBs that can not be resealed directly and require preliminary processing.  相似文献   

12.
1. A quantitative study was made of the relationship between survival of colony-forming ability in Escherichia coli strains B/r and B(s-1) and the extents of alkylation of cellular DNA, RNA and protein after treatment with mono- or di-functional sulphur mustards, methyl methanesulphonate or iodoacetamide. 2. The mustards and methyl methanesulphonate react with nucleic acids in the cells, in the same way as found previously from chemical studies in vitro, and with proteins. Iodoacetamide reacts only with protein, principally with the thiol groups of cysteine residues. 3. The extents of alkylation of cellular constituents required to prevent cell division vary widely according to the strain of bacteria and the nature of the alkylating agent. 4. The extents of alkylation of the sensitive and resistant strains at a given dose of alkylating agent do not differ significantly. 5. Removal of alkyl groups from DNA of cells of the resistant strains B/r and 15T(-) after alkylation with difunctional sulphur mustard was demonstrated; the product di(guanin-7-ylethyl) sulphide, characteristic of di- as opposed to mono-functional alkylation, was selectively removed; the time-scale of this effect suggests an enzymic rather than a chemical mechanism. 6. The sensitive strain B(s-1) removed alkyl groups from DNA in this way only at very low extents of alkylation. When sensitized to mustard action by treatment with iodoacetamide, acriflavine or caffeine, the extent of alkylation of cellular DNA corresponding to a mean lethal dose was decreased to approximately 3 molecules of di(guanin-7-ylethyl) sulphide in the genome of this strain. 7. Relatively large numbers of monofunctional alkylations per genome can be withstood by this sensitive strain. Iodoacetamide had the weakest cytotoxic action of the agents investigated; methyl methanesulphonate was significantly weaker in effect than the monofunctional sulphur mustard, which was in turn weaker than the difunctional sulphur mustard. 8. Effects of the sulphur mustards on nucleic acid synthesis in sensitive and resistant strains were studied. DNA synthesis was inhibited in both strains at low doses in a dose-dependent manner, but RNA and protein synthesis were not affected in this way. 9. DNA synthesis in E. coli B(s-1) was permanently inhibited by low doses of mustards. In the resistant strains 15T(-) and B/r a characteristic recovery in DNA synthesis was observed after a dose-dependent time-lag. This effect could be shown at low doses in the region of the mean lethal dose. 10. Cellular DNA was isotopically prelabelled and the effect of mustards on stability of DNA was investigated. With resistant strains a dose-dependent release of DNA nucleotide material into acid-soluble form was found; this was much more extensive with the difunctional mustard (about 400 nucleotides released per DNA alkylation) than with the monofunctional mustard (about 10 nucleotides per alkylation). With the sensitive strain no dose-dependent release was found, though the DNA was less stable independent of cellular alkylation. 11. The results are discussed in terms of the concepts that alkylation of cellular DNA induces lesions which interfere with DNA replication, but which can be enzymically ;repaired'. The possible nature of these lesions is discussed in terms of the known reactions of the alkylating agents with DNA.  相似文献   

13.
Chou WC  Wang HC  Wong FH  Ding SL  Wu PE  Shieh SY  Shen CY 《The EMBO journal》2008,27(23):3140-3150
The DNA damage response (DDR) has an essential function in maintaining genomic stability. Ataxia telangiectasia-mutated (ATM)-checkpoint kinase 2 (Chk2) and ATM- and Rad3-related (ATR)-Chk1, triggered, respectively, by DNA double-strand breaks and blocked replication forks, are two major DDRs processing structurally complicated DNA damage. In contrast, damage repaired by base excision repair (BER) is structurally simple, but whether, and how, the DDR is involved in repairing this damage is unclear. Here, we demonstrated that ATM-Chk2 was activated in the early response to oxidative and alkylation damage, known to be repaired by BER. Furthermore, Chk2 formed a complex with XRCC1, the BER scaffold protein, and phosphorylated XRCC1 in vivo and in vitro at Thr(284). A mutated XRCC1 lacking Thr(284) phosphorylation was linked to increased accumulation of unrepaired BER intermediate, reduced DNA repair capacity, and higher sensitivity to alkylation damage. In addition, a phosphorylation-mimic form of XRCC1 showed increased interaction with glycosylases, but not other BER proteins. Our results are consistent with the phosphorylation of XRCC1 by ATM-Chk2 facilitating recruitment of downstream BER proteins to the initial damage recognition/excision step to promote BER.  相似文献   

14.
Escherichia coli strains that are deficient in the Ada and Ogt DNA repair methyltransferases display an elevated spontaneous G:C-to-A:T transition mutation rate, and this increase has been attributed to mutagenic O(6)-alkylguanine lesions being formed via the alkylation of DNA by endogenous metabolites. Here we test the frequently cited hypothesis that S-adenosylmethionine (SAM) can act as a weak alkylating agent in vivo and that it contributes to endogenous DNA alkylation. By regulating the expression of the rat liver SAM synthetase and the bacteriophage T3 SAM hydrolase proteins in E. coli, a 100-fold range of SAM levels could be achieved. However, neither increasing nor decreasing SAM levels significantly affected spontaneous mutation rates, leading us to conclude that SAM is not a major contributor to the endogenous formation of O(6)-methylguanine lesions in E. coli.  相似文献   

15.
Adhikary S  Eichman BF 《EMBO reports》2011,12(12):1286-1292
DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity, although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N6‐ethenoadenine (εA) is influenced by a minor groove‐interrogating residue more than the composition of the nucleobase‐binding pocket. Exchanging this residue between Mag proteins swapped their εA activities, providing evidence that residues outside the extrahelical base‐binding pocket have a role in identification of a particular modification in addition to sensing damage.  相似文献   

16.
8-Methyl-2'-deoxyguanosine (8-medGuo) has been shown to be a major stable alkylation product of 2'-deoxyguanosine induced by methyl radical attack on DNA. Moreover, by using primer extension assays, the latter DNA modification has recently been reported to be a miscoding lesion by generating G to C and G to T transversions and deletions in vitro. However, no data have been reported up to now, concerning the processing of this C8-alkylated nucleoside by the DNA repair machinery. Therefore, we have investigated the capability of excision of 8-methylguanine (8-meGua) site specifically incorporated into oligonucleotide substrates by several bacterial, yeast and mammalian DNA N-glycosylases. The results show that the 3-methyladenine (3-meAde) DNA glycosylase II (AlkA protein) from Escherichia coli is the only DNA N-glycosylase tested able to remove 8-meGua from double-stranded DNA fragments. Moreover, the activity of AlkA for 8-meGua varied markedly depending on the opposite base in DNA, being the highest with Adenine and Thymine and the lowest with Cytosine and Guanine. The removal of 8-meGua by AlkA protein was compared to that of 7-methylguanine (7-meGua) and hypoxanthine (Hx). The rank of damage as a substrate for AlkA being 7-meGua>8-meGua>Hx. In contrast, the human 3-meAde DNA N-glycosylase (Mpg) is not able to release 8-meGua paired with any of the four DNA bases. We also show that, DNA N-glycosylases involved in the removal of oxidative damage, such as Fpg or Nth proteins from E. coli, Ntg1, Ntg2 or Ogg1 proteins of Saccharomyces cerevisiae, or human Ogg1 do not release 8-meGua placed opposite any of the four DNA bases. Furthermore, HeLa and Chinese hamster ovary (CHO) cell free protein extracts do not show any cleavage activity at 8-meGua paired with adenine or cytosine, which suggests the absence of base excision repair (BER) of this lesion in mammalian cells.  相似文献   

17.
When isolated chromatin is incubated with the carcinogens N-methyl-N-nitrosourea (MeNU) and N-ethyl-N-nitrosourea (EtNU), DNA and chromosomal proteins become alkylated to increasingly greater extents as the carcinogen concentrations increase. With either MeNU or EtNU, the core and linker DNA of chromatin are alkylated to essentially identical extents. Alkylation of chromatin DNA as well as free DNA is drastically reduced at physiological ionic strengths (e.g. 0.15 M NaCl). The presence of 0.15 M NaCl, on the other hand, enhances alkylation of chromosomal proteins. While EtNU is much less reactive to DNA than MeNU, alkylation of chromosomal proteins relative to that of chromatin DNA has been found to be markedly greater with EtNU than with MeNU. Such a difference in their relative reactivities toward DNA and proteins may be related to the known difference of carcinogenic potency between these N-nitroso compounds.  相似文献   

18.
The number of single-strand breaks produced in DNA after exposure to UV light or to methyl methanesulfonate (MMS) was additive when cells were exposed to both agents in close succession. Repair of the damage from either agent was partially inhibited by cytosine arabinoside, resulting in higher break frequencies under all conditions of exposure. Exposure to both agents followed by growth in cytosine arabinoside resulted in break frequencies that were approximately the same as the sum of those from each agent individually. These findings contrast with previous results in which pyrimidine dimer excision and repair replication after exposure to UV light were inhibited by MMS. These observations are not due to cell permeability changes after alkylation, but can be explained if the complex of excision-repair proteins is only partially inactivated by alkylation. Initial incisions to start repair would still occur but only limited amounts of repair replication would ensue without actual removal of the pyrimidine dimers.  相似文献   

19.
Programs are presented to plot the gross three-dimensional structure of the DNA double helix with the base sequence as input information. The rules that determine the overall structure of the double helix are those that predict the dependence of local helix parameters (specifically, helix twist angle and relative basepair roll angle) on sequence. For this purpose, the user can select either the Calladine-Dickerson parameters or the Tung-Harvey parameters. These programs can be used as tools to investigate the variation of DNA tertiary structure with sequence, which may play an important role in the sequence-specific recognition of DNA by proteins.  相似文献   

20.
Metabolites and certain chemical agents (for example methyl methanesulfonate) can induce nucleotide bases on chromosomal strands to become alkylated. These alkylated sites have the potential to become single-strand chromosomal breaks, a form of DNA damage, if they are exposed to a sufficient temperature in vitro. It has been proposed that a single-strand break (SSB) sufficiently close to another SSB on the opposite chromosomal strand will form a double-strand break (DSB). DNA repair mechanisms are less able to repair DSBs compared to SSBs. Because of the complex three-dimensional structure of DNA, some chromosomal regions are more susceptible to alkylation than others. A question of interest is therefore whether these alkylated bases are randomly distributed or tend to be clustered. Pulsed-field gel electrophoresis allows the number of DNA fragments (and hence the number of DSBs) to be observed directly. The randomness of alkylation events can therefore be tested using the standard statistical hypothesis-testing framework. Under the null hypothesis, that the SSBs are randomly distributed on each of the strands, we can calculate the probability of observing a number of DSBs at least as large as that observed and hence the associated p-value. Previously, the probability distribution of the number of DSBs has been determined by Monte Carlo simulations; when considering the whole genome this can be very time consuming. In this paper, we theoretically derive an approximation to the distribution enabling appropriate probabilities to be calculated quickly. Based on previous findings we assume that the number of breaks on each strand is small compared to the number of nucleotide bases. We show that our method can give the correct probability distribution when alkylation events are relatively rare, discuss how rare these events have to be and suggest potential extensions to the model when a greater proportion of bases are alkylated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号