首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cao X  Zhang L 《Biomacromolecules》2005,6(2):671-677
We successfully prepared a series of semi-interpenetrating polymer networks (semi-IPNs) from castor oil-based polyurethane (PU) and 20 wt % benzyl starch (BS) with different weight-average molecular weights (M(w)), coded as the PU/BS films. The M(w) values of a series of BSs were determined by size-exclusion chromatography combined with laser light scattering. The effects of the BS M(w) on the miscibility and properties of the resulting PU/BS films were investigated using reflection Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical thermal analysis, scanning electron microscopy, optical microscopy, ultraviolet-visible spectroscopy, and tensile testing. The results revealed that the PU/BS films possessed much higher optical transmittance and tensile strength than the pure PU film. Interestingly, with a decrease of the BS M(w) from 1.69 x 10(7) to 5.70 x 10(5), the optical transmittance, tensile strength, and elongation at break of the PU/BS films increased from 82% to 89%, from 11.7 to 15.7 MPa, and from 121% to 180%, respectively. Therefore, the M(w) of BS plays an important role in the improvement of the miscibility and properties of the semi-IPN materials. On the basis of the analysis of the miscibility and the morphology of the PU/BS films, the interaction between the PU and the BS with relatively low M(w) was stronger than that with high M(w).  相似文献   

2.
Lu Y  Larock RC 《Biomacromolecules》2008,9(11):3332-3340
The environmentally friendly vegetable-oil-based waterborne polyurethane dispersions with very promising properties have been successfully synthesized without difficulty from a series of methoxylated soybean oil polyols (MSOLs) with different hydroxyl functionalities ranging from 2.4 to as high as 4.0. The resulting soybean-oil-based waterborne polyurethane (SPU) dispersions exhibit a uniform particle size, which increases from about 12 to 130 nm diameter with an increase in the OH functionality of the MSOL from 2.4 to 4.0 and decreases with increasing content of the hard segments. The structure and thermophysical and mechanical properties of the resulting SPU films, which contain 50-60 wt % MSOL as renewable resources, have been studied by Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, thermogravimetric analysis, transmission electron microscopy, and mechanical testing. The experimental results reveal that the functionality of the MSOLs and the hard segment content play a key role in controlling the structure and the thermophysical and mechanical properties of the SPU films. These novel films exhibit tensile stress-strain behavior ranging from elastomeric polymers to rigid plastics and possess Young's moduli ranging from 8 to 720 MPa, ultimate tensile strengths ranging from 4.2 to 21.5 MPa, and percent elongation at break values ranging from 16 to 280%. This work has addressed concerns regarding gelation and higher cross-linking caused by the high functionality of vegetable-oil-based polyols. This article reports novel environmentally friendly biobased SPU materials with promising applications as decorative and protective coatings.  相似文献   

3.
Chen Y  Tan HM 《Carbohydrate research》2006,341(7):887-896
A novel carboxymethylchitosan-g-poly(acrylic acid) (CMCTS-g-PAA) superabsorbent polymer was prepared through graft polymerization of acrylic acid onto the chain of carboxymethylchitosan and subsequent crosslinking. It was demonstrated by FTIR spectroscopy that acrylic acid had been graft polymerized with carboxymethylchitosan. The thermal stability of the polymer was characterized by thermogravimetric analysis. By studying the swelling ratio of the polymer synthesized under different conditions, optimization conditions were found for a polymer with the highest swelling ratio. The rate of water absorption of the polymer was high, and the swelling of the polymer fitted the process of first dynamics. The swelling ratio of the polymer was pH-dependent.  相似文献   

4.
Synthesis and magnetic properties of biocompatible hybrid hollow spheres   总被引:2,自引:0,他引:2  
Ding Y  Hu Y  Zhang L  Chen Y  Jiang X 《Biomacromolecules》2006,7(6):1766-1772
Magnetic hybrid hollow spheres of about 200 nm were prepared by a core-template-free route, that is, adding Fe3O4 nanoparticles stabilized by poly(vinyl alcohol) (PVA) to an aqueous solution of polymer-monomer pairs composed of a cationic polymer, chitosan (CS), and an anionic monomer, acrylic acid (AA), followed by polymerization of acrylic acid and selective cross-linking of chitosan at the end of polymerization. The obtained hybrid spheres were characterized by dynamic light scattering (DLS) in aqueous solution and observed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) in the solid state. Fourier transform infrared spectroscopy (FTIR) and X-ray and electron diffractions revealed that the Fe3O4 nanoparticles were incorporated into the shells of chitosan-poly(acrylic acid) (CS-AA) hollow spheres. Magnetization studies and M?ssbauer spectroscopy suggested that the chains (or islands) of iron oxide nanoparticles were most likely formed in the walls of the hollow spheres. The phantom test of magnetic resonance imaging showed that the synthesized hybrid hollow spheres had a significant magnetic resonance signal enhancement in T2-weighted image.  相似文献   

5.
Qi G  Jones CW  Schork FJ 《Biomacromolecules》2006,7(11):2927-2930
Enzyme-catalyzed polymerization in vitro has gained considerable attention in the last two decades as an efficient tool in the polymerization of various monomers, such as saccharides, esters, phenols, and aromatic anilines; however, the polymerization of vinyl monomers using enzymes has been more limited, perhaps due to the hydrophobicity of most common vinyl monomers. Enzyme-initiated miniemulsion polymerization is demonstrated herein as a way to polymerize hydrophobic vinyl monomers such as styrene. By application of enzyme-initiated radical polymerization in miniemulsion, stable poly(styrene) latexes are prepared with a particle size near 50 nm. A very small amount of enzyme and surfactant is required to facilitate the miniemulsion polymerization, whereas a relatively high polymerization rate and conversion are achieved.  相似文献   

6.
Enzyme immobilization using a low-cost support that allows increasing operational stability and reutilization arise as a great economic advantage for the industry. In this work, it was explored different methods of Thermomyces lanuginosus lipase (NS-40116) immobilization in flexible polyurethane foam (PU). PU polymer was synthesized using polyether and toluene diisocyanate as monomers. PU-NS-40116 immobilized was evaluated in terms of stability in a range of pH (7.0 and 9.0), temperature (24, 50 and 60?°C) for 24?h, and storage stability (room temperature and 4?°C) for 30?days. The results showed that after 30?days of storage immobilized enzyme kept 80% of initial enzyme activity. PU support before and after immobilization process was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Free and immobilized enzymes were compared in terms of hydrolysis of soybean oil. Immobilized enzyme by entrapment was evaluated in successive cycles of reuse showing catalytic activity above 50% even after 5 successive cycles of reuse, confirming the efficiency of immobilization process.  相似文献   

7.
Polyurethane (PU) foams were prepared using a palm oil-based polyol (PO-p). At the first stage, palm oil was converted to monoglycerides as a new type of polyol by glycerolysis. A yield of the product reached 70% at reaction temperature of 90 degrees C by using an alkali catalyst and a solvent. At the second stage, PU foams were prepared from mixtures of the polyol and polyethylene glycol (PEG) or diethylene glycol (DEG) and an isocyanate compound. Characterization of the foams was carried out by thermal and mechanical analyses. The analyses showed that the chain motion of polyurethane becomes more flexible at the higher PO-p content in the whole polymer, which indicates that the monoglyceride molecules work as soft segments. The study here may lead to a development of a new type of polyurethane foams using palm oil as a raw material.  相似文献   

8.
Nanostructured polyurethane (PU) synthesized by an emulsion polymerization with narrow size distribution was employed for the first time directly as a novel matrix for enzyme immobilization to develop sensitively amperometric biosensors. When Microperoxidase-11 (MP-11) was selected as a model protein, the resulting hydrogen peroxide (H(2)O(2)) biosensor exhibited improved sensitivity of 29.6μAmM(-1)cm(-2) with quite good response time of (1.3±0.4)s and remarkable limit of detection as low as 10pM (S/N 3) over existing protocols. A linear calibration curve for hydrogen peroxide was obtained up to 1.3μM under the optimized conditions with a relative low calculated Michaelis-Menten constant (K(M)(app)) (1.87±0.05)μM, which indicated the enhanced enzymatic affinity of MP-11 to H(2)O(2) via PU. The possible interferents had negligible effect on the response current and time of the prepared biosensor. Results suggest that the PU nanoparticles (PU-NPs) with good biocompatibility and sufficient interfacial adhesion hold promise as an attractive support material for construction of ultrasensitive amperometric biosensor.  相似文献   

9.
Little is known about the pharmacokinetics of phosphatidylcholine (PC)-derived choline, trimethylamine (TMA), and trimethylamine-N-oxide (TMAO). We therefore aim to investigate serum choline, TMA, and TMAO pharmacokinetics following different PCs gavage and compare the difference between PC emulsions and liposomes (SOL). Serum choline, TMA, and TMAO levels were measured after orally gavaged egg yolk PC emulsion (EGE), squid PC emulsion (SQE), soybean PC emulsion (SOE), and SOL in fasted mice. Time to reach peak concentration (Tmax) and productions for TMA and TMAO were more slow and less in SQE group compared with EGE and SOE groups. Tmax for choline, TMA, and TMAO prolonged, and the productions of them were significantly declined in SOL group compared to SOE group. These findings indicated that marine source squid PC could counter-regulate the potential risks of TMAO generation, and the use of liposome as the form of PC supplementary may eliminate TMAO production.  相似文献   

10.
Chitin based polyurethane (PU) elastomers constituted on 4,4´-diphenylmethane diisocyanate (MDI), poly(ε-caprolactone) (PCL) and extended with blends of chitin/1,4-butane diol were synthesized via two step polymerization technique. The synthesized samples were irradiated for 50, 100 and 200 h in an UV exposure chamber as such the spectral distribution of the light is good match for terrestrial solar radiation. The crystalline behavior of the irradiated PU samples were investigated by X-ray diffraction (XRD), differential scanning calorimetery (DSC) and dynamic mechanical thermal analysis (DMTA) techniques. The effect of irradiation time and chitin contents on crystallinity were studied and investigated. The maximum decrease in the crystalline behavior of samples after irradiation observed by XRD, DSC and tan δ peaks were found for the PU samples extended with lower contents of chitin (chitin/BDO; 0/100). In comparison with irradiation times the 200 h irradiation showed maximum change in the crystalline behavior.  相似文献   

11.
This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio beta-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-d-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-alpha-d-glucofuranose (10). These acrylated monomers were subjected to emulsion polymerization in a 7:3 (w:w) mixture of butyl acrylate-styrene in the presence of sodium dodecyl sulfate as surfactant (3 weight %) and potassium persulfate as a radical initiator (1 weight %). The resulting nanoparticle emulsions were characterized by dynamic light scattering and found to have similar diameters ( approximately 40 nm) and size distributions to those of our previously studied systems. Microbiological testing showed that the N-sec-butylthio beta-lactam and ciprofloxacin nanoparticles both have powerful in vitro activities against methicillin-resistant Staphylococcus aureus and Bacillus anthracis, while the penicillin-bound nanoparticles have no antimicrobial activity. This indicates the need for matching a suitable antibiotic with the nanoparticle carrier. Overall, the study shows that even relatively large, polar acrylate monomers (MW>1000 amu) can be efficiently incorporated into the nanoparticle matrix by emulsion polymerization, providing opportunities for further advances in nanomedicine.  相似文献   

12.
Oxidative polymerization of bisphenolic monomers has been performed using peroxidase as catalyst in an aqueous organic solvent. Peroxidase induced the polymerization of an industrial product, bisphenol F, consisting of 2,2'-, 2,4'-, and 4,4'-dihydroxydiphenylmethanes. Under the selected conditions, the quantitative formation of the polymer was observed. Among the isomers, 2,4'- and 4,4'-dihydroxydiphenylmethanes were polymerized to give the polymer in high yields, whereas no polymerization of the 2,2'-isomer occurred. These data suggest that the radical transfer reaction between a phenoxy radical of the enzymatically polymerizable monomer and the enzymatically nonpolymerizable monomer frequently took place during the polymerization. Various 4,4'-dihydroxyphenyl compounds were also polymerized by peroxidase catalyst. The polymerization behaviors, and solubility and thermal properties of the resulting polymers strongly depended on the bridge structure as well as the enzyme origin. Polymers from dihydroxydiphenylmethanes showed relatively high thermal stability.  相似文献   

13.
Phenolic polymers were synthesized via soybean hull peroxidase catalysis and used as metal-based sensor components in a polymer array. A sensor array for Fe(3+), Cu(2+), Co(2+), and Ni(2+) has been developed consisting of 15 phenolic homopolymers and copolymers generated from five phenolic monomers by peroxidase-catalyzed oxidative polymerization. Sensing was based on the change of intrinsic polyphenol fluorescence upon addition of a metal ion or a metal ion mixture to an aqueous suspension of a polyphenol. Importantly, the fluorescence response of copolymers differed, in some cases dramatically, from the constituent homopolymers and was dependent upon the relative ratio of monomers that comprise the polymer. This finding suggests that an extremely broad range of sensor arrays can be generated from a limited number of phenolic monomers. Using a statistical analysis, histograms constructed for the four different metal ions yielded unique fingerprints of the array response and can be used to identify specific metal ions.  相似文献   

14.
Bioresorbable new terpolymers of L-lactide, glycolide, and trimethylene carbonate with different compositions were synthesized via ring-opening polymerization reaction of the cyclic monomers using low-toxicity zirconium(IV) acetylacetonate as initiator. The thermal and mechanical properties were investigated by means of thermogravimetry, differential scanning calorimetry, stress-strain measurements, and dynamical mechanical analysis. The glass transition temperature of the terpolymers changes with composition from 12 to 42 degrees C in a predictable manner. All terpolymers display shape memory properties and, after undergoing 100% deformation, they recover the permanent shape in a time frame of seconds. Terpolymers with high L-lactide content show a glass transition in the range of 38-42 degrees C, recovery temperature close to body temperature, and good recovery ratio (>0.89). Low-toxicity bioresorbable terpolymers with shape memory properties are promising new materials for biomedical applications.  相似文献   

15.
Wang B  Du H  Zhang J 《Steroids》2011,76(1-2):204-209
A series of cholesterol derivatives have been synthesised via the alkylation reaction of the 3-hydroxyl group with the aliphatic bromide compounds with different chain lengths, namely 3β-alkyloxy-cholesterol. The double bond between the C5 and C6 positions in these cholesterol derivatives was oxidised into epoxy, followed by an epoxy-ring-opening reaction with the treatment with acrylic acid, resulting in a series of 3β-alkyloxy-5α-hydroxy-6β-acryloyloxycholesterol, C(n)OCh (n=1, 2, 4, 6, 8, 10, 12), The acrylate group is connected to the C6 position, which is confirmed by the single crystal structure analysis. The corresponding polymers, PC(n)OCh, were prepared via free radical polymerisation. The structure of monomers and the resulting polymers were characterised with nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). The thermal properties of PC(n)OCh were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). To determine the secondary structure of polymers, circular dichroism (CD) spectra were performed. It was found that not all monomers produce high-molecular-weight polymers because of steric hindrance. However, all polymers have a helical structure, which can be enhanced by increasing the alkoxy chain length. In addition, increasing the alkoxy chain length decreases the glass transition temperature and increases the decomposition temperature of the polymers.  相似文献   

16.
Silks are a widely studied class of naturally occurring structural proteins. Dragline spider silk, in particular, is considered to be nature's high-performance material due to its remarkable combination of strength and toughness. These mechanical properties stem from the protein secondary structure, a combination of well-defined beta-sheets in a less well-defined glycine-rich matrix. The translation of this structure into a synthetic polymer was the aim of this investigation. To achieve this, a peptide-based monomer containing the sequence alanine-glycine-alanine-glycine, a well-known beta-sheet-forming sequence found in silk, was synthesized. Using atom-transfer radical polymerization and a bifunctional initiator, a well-defined peptide-based polymer was prepared. This was then used as the macroinitiator for the polymerization of methyl methacrylate. The resulting well-defined triblock copolymer was analyzed using IR spectroscopy, which clearly showed beta-sheet secondary structure had been introduced.  相似文献   

17.
Zinc oxide (ZnO) nanostructures have been commonly studied for electronic purposes due to their unique piezoelectric and catalytic properties; however, recently, they have been also exploited for biomedical applications. The purpose of this study was to fabricate ZnO-doped poly(urethane) (PU) nanocomposite via one-step electrospinning technique. The utilized nanocomposite was prepared by using colloidal gel composed of ZnO and PU, and the obtained mats were vacuum dried at 60 °C overnight. The physicochemical characterization of as-spun composite nanofibers was carried out by X-ray diffraction pattern, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, and transmission electron microscopy, whereas the thermal behavior was analyzed by thermogravimetric analysis. The viability, attachment, and proliferation of NIH 3T3 mouse fibroblast cells on the ZnO/PU composite nanofibers were analyzed by in vitro cell compatibility test. The morphological features of the cells attached on nanofibers were examined by Bio-SEM. We conclude that the electrospun nanofibrous scaffolds with unique spider nets had good biocompatibility. Cytotoxicity experiments indicated that the mouse fibroblasts could attach to the nanocomposite after being cultured. Thus, the current work demonstrates that the as-synthesized ZnO/PU hybrid nanofibers represent a promising biomaterial to be exploited for various tissue engineering applications.  相似文献   

18.
Enzymatic methods of synthesis of conducting polymers, physicochemical properties of the resulting products, and mechanisms of the reactions are considered. The enzymes involved in oxidative polymerization of monomers are briefly characterized. Examples of practical application of enzymatically synthesized conducting polymers are given.  相似文献   

19.
Thermolysin (Bacillus thermoproteolyticus neutral proteinase, EC 3.4.24.4) has been immobilized by radiation polymerization of hydrophilic and hydrophobic monomers, and its properties, such as enzyme activity, thermal stability and durability, have been studied. The activity of the immobilized enzymes increased with an increase in the hydrophilicity of the polymer matrix and with a decrease in monomer concentration. Immobilization with hydrophilic monomers increased the thermal stability of the enzymes, but the thermal stability of the enzymes immobilized with hydrophobic monomers was comparable with that of native enzymes. The durability of the immobilized enzymes was examined by continuous hydrolysis of casein; enzymes immobilized with a high concentration (90%) of hydrophilic monomers appeared to be stabilized and could be used for long times.  相似文献   

20.
Hybrid materials constituted by hydrophobic and hydrophilic biocompatible macromolecules are useful for biomedical applications. In this context, a well-known acrylic monomer (methyl methacrylate) was polymerized and grafted onto the polysaccharide dextran by the use of ceric ammonium nitrate as a redox initiator in aqueous nitric acid medium. The effects of concentrations of dextran, acrylic monomer, and ceric ions on the copolymerization yields were investigated in detail. The obtained polymers were studied by solubility measurements, Fourier transform infrared spectrometry, (13)C nuclear magnetic resonance spectroscopy, and viscosimetric analysis. Interestingly, we found conditions to form transparent and homogeneous thin films or 3D structures with hybrid properties. Indeed, the copolymer, but not dextran or PMMA, could be dissolved in water/THF (20/80 v/v). The thermomechanical properties of the resulting copolymer analyzed by differential scanning calorimetry and dynamic mechanical analysis showed the occurrence of a single glass-transition temperature and a marked difference with the two homopolymers. The cytocompatibility of the copolymer with human endothelial cells was evidenced by the normal cell adhesion, proliferation, and morphology after 5 days in culture on these gels. In conclusion, this type of copolymer with hybrid properties of two biocompatible macromolecules could be of great interest as a 3D scaffold or for coating in biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号