首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Nordmann  C Ribière  H Rouach 《Enzyme》1987,37(1-2):57-69
Lipoperoxidation, a degradative process of membranous polyunsaturated fatty acids, has been suggested to represent an important mechanism in the pathogenesis of ethanol toxicity on the liver and possibly also on the brain. Catalysis by transition metals, especially iron, is involved in the biosynthesis of free radicals contributing to lipid peroxidation. Although the exact nature of the redox-active iron implicated in this catalysis is still unknown, it has been well established that lipid peroxidation can be prevented in vitro by iron chelators such as desferrioxamine. Deprivation of redox-active iron through desferrioxamine inhibits by about 50% the microsomal oxidation of ethanol in vitro and reduces very significantly in vivo the overall ethanol elimination rate in rats. Administration of desferrioxamine together with ethanol also reduces the ethanol-induced disturbances in the antioxidant defense mechanisms of the hepatocyte. It also reduces in mice both the severity of physical dependence on ethanol and lethality following the acute administration of a narcotic dose of ethanol. Chronic overloading of rats with iron results, on the opposite, in an increased rate of ethanol elimination, although alcohol dehydrogenase and catalase activities are reduced and cytochrome P-450 depleted in the liver of such iron-overloaded animals. The magnitude of the ethanol-induced increase in lipid peroxidation and decrease in the major membranous antioxidant, alpha-tocopherol, is exacerbated in iron-overloaded rats. Several disturbances of iron metabolism have been reported in human alcoholics. Their contribution to ethanol toxicity appears very likely in the case of hepatic siderosis associated with alcohol abuse. Ethanol could however disturb iron metabolism even in the absence of gross abnormalities of the total iron stores. It is suggested that ethanol intoxication could increase cellular redox-active iron, thus contributing to an enhanced steady-state concentration of reactive-free radicals. This oxidative stress would lead to lipoperoxidative damage and cellular injury.  相似文献   

2.
In order to find out the effect of chronic ethanol administration on testicular antioxidant system and steroidogenic enzyme activity, male rats fed with ethanol 1.6g/kg body weight per day for four weeks were studied. Besides a drastic reduction in body and testis weight, there was decrease in ascorbic acid, reduced glutathione and activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase in the testicular tissue of the treated animals. Simultaneously, there was increase in lipid peroxidation and glutathione S-transferase activity. Activities of 3 beta-hydroxy steroid dehydrogenase and 17 beta-hydroxy steroid dehydrogenase were also found decreased in the treated animals. The results indicate that chronic ethanol administration resulted in increase in oxidative stress and decrease in the activities of steroidogenic enzymes in the rat testes.  相似文献   

3.
In the present study we investigated if administration of vitamin A could protect rat liver microsomes and mitochondria from in vitro peroxidation. Appreciable decrease of chemiluminescence and lipid peroxidation was measured in microsomal membranes from rats receiving vitamin A, with respect to control animals. In membranes derived from control animals, the fatty acid composition was profoundly modified when subjected to in vitro peroxidation mediated by ascorbate-Fe++, with a considerable decrease of 20:4 n6 and 22:6 n3 in mitochondria and 18:2 n6 and 20:4 n6 in microsomes. As a consequence the peroxidizability index, a parameter based on the maximal rate of oxidation of specific fatty acids was higher in supplemented animals than in control group when both kind of membranes were analyzed. These changes were less pronounced in membranes derived from rats receiving vitamin A. These results are in agreement with previous results that indicated that vitamin A may act as an antioxidant protecting membranes from deleterious effects.Abbreviations BHT butylated hydroxytoluene - BSA bovine serum albumin - CL chemiluminescence - PI peroxidizability index Member of Carrera del Investigador Científico, Consejo Nacional de Investigaciones Cientificas y Técnicas de la Republica Argentina  相似文献   

4.
Prenatal ethanol exposure (PNEE) causes long-lasting deficits in brain structure and function. In this study, we have examined the effect of PNEE on antioxidant capacity and oxidative stress in the adult brain with particular focus on four brain regions known to be affected by ethanol: cerebellum, prefrontal cortex and hippocampus (cornu ammonis and dentate gyrus subregions). We have utilized a liquid diet model of fetal alcohol spectrum disorders that is supplied to pregnant Sprague-Dawley rats throughout gestation. To examine the therapeutic potential of omega-3 fatty acid supplementation, a subset of animals were provided with an omega-3-enriched diet from birth until adulthood to examine whether these fatty acids could ameliorate any deficits in antioxidant capacity that occurred due to PNEE. Our results showed that PNEE caused a long-lasting decrease in glutathione levels in all four brain regions analyzed that was accompanied by an increase in lipid peroxidation, a marker of oxidative damage. These results indicate that PNEE induces long-lasting changes in the antioxidant capacity of the brain, and this can lead to a state of oxidative stress. Postnatal omega-3 supplementation was able to increase glutathione levels and reduce lipid peroxidation in PNEE animals, partially reversing the effects of alcohol exposure, particularly in the dentate gyrus and the cerebellum. This is the first study where omega-3 supplementation has been shown to have a beneficial effect in PNEE, reducing oxidative stress and enhancing antioxidant capacity.  相似文献   

5.
Physico-chemical parameters of membranes of skeletal muscles' sarcoplasmic reticulum in antioxidant insufficiency, which was modelled by excluding alpha-tocopherol from the animals ration, and after treatment with phenol antioxidant ionol were studied. It was shown that activation of lipid peroxidation in vitamin E insufficiency results in a significant lowering of microviscosity of lipid bilayer membranes of sarcoplasmic reticulum. Using polarography significant changes in membrane protein conformation were revealed, which were characterized by lowering of integrity and by disorganization of protein globules. Treatment of animals with antioxidant insufficiency with ionol led to certain normalization of changes of physico-chemical characteristics of the learned membrane structures caused by lipid peroxidation.  相似文献   

6.
The effects of chronic ethanol ingestion on NADPH-oxidase and on the NADPH-catalyzed peroxidation of lipids in rat liver microsomes have been studied. It was demonstrated that the rates of NADPH oxidation, of oxygen consumption, and of malondialdehyde formation increased significantly above control values after one month of ethanol ingestion. Further, the fatty acid composition of these microsomes revealed a decrease in arachidonate and in the C22 polyenes. Also, the energies of activation for the formation of malondialdehyde increased in the microsomes from the ethanol-treated animals. These results were interpreted to mean that ethanol ingestion had induced changes in the microsomal membranes such that additional or alternate, possibly abnormal, pathways for lipid peroxidation were functional. Finally, these data suggest a mechanism whereby chronic ethanol ingestion inhances the production of lipid peroxides via the microsomal-catalyzed oxidation of NADPH.  相似文献   

7.
Evidence in alcoholics as well as in experimental models support the role of hepatic lipid peroxidation in the pathogenesis of alcohol-induced liver injury, but the mechanism of this injury is not fully delineated. Previous studies of the metabolism of ethanol by alcohol dehydrogenase revealed iron mobilization from ferritin that was markedly stimulated by superoxide radical generation by xanthine oxidase. Peroxidation of hepatic lipid membranes (assessed as malondialdehyde production) was studied during in vitro alcohol metabolism by alcohol dehydrogenase. Peroxidation was initiated by acetaldehyde-xanthine oxidase, stimulated by ferritin, and inhibited by superoxide dismutase or chelation or iron with desferrioxamine. In conclusion, lipid peroxidation may be initiated during the metabolism of ethanol by alcohol dehydrogenase by an iron-dependent acetaldehyde-xanthine oxidase mechanism.  相似文献   

8.
Taurine bulls are highly susceptible to heat stress, leading to increased oxidative stress (OS) and impaired sperm viability. Polyunsaturated fatty acids (PUFAs) supplementation can be an alternative to improve semen quality, which also results in more sperm susceptibility to lipid peroxidation. Moreover, this deleterious effect can be exacerbated in animals affected by heat stress. Vitamin E is a key antioxidant that counteracts lipid peroxidation of sperm membrane caused by OS. Thus, combining PUFAs with vitamin E may improve sperm quality. In this context, this study aimed to evaluate the effect of interaction between PUFAs and vitamin E on sperm quality in Bos taurus bulls under testicular heat stress. Sixteen taurine bulls under testicular heat stress were randomly assigned in four groups: Control, Vitamin E, PUFA, and PUFA?+?Vitamin E. All groups lasted for 60 days. Samples were cryopreserved/thawed and analyzed for motility variables (CASA), membrane and acrosome integrity, mitochondrial activity, susceptibility to oxidative stress, DNA integrity, and sperm-binding capacity. Results showed that vitamin E had a beneficial effect on some sperm characteristics, whereas PUFA supplementation had an adverse effect when the two treatments were evaluated separately. Finally, the association between PUFAs and vitamin E did not improve sperm quality.  相似文献   

9.
Vitamin E and oxidative stress   总被引:11,自引:0,他引:11  
Oxidative stress can result from or be enhanced by a large variety of conditions, including nutritional imbalance, exposure to chemical and physical agents in the environment, strenuous physical activities, injury, and hereditary disorders. While many enzymes and compounds are involved in protecting cells from the adverse effects of oxidative stress, vitamin E occupies an important and unique position in the overall antioxidant defense. The antioxidant function of vitamin E is closely related to the status of many dietary components. Vitamin E-depleted animals are generally more susceptible to the adverse effects of environmental agents than supplemented animals. Also, vitamin E supplementation is beneficial to certain groups of the population. However, supplementing vitamin E in experimental subjects maintained on a nutritionally adequate diet does not always provide additional protection. Differential metabolic responses in various organs and differences in experimental conditions often contribute in the discrepancies in the literature. The lack of clear evidence for the occurrence of lipid peroxidation or antioxidant function of vitamin E in vivo can be attributed partly to the presence of active pathways for metabolizing hydroperoxides, aldehydes, and other oxidation products. Specific and sensitive techniques for measuring lipid peroxidation products in biological systems are essential for understanding the role of free radical-induced lipid peroxidation in tissue damage and antioxidant function of vitamin E in vivo.  相似文献   

10.
Summary Alcohol was administered chronically to female Sprague Dawley rats in a nutritionally adequate totally liquid diet for 28 days. This resulted in hepatic steatosis and lipid peroxidation. Taurine, when co-administered with alcohol, reduced the hepatic steatosis and completely prevented lipid peroxidation. The protective properties of taurine in preventing fatty liver were also demonstrated histologically. Although alcohol was found not to affect the urinary excretion of taurine (a non-invasive marker of liver damage), levels of serum and liver taurine were markedly raised in animals receiving alcohol + taurine compared to animals given taurine alone. The ethanol-inducible form of cytochrome P-450 (CYP2E1) was significantly induced by alcohol; the activity was significantly lower than controls and barely detectable in animals fed the liquid alcohol diet containing taurine. In addition, alcohol significantly increased homocysteine excretion into urine throughout the 28 day period of ethanol administration; however, taurine did not prevent this increase. There was evidence of slight cholestasis in animals treated with alcohol and alcohol + taurine, as indicated by raised serum bile acids and alkaline phosphatase (ALP). The protective effects of taurine were attributed to the potential of bile acids, especially taurine conjugated bile acids (taurocholic acid) to inhibit the activity of some microsomal enzymes (CYP2E1). Thesein vivo findings demonstrate for the first time that hepatic steatosis and lipid peroxidation, occurring as a result of chronic alcohol consumption, can be ameliorated by administration of taurine to rats.  相似文献   

11.
1. The effect of chronic ethanol treatment on the level of lipid peroxidation in rat liver homogenate and subcellular fractions was measured using chemiluminescence technique and malondialdehyde formation. 2. It was shown that after chronic ethanol treatment the level of Fe/ADP-ascorbate-induced lipid peroxidation was decreased in the whole and "postnuclear" liver homogenates. Dilution of the homogenates prevented depressive effect of ethanol on lipid peroxidation. 3. Chronic ethanol treatment did not affect the intensity of the Fe/ADP-ascorbate-induced process in rat liver mitochondria and microsomes. 4. Peroxidative alteration of the liver lipids in vivo was evaluated by measurement of conjugated dienes (absorbance at 233 nm). It was shown that ethanol did not increase the level of u.v. absorption of lipids from mitochondria and microsomes. Chronic alcohol treatment did not influence the steady-state concentration of malonic dialdehyde in the whole liver homogenate. 5. The data obtained indicate that cytosol from the ethanol treated rat liver contains a factor(s) which prevents Fe/ADP-ascorbate-dependent lipid peroxidation in biological membranes.  相似文献   

12.
This paper reviews recent data relevant to the antioxidant effects of melatonin with special emphasis on the changes produced in polyunsaturated fatty acids located in the phospholipids of biological membranes. The onset of lipid peroxidation within cellular membranes is associated with changes in their physicochemical properties and with the impairment of protein functions located in the membrane environment. All cellular membranes are especially vulnerable to oxidation due to their high concentration of polyunsaturated fatty acids. These processes combine to produce changes in the biophysical properties of membranes that can have profound effects on the activity of membrane-bound proteins. This review deals with aspects for lipid peroxidation of biological membranes in general, but with some emphasis on changes of polyunsaturated fatty acids, which arise most prominently in membranes and have been studied extensively in our laboratory. The article provides current information on the effect of melatonin on biological membranes, changes in fluidity, fatty acid composition and lipid-protein modifications during the lipid peroxidation process of photoreceptor membranes and modulation of gene expression by the hormone and its preventive effects on adriamycin-induced lipid peroxidation in rat liver. Simple model systems have often been employed to measure the activity of antioxidants. Although such studies are important and essential to understand the mechanisms and kinetics of antioxidant action, it should be noted that the results of simple in vitro model experiments cannot be directly extrapolated to in vivo systems. For example, the antioxidant capacity of melatonin, one of the important physiological lipophilic antioxidants, in solution of pure triglycerides enriched in omega-3 polyunsaturated fatty acids is considerably different from that in subcellular membranes.  相似文献   

13.
The possible impact of long-term overexposure to ethanol was studied in a group of chronic alcoholics in the psychiatric hospital. The level of DNA methylation and unscheduled DNA synthesis (UDS) induced by N-methyl-N-nitrosourea (MNU) in lymphocytes and lipid peroxidation (LPO) in plasma were used as markers of injury caused by alcohol abuse. The data were correlated with plasma levels of some natural antioxidants (vitamins A, C and E) and vitamin B12. The following results were obtained. The degree of DNA methylation by MNU in lymphocytes was the same in the exposed and control groups under our experimental conditions. The DNA excision-repair capacity of lymphocytes measured as UDS was decreased in alcoholics (p less than 0.01) and LPO in plasma was significantly higher (p less than 0.01) as a consequence of alcohol overconsumption. By the simple regression method, a correlation was found between LPO and vitamin C levels (LPO = -0.078 x vit. C + 1.9; p less than 0.05) and between UDS and LPO values (UDS = -0.384 x LPO + 4.1; p less than 0.05). These results support the hypothesis of a connection of cell membrane status and DNA damage and repair and the possible role of active oxygen species in cell damage caused by ethanol.  相似文献   

14.
This review focuses on natural and assisted prevention against lipid peroxidation in avian spermatozoa. The presence of high levels of n-6 polyunsaturated fatty acids (PUFAs) in the plasma membrane creates favorable conditions for the formation of peroxidative products, a major cause of membrane damage which may ultimately impair male fertility. However, a complex antioxidant system involving vitamin C, vitamin E and GSH is naturally present in avian semen. Coupled with a battery of enzymatic defenses (e.g., SOD, GSH-Px either Se- or non-Se-dependent), this system acts to prevent or restrict the formation and propagation of peroxides. The presence of specialized sites dedicated to prolonged sperm storage in avian females raises the question of durable protection of sperm membranes against peroxidation. Preliminary observations have revealed the presence of a specific antioxidant system at these sites in which vitamin C could exert a major role. From a practical standpoint, the extensive use of artificial insemination in poultry, along with the emergence in some species of workable techniques to cryopreserve spermatozoa, demand better control of peroxidation occurring in the plasma membrane of spermatozoa before or during storage. Dietary supplementation with vitamin E is effective in limiting lipid peroxidation of sperm plasma membranes, both in chickens and turkeys. In addition, organic Se with or without vitamin E stimulates Se-GSH-Px activity in seminal plasma. Preliminary observations in female chickens have also revealed the effectiveness of dietary supplementation with vitamin E, organic selenium or both to sustain fertility in aging flocks.  相似文献   

15.
Thiobarbituric acid (TBA) assays which have been modified for detection of lipid hydroperoxides appear to be useful for demonstration of in vivo lipid peroxidation. Since these methods require heating tissue membranes with the buffered TBA, there is a possibility of interference from the detection of autoxidation that occurs during heating. These studies were undertaken to investigate conditions which favor TBA color production from hydroperoxide while limiting autoxidation during the assay. An acetic acid-sodium acetate buffered (pH 3.6) TBA assay was used. Heating linoleic acid hydroperoxide with 50 microM ferric iron or under nitrogen nearly doubled color production compared to heating it with no added iron or under air. The lipid antioxidant butylated hydroxytoluene inhibited color production from fatty acid hydroperoxides. When tissue fractions, including liver and lung microsomes and lung whole membranes, were heated in the assay, color production was greater under air than under nitrogen and was much greater under oxygen. When liver microsomes from carbon tetrachloride-exposed rats were used, color was increased only when oxygen was present in the heating atmosphere. The results with tissue fractions appear to demonstrate autoxidation during color development rather than the presence of preformed hydroperoxides. Finally, it was found that color production from membrane fractions was dependent on the vitamin E content of the membranes. It appears that autoxidation during heating should be limited by heating under nitrogen and not by adding antioxidants, which inhibit color production from hydroperoxides. As the vitamin E effect demonstrates, antioxidant status must be considered, since a change in color production could result from a change in antioxidant content without the accumulation of lipid hydroperoxides.  相似文献   

16.
The influence of chronic alcohol consumption and catalase inhibitor aminotriazole administration on the level of nonenzymatic lipid peroxidation has been studied in the rat myocardium. It was demonstrated that combined as well as separate treatment with ethanol or aminotriazole elevated the levels of chemiluminescence and enhanced the rate of accumulation of thiobarbituric acid-reactive products in the nuclei-free and total particulate fraction of the rat heart homogenate. The most pronounced effect was noted during combined application of ethanol and aminotriazole. The induction of chemiluminescence by ethanol was prevented by addition of natural (vitamin E, reduced glutathione) or artificial (dibunol) antioxidants into the incubation media. A putative role of the myocardial catalase-containing micro-peroxisomes in stimulation of the intracellular lipid peroxidation is discussed.  相似文献   

17.
Ferric nitrilotriacetate (Fe-NTA) is a potent renal and hepatic tumor promoter, which acts through a mechanism involving oxidative stress. Fe-NTA when injected intraperitoneally into rats induces hepatic ornithine decarboxylase activity as well as hepatic DNA synthesis. Vitamin E is a well-known, lipid-soluble and chain-breaking antioxidant which protects cell membranes from peroxidative damage. In this study, we investigated the protective effect of vitamin E, a major fat-soluble antioxidant, against Fe-NTA-mediated hepatic oxidative stress, toxicity and hyperproliferation in Wistar rats. Animals were treated with two different doses of vitamin E for 1 week prior to Fe-NTA treatment. Vitamin E at a higher dose of 2.0 mg/animal/day showed significant reduction in Fe-NTA-induced hepatic ornithine decarboxylase activity, DNA synthesis, microsomal lipid peroxidation and hydrogen peroxide generation. Fe-NTA treatment alone caused depletion of glutathione, glutathione metabolizing and antioxidant enzymes in rat liver, whereas pretreatment of animals with vitamin E reversed these changes in a dose-dependent manner. Taken together, our results suggest that vitamin E may afford substantial protection against the damage caused by Fe-NTA exposure and can serve as a potent preventive agent to suppress oxidant-induced tissue injury.  相似文献   

18.
Binyukov  V. I.  Zhigacheva  I. V.  Mil’  E. M.  Krikunova  N. I.  Rasulov  M. M. 《Biophysics》2021,66(2):248-254

This study was conducted to investigate the antistress potential of resveratrol, a natural polyphenol, in models that reproduce the conditions of acute hypobaric hypoxia and acute alcohol intoxication. Acute alcohol intoxication and acute hypobaric hypoxia induced an increase in the intensity of lipid peroxidation in the membranes of liver mitochondria from mice. Activation of lipid peroxidation was accompanied by swelling and variations in the levels of fatty acids with C18 and C20–22 in the composition of the total lipid fraction of mitochondrial membranes. The index of the unsaturation of fatty acids with C18 was decreased by 7.5% (from 1.69 ± 0.01 to 1.52 ± 0.01). Furthermore, the (20:3ω6+20:5ω3)/22:6ω3 index decreased from 0.23 ± 0.02 to 0.13 ± 0.01 for fatty acids under acute hypobaric hypoxia conditions, suggesting a decrease in eicosanoid metabolism. The administration of 2 × 10–5 mol/kg of resveratrol in animals for 5 days prevented changes in fatty acid composition, inhibiting activation of lipid peroxidation and swelling of mitochondria, thereby affecting physiological parameters. Thus, the adaptogenic properties of resveratrol may be ascribed to the prevention of lipid peroxidation in mitochondrial membranes, which probably affects the functional state of these organelles, contributing to the maintenance of cellular energy metabolism under stress conditions.

  相似文献   

19.
The production of reactive oxygen species is a regular feature of life in the presence of oxygen. Some reactive oxygen species possess sufficient energy to initiate lipid peroxidation in biological membranes, self-propagating reactions with the potential to damage membranes by altering their physical properties and ultimately their function. Two of the most prominent patterns of lipid restructuring in membranes of ectotherms involve contents of polyunsaturated fatty acids and ratios of the abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine. Since polyunsaturated fatty acids and phosphatidylethanolamine are particularly vulnerable to oxidation, it is likely that higher contents of these lipids at low body temperature elevate the inherent susceptibility of membranes to lipid peroxidation. Although membranes from animals living at low body temperatures may be more prone to oxidation, the generation of reactive oxygen species and lipid peroxidation are sensitive to temperature. These scenarios raise the possibility that membrane susceptibility to lipid peroxidation is conserved at physiological temperatures. Reduced levels of polyunsaturated fatty acids and phosphatidylethanolamine may protect membranes at warm temperatures from deleterious oxidations when rates of reactive oxygen species production and lipid peroxidation are relatively high. At low temperatures, enhanced susceptibility may ensure sufficient lipid peroxidation for cellular processes that require lipid oxidation products.  相似文献   

20.
Antarctic notothenioid fishes possess high oxidative capacities, large amounts of intracellular lipid combined with biological membranes enriched in polyunsaturated fatty acids, all of which could make these animals susceptible to oxidative injury, particularly in the form of lipid peroxidation. The central objective in this study was to examine capacities for oxidative metabolism and total antioxidant defense in Antarctic and non-Antarctic notothenioids in order to test the hypothesis that the cold-bodied Antarctic fishes possess elevated activities of citrate synthase (CS), matched by a more robust antioxidant (AOX) defense, than non-Antarctic species. CS activities and total AOX capacities were measured in brain and heart of 4 Antarctic species and 2 non-Antarctic species collected on the 2004 ICEFISH cruise. While no statistical differences are found among Antarctic and non-Antarctic fishes in either CS or AOX capacities, AOX capacity in both tissues expands with CS activity among individuals measured when all species are combined. There is also a 4.5-fold greater AOX capacity, when normalized to CS activity, in brain than in heart indicating the requirement for extra AOX defense in a tissue well known for its particularly high levels of phospholipids more prone to lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号