共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of the internal signal-anchor domain of Escherichia coli leader peptidase 总被引:4,自引:0,他引:4
Leader peptidase, an integral transmembrane protein of Escherichia coli, is synthesized without a cleavable amino-terminal leader peptide. Of the five domains that participate in the membrane assembly of this protein, one is an internal "signal" region. We have used oligonucleotide-directed mutagenesis to examine the properties of the internal signal that are crucial for leader peptidase assembly. For this purpose, the net charge at the amino terminus of the internal signal was changed from +2 to +1 and -1 and, at the carboxyl terminus of the signal, from 0 to -1 or +1. These mutations had no effect on the membrane assembly of leader peptidase, suggesting that the charges have little role in the signal function. The apolar core of this signal was disrupted by substitution of basic amino acids for apolar residues. Substitution of an arginyl residue at position 70, or two arginyl residues at position 67 and 69, prevented membrane assembly. However, substitution of an arginyl residue at position 66 or either arginyl or lysyl residue at position 68 was without effect. Thus, while the apolar character of the internal signal is important, the precise position of a charged residue determines its effect on assembly. 相似文献
2.
Positive charges in the cytoplasmic domain of Escherichia coli leader peptidase prevent an apolar domain from functioning as a signal. 总被引:2,自引:5,他引:2 下载免费PDF全文
Leader peptidase, an integral transmembrane protein of Escherichia coli, requires two apolar topogenic elements for its membrane assembly: a 'hydrophobic helper' and an internal signal. The highly basic cytoplasmic region between these domains is a translocation poison sequence, which we have shown blocks the function of a preceding signal sequence. We have used oligonucleotide-directed mutagenesis to remove positively charged residues within this polar domain to determine if it is the basic character in this region that has the negative effect on translocation. Our results show that mutations that remove two or more of the positively charged residues within the polar region no longer block membrane assembly of leader peptidase. In addition, when the translocation poison domain (residues 30-52) is replaced with six lysine residues, the preceding apolar domain cannot function as an export signal, whereas it can with six glutamic acids. Thus, positively charged residues within membrane proteins may have a major role in determining the function of hydrophobic domains in membrane assembly. 相似文献
3.
In vitro insertion of leader peptidase into Escherichia coli membrane vesicles. 总被引:2,自引:0,他引:2 下载免费PDF全文
Leader peptidase is an integral protein of the Escherichia coli cytoplasmic membrane whose topology is known. We have taken advantage of this knowledge and available mutants of this enzyme to develop a genetic test for a cell-free protein translocation reaction. We report that leader peptidase inserted into inverted plasma membrane vesicles in its correct transmembrane orientation. We have examined the in vitro membrane assembly characteristics of a variety of leader peptidase mutants and found that domains required for insertion in vivo are also necessary for insertion in vitro. These data demonstrate the physiological validity of the in vitro insertion reaction and strengthen the use of this in vitro protein translocation reaction for the dissection of this complex sorting pathway. 相似文献
4.
Leader peptidase, typical of inner membrane proteins of Escherichia coli, does not have an amino-terminal leader sequence. This protein contains an internal signal peptide, residues 51-83, which is essential for assembly and remains as a membrane anchor domain. We have employed site-directed mutagenesis techniques to either delete residues within this domain or substitute a charged amino acid for one of these residues to determine the important properties of the internal signal. The deletion analysis showed that a very small apolar domain, residues 70-76, is essential for assembly, whereas residues that flank it are dispensable for its function. However, point mutations with charged amino acid residues within the polar sequence (residues 77-82) slow or abolish leader peptidase membrane assembly. Thus, a polar region, Arg-Ser-Phe-Ile-Tyr-Glu, is important for the signal peptide function of leader peptidase, unlike other signals identified thus far. 相似文献
5.
The role of the polar, carboxyl-terminal domain of Escherichia coli leader peptidase in its translocation across the plasma membrane 总被引:9,自引:0,他引:9
Leader peptidase, an integral membrane protein of Escherichia coli, is made without a cleavable leader sequence. It has 323 amino acid residues and spans the plasma membrane with a small amino-terminal domain exposed to the cytoplasm and a large, carboxyl-terminal domain exposed to the periplasm. We have investigated which regions of leader peptidase are necessary for its assembly across the membrane. Deletions were made in the carboxyl-terminal domain of leader peptidase, removing residues 141-222, 142-323, or 222-323. Protease accessibility was used to determine whether the polar, carboxyl-terminal domains of these truncated leader peptidases were translocated across the membrane. The removal of either residues 222-323 (the extreme carboxyl terminus) or residues 141-222 does not prevent leader peptidase membrane assembly. However, leader peptidase lacking both regions, i.e. amino acid residues 142-323, cannot translocate the remaining portion of its carboxyl terminus across the membrane. Our data suggest that the polar, periplasmic domain of leader peptidase contains information which is needed for membrane assembly. 相似文献
6.
Gabriele Klug 《Molecular & general genetics : MGG》1991,226(1-2):167-176
Summary The nuclear yeast mutant pet ts2858 is defective in the removal of pre-sequences from the mitochondrially encoded cytochrome oxidase subunit II (COXII) and the processing intermediate of cytochrome b
2 (Cytb
2), a nuclear gene product. In order to identify the genetic lesion in this mutant we have cloned and characterized a DNA region which complements the pet ts2858 mutation. The DNA sequence revealed three open reading frames, one of which is responsible for the complementation. A 570 by reading frame represents the structural gene PET2858, as demonstrated by in vitro mutagenesis, gene expression from a foreign promoter, and allelism tests. PET2858 encodes a 21.4 kDa protein, which is essential for growth on non-fermentable carbon sources and for the proteolytic processing of COXII and the Cytb
2 intermediate. When the N-terminus of the PET2858 protein is fused to a reporter protein, the resulting hybrid molecule is imported into mitochondria. Interestingly, the N-terminal half of the deduced PET2858 protein exhibits 30.7% amino acid identity to the leader peptidase of Escherichia coli. These results suggest that PET2858 codes for a mitochondrial inner membrane protease (IMP1) or at least a subunit of it. This protease is involved in protein processing and export from the mitochondrial matrix.Dedicated to Professor Dr. Peter Starlinger on the occasion of his 60th birthday 相似文献
7.
8.
Use of phoA fusions to study the topology of the Escherichia coli inner membrane protein leader peptidase. 总被引:10,自引:9,他引:10 下载免费PDF全文
A topology of the Escherichia coli leader peptidase has been previously proposed on the basis of proteolytic studies. Here, a collection of alkaline phosphatase fusions to leader peptidase is described. Fusions to the periplasmic domain of this protein exhibit high alkaline phosphatase activity, while fusions to the cytoplasmic domain exhibit low activity. Elements within the cytoplasmic domain are necessary to stably anchor alkaline phosphatase in the cytoplasm. The amino-terminal hydrophobic segment of leader peptidase acts as a weak export signal for alkaline phosphatase. However, when this segment is preceded by four lysines, it acts as a highly efficient export signal. The coherence of in vitro studies with alkaline phosphatase fusion analysis of the topology of leader peptidase further indicates the utility of this genetic approach to membrane protein structure and insertion. 相似文献
9.
10.
Leader peptidase of Escherichia coli cleaves the leader sequence from the amino terminus of membrane and secreted proteins after these proteins insert across the membrane. Despite considerable research, the mechanism of catalysis of leader peptidase remains unknown. This peptidase cannot be classified using protease inhibitors to the serine, cysteine, aspartic acid, or metallo- classes of proteases (Zwizinski, C., Date, T., and Wickner, W. (1981) J. Biol. Chem. 256, 3593-3597). Using site-directed mutagenesis, we have attempted to place leader peptidase in one of these groups. We found that leader peptidase, lacking all of the cysteine residues, can cleave the leader peptide from procoat, the precursor to bacteriophage M13 coat protein. Replacement of each histidine residue with an alanyl residue was without effect on catalysis. Among all the serine and aspartic acid residues, serine 90 and serine 185 as well as aspartic acid 99, 153, 273, and 276 are necessary to cleave procoat in a detergent extract. However, only serine 90 and aspartic acid 153 were required for processing using a highly sensitive in vivo assay. In addition to the residues directly affecting catalysis, aspartic acid 99 plays a role in maintaining the structure of leader peptidase. Replacement of this residue with alanine results in a very unstable leader peptidase protein. This study thus defines two critical residues, serine 90 and aspartic acid 153, that may be directly involved in catalysis and provides evidence that leader peptidase belongs to a novel class of serine proteases. 相似文献
11.
Mapping of catalytically important domains in Escherichia coli leader peptidase. 总被引:6,自引:2,他引:4 下载免费PDF全文
Leader peptidase (Lep) is a central component of the secretory machinery of Escherichia coli, where it serves to remove signal peptides from secretory proteins. It spans the inner membrane twice with a large C-terminal domain protruding into the periplasmic space. To investigate the importance of the different structural domains for the catalytic activity, we have studied the effects of a large panel of Lep mutants on the processing of signal peptides, both in vivo and in vitro. Our data suggest that the first transmembrane and cytoplasmic regions are not directly involved in catalysis, but that the second transmembrane region and the region immediately following it may be in contact with the signal peptide and/or located spatially close to the active site of Lep. 相似文献
12.
Anchoring proteins to Escherichia coli cell membranes using hydrophobic anchors derived from a Bacillus subtilis integral membrane protein 总被引:1,自引:0,他引:1
Anchored periplasmic expression (APEx) technology aims to express and localize proteins or peptides in the Escherichia coli periplasm. Some reports have suggested that transmembrane segments of integral membrane proteins can be used as membrane anchors in the APEx system. In this study, a series of hydrophobic anchors derived from the first putative transmembrane helix of a Bacillus subtilis integral membrane protein, MrpF, and its truncated forms were investigated for anchored periplasmic expression of alkaline phosphatase (PhoA) in E. coli. Anchoring efficiency of hydrophobic anchors was evaluated by monitoring the expression and activity of anchored PhoA. The length of hydrophobic anchors was found to be critical for anchoring proteins to cell membranes. This study may open new avenues for applying transmembrane segments derived from native membrane proteins as membrane anchors in the APEx system. 相似文献
13.
The reaction specificities of the thylakoidal processing peptidase and Escherichia coli leader peptidase are identical. 总被引:3,自引:5,他引:3
C Halpin P D Elderfield H E James R Zimmermann B Dunbar C Robinson 《The EMBO journal》1989,8(12):3917-3921
Proteins which are transported across the bacterial plasma membrane, endoplasmic reticulum and thylakoid membrane are usually synthesized as larger precursors containing amino-terminal targeting signals. Removal of the signals is carried out by specific, membrane-bound processing peptidases. In this report we show that the reaction specificities of these three peptidases are essentially identical. Precursors of two higher plant thylakoid lumen proteins are efficiently processed by purified Escherichia coli leader peptidase. Processing of one precursor, that of the 23 kd photosystem II protein, by both the thylakoidal and E. coli enzymes generates the correct mature amino terminus. Similarly, leader (signal) peptides of both eukaryotic and prokaryotic origin are cleaved by partially purified thylakoidal processing peptidase. No evidence of incorrect processing was obtained. Both leader peptidase and thylakoidal peptidase are inhibited by a synthetic leader peptide. 相似文献
14.
Conditionally lethal amber mutations in the leader peptidase gene of Escherichia coli. 总被引:1,自引:7,他引:1 下载免费PDF全文
The lep gene of Escherichia coli encodes the leader peptidase which cleaves amino-terminal leader sequences of secreted proteins. To facilitate the study of structure-function relationships of the leader peptidase, 22 amber mutations in lep were isolated by localized mutagenesis. These amber mutants grew at 32 degrees C but not at 42 degrees C in the presence of a temperature-sensitive amber suppressor. Most of them were lethal under sup0 conditions. However, one amber mutant, the lep-9 mutant, exhibited temperature-sensitive growth in the sup0 strain, indicating that the amber fragment is active at 32 degrees C but not at 42 degrees C. Protein precursors of the maltose-binding protein and OmpA accumulate strikingly in the lep-9 mutant. 相似文献
15.
Protease IV, a cytoplasmic membrane protein of Escherichia coli, has signal peptide peptidase activity 总被引:12,自引:0,他引:12
During export of the outer membrane lipoprotein across the cytoplasmic membrane, the signal peptide of the lipoprotein undergoes two successive proteolytic attacks, cleavage of the signal peptide by signal peptidase and digestion of the cleaved signal peptide by an enzyme called signal peptide peptidase(s) (Hussain, M., Ichihara, S., and Mizushima, S. (1982) J. Biol. Chem. 257, 5177-5182; Hussain, M., Ozawa, Y., Ichihara, S., and Mizushima, S. (1982) Eur. J. Biochem. 129, 233-239). Here we report that protease IV, a cytoplasmic membrane protease, exhibits the signal peptide peptidase activity. The signal peptide peptidase activity was cofractionated with protease IV throughout the entire process of purification of the latter enzyme. Only the signal peptide was digested by the peptidase among membrane proteins. Both the signal peptide peptidase activity and the protease IV activity were inhibited to similar degrees by antipain, leupeptin, chymostatin, and elastatinal that are known to inhibit the signal peptide peptidase activity in the cell envelope. From these results we conclude that protease IV is the signal peptide peptidase that is responsible for signal peptide digestion in the cytoplasmic membrane. The peptidase attacked the signal peptide only after its release from the precursor protein. 相似文献
16.
Mark Paetzel Maia Chernaia Natalie Strynadka William Tschantz Gnoqing Cao Ross E. Dalbey Michael N. G. James 《Proteins》1995,23(1):122-125
Leader peptidase, a novel serine protease in Escherichia coli, catalyzes the cleavage of the amino-terminal leader sequences from exported proteins. It is an integral membrane protein containing two transmembrane segments with its carboxy-terminal catalytic domain residing in the periplasmic space. Here, we report a procedure for the purification and the crystallization of a soluble non-membrane-bound form of leader peptidase (Δ2-75). Crystals were obtained by the sitting-drop vapor diffusion technique using ammonium dihydrogen phosphate as the precipitant. Interestingly, we have found that the presence of the detergent Triton X-100 is required to obtain crystals sufficiently large for X-ray analysis. The crystals belong to the tetragonal space group P42212, with unit cell dimensions of a = b = 115 Å and c = 100 Å, and contain 2 molecules per asymmetric unit. This is the first report of the crystallization of a leader (or signal) peptidase. © 1995 Wiley-Liss, Inc. 相似文献
17.
Mechanisms of membrane assembly: general lessons from the study of M13 coat protein and Escherichia coli leader peptidase 总被引:11,自引:0,他引:11
W Wickner 《Biochemistry》1988,27(4):1081-1086
18.
19.
Leader peptidase from Escherichia coli was able to process the precursor of pea cytochrome ƒ synthesised in vitro. N-Terminal sequencing established that cleavage by leader peptidase generated the same mature sequence as in pea chloroplasts. Processing by leader peptidase was much more efficient co-translationally rather than post-translationally, and the extent of post-translational processing declined with time suggesting that the cytochrome ƒ precursor folded to an uncleavable conformation. Detergent extracts of pea thylakoid membranes were unable to process the cytochrome ƒ precursor co- or post-translationally. 相似文献
20.
Inhibition of purified Escherichia coli leader peptidase by the leader (signal) peptide of bacteriophage M13 procoat. 总被引:4,自引:2,他引:2 下载免费PDF全文
The leader peptide of bacteriophage M13 procoat inhibited the cleavage of M13 procoat or pre-maltose-binding protein by purified Escherichia coli leader peptidase. This finding confirms inferences that the leader is the primary site of enzyme recognition and suggests a rationale for the rapid hydrolysis of leader peptides in vivo. 相似文献