首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding of the mechanisms governing spindle positioning during asymmetric division remains incomplete. During unequal division of one-cell stage C. elegans embryos, the Galpha proteins GOA-1 and GPA-16 act in a partially redundant manner to generate pulling forces along astral microtubules. Previous work focused primarily on GOA-1, whereas the mechanisms by which GPA-16 participates in this process are not well understood. Here, we report that GPA-16 is present predominantly at the cortex of one-cell stage embryos. Using co-immunoprecipitation and surface plasmon resonance binding assays, we find that GPA-16 associates with RIC-8 and GPR-1/2, two proteins known to be required for pulling force generation. Using spindle severing as an assay for pulling forces, we demonstrate that inactivation of the Gbeta protein GPB-1 renders GPA-16 and GOA-1 entirely redundant. This suggests that the two Galpha proteins can activate the same pathway and that their dual presence is normally needed to counter Gbetagamma. Using nucleotide exchange assays, we establish that whereas GPR-1/2 acts as a guanine nucleotide dissociation inhibitor (GDI) for GPA-16, as it does for GOA-1, RIC-8 does not exhibit guanine nucleotide exchange factor (GEF) activity towards GPA-16, in contrast to its effect on GOA-1. We establish in addition that RIC-8 is required for cortical localization of GPA-16, whereas it is not required for that of GOA-1. Our analysis demonstrates that this requirement toward GPA-16 is distinct from the known function of RIC-8 in enabling interaction between Galpha proteins and GPR-1/2, thus providing novel insight into the mechanisms of asymmetric spindle positioning.  相似文献   

2.
Asymmetric spindle positioning is of fundamental importance for generating cell diversity during development. In the C. elegans 1 cell embryo, spindle positioning has been shown to depend on heterotrimeric G protein signaling. Two Galpha subunits, GOA-1 and GPA-16 (hereafter Galpha), and receptor independent activators of G protein signaling GPR-1 and GPR-2 (GPR-1/2) are required for proper regulation of spindle positioning . However, it remains unclear whether Galpha regulates spindle positioning in its GDP or GTP bound form. Here, we investigate the role of RIC-8 in this pathway. RIC-8 was genetically shown to act in concert with goa-1 to regulate centrosome movements in C. elegans . Interestingly, mammalian RIC-8 was recently found to behave as a GEF for Galpha subunits in vitro . We show that reduction of function of ric-8 results in a 1 cell embryo phenotype very similar to the phenotype of embryos depleted of Galpha. RIC-8 is able to directly bind to GOA-1, preferentially to GOA-1-GDP, consistent with a GEF role. RIC-8 is localized at the embryo cortex, and its activity is essential for the asymmetric localization of GPR-1/2. We suggest that RIC-8 directly modulates Galpha activity and that Galpha-GTP is the signaling molecule regulating spindle positioning in the early embryo.  相似文献   

3.
In the newly fertilized Caenorhabditis elegans zygote, cytoplasmic determinants become localized asymmetrically along the anterior-posterior (A-P) axis of the embryo. The mitotic apparatus then orients so as to cleave the embryo into anterior and posterior blastomeres that differ in both size and developmental potential. Here we describe a role for MBK-2, a member of the Dyrk family of protein kinases, in asymmetric cell division in C. elegans. In mbk-2 mutants, the initial mitotic spindle is misplaced and cytoplasmic factors, including the germline-specific protein PIE-1, are mislocalized. Our findings support a model in which MBK-2 down-regulates the katanin-related protein MEI-1 to control spindle positioning and acts through distinct, as yet unknown factors, to control the localization of cytoplasmic determinants. These findings in conjunction with work from Schizosaccharomyces pombe indicate a possible conserved role for Dyrk family kinases in the regulation of spindle placement during cell division.  相似文献   

4.
BACKGROUND: The asymmetric division of cells and unequal allocation of cell contents is essential for correct development. This process of active segregation is poorly understood but in many instances has been shown to depend on the cytoskeleton. Motor proteins moving along actin filaments and microtubules are logical candidates to provide the motive force for asymmetric sorting of cell contents. The role of myosins in such processes has been suggested, but few examples of their involvement are known. RESULTS: Analysis of a Caenorhabditis elegans class VI myosin deletion mutant reveals a role for this motor protein in the segregation of cell components during spermatogenesis. Mutant spermatocytes cannot efficiently deliver mitochondria and endoplasmic reticulum/Golgi-derived fibrous-body membranous organelle complexes to budding spermatids, and fail to remove actin filaments and microtubules from the spermatids. The segregation defects are not due to a global sorting failure as nuclear inheritance is unaffected. CONCLUSIONS: C. elegans myosin VI has an important role in the unequal partitioning of both organelles and cytoskeletal components, a novel role for this class of motor protein.  相似文献   

5.
Sawa H  Kouike H  Okano H 《Molecular cell》2000,6(3):617-624
Asymmetric cell division is a fundamental process that produces cellular diversity during development. We have identified two mutants in C. elegans (psa-1 and psa-4) in which the asymmetry of T cell division is disrupted. psa-1 and psa-4 encode homologs of yeast SWI3 and SWI2/SNF2, respectively, which are components of the SWI/SNF complex. We show by RNA interference assay that homologs of other components of SWI/SNF are also involved in T cell division. psa-1 and psa-4 are likely to be required in the T cell during mitosis to cause asymmetric cell division. Because the SWI/SNF complex is required for asymmetric division in S. cerevisiae, these results demonstrate that at least some aspects of the mechanism of asymmetric cell division are conserved between yeast and a multicellular organism.  相似文献   

6.
7.
8.
9.
Billing O  Kao G  Naredi P 《PloS one》2011,6(1):e14507
While insulin signaling has been extensively studied in Caenorhabditis elegans in the context of ageing and stress response, less is known about the factors underlying the secretion of insulin ligands upstream of the insulin receptor. Activation of the receptor governs the decision whether to progress through the reproductive lifecycle or to arrest growth and enter hibernation. We find that animals with reduced levels of the mitochondrial outer membrane translocase homologue TOMM-40 arrest growth as larvae and have decreased insulin signaling strength. TOMM-40 acts as a mitochondrial translocase in C. elegans and in its absence animals fail to import a mitochondrial protein reporter across the mitochondrial membrane(s). Inactivation of TOMM-40 evokes the mitochondrial unfolded protein response and causes a collapse of the proton gradient across the inner mitochondrial membrane. Consequently these broadly dysfunctional mitochondria render an inability to couple food abundance to secretion of DAF-28/insulin. The secretion defect is not general in nature since two other neuropeptides, ANF::GFP and INS-22::VENUS, are secreted normally. RNAi against two other putative members of the TOMM complex give similar phenotypes, implying that DAF-28 secretion is sensitive to mitochondrial dysfunction in general. We conclude that mitochondrial function is required for C. elegans to secrete DAF-28/insulin when food is abundant. This modulation of secretion likely represents an additional level of control over DAF-28/insulin function.  相似文献   

10.
11.
Acquisition of lineage-specific cell cycle duration is an important feature of metazoan development. In Caenorhabditis elegans, differences in cell cycle duration are already apparent in two-cell stage embryos, when the larger anterior blastomere AB divides before the smaller posterior blastomere P1. This time difference is under the control of anterior-posterior (A-P) polarity cues set by the PAR proteins. The mechanisms by which these cues regulate the cell cycle machinery differentially in AB and P1 are incompletely understood. Previous work established that retardation of P1 cell division is due in part to preferential activation of an ATL-1/CHK-1 dependent checkpoint in P1, but how the remaining time difference is controlled is not known. Here, we establish that differential timing relies also on a mechanism that promotes mitosis onset preferentially in AB. The polo-like kinase PLK-1, a positive regulator of mitotic entry, is distributed in an asymmetric manner in two-cell stage embryos, with more protein present in AB than in P1. We find that PLK-1 asymmetry is regulated by A-P polarity cues through preferential protein retention in the embryo anterior. Importantly, mild inactivation of plk-1 by RNAi delays entry into mitosis in P1, but not in AB, in a manner that is independent of ATL-1/CHK-1. Together, our findings support a model in which differential timing of mitotic entry in C. elegans embryos relies on two complementary mechanisms: ATL-1/CHK-1-dependent preferential retardation in P1 and PLK-1-dependent preferential promotion in AB, which together couple polarity cues and cell cycle progression during early development.  相似文献   

12.
In C. elegans, Wnt signaling regulates a number of asymmetric cell divisions. During telophase, WRM-1/beta-catenin localizes asymmetrically to the anterior cortex and the posterior daughter's nucleus. However, cortical WRM-1's functions are not known. Here, we use a membrane-targeted form of WRM-1 to show that cortical WRM-1 inhibits Wnt signaling and the nuclear localization of WRM-1. These functions are mediated by APR-1/APC, which regulates WRM-1 nuclear export. We also show that APR-1 as well as PRY-1/Axin and Dishevelled homologs localize asymmetrically to the cortex. Our results suggest a model in which cortical WRM-1 recruits APR-1 to the anterior cortex before and during division, and the cortical APR-1 stimulates WRM-1 export from the anterior nucleus at telophase. Because beta-catenin and APC are localized to the cortex in many cell types in different species, our results suggest that these cortical proteins may regulate asymmetric divisions or Wnt signaling in other organisms as well.  相似文献   

13.
Vasa and Belle are conserved DEAD box RNA helicases required for germ cell function. Homologs of this group of proteins in several species, including mammals, are able to complement a mutation in yeast (DED1) suggesting that their function is highly conserved. It has been proposed that these proteins are required for mRNA translation regulation, but their specific mechanism of action is still unknown. Here we describe functions of VBH-1, a C. elegans protein closely related to Belle and Vasa. VBH-1 is expressed specifically in the C. elegans germline, where it is associated with P granules, the C. elegans germ plasm counterpart. vbh-1(RNAi) animals produce fewer offspring than wild type because of defects in oocyte and sperm production, and embryonic lethality. We also find that VBH-1 participates in the sperm/oocyte switch in the hermaphrodite gonad. We conclude that VBH-1 and its orthologs may perform conserved roles in fertility and development.  相似文献   

14.
Despite the importance of microRNAs (miRNAs) in gene regulation, it is unclear how the miRNA-Argonaute complex--or miRNA-induced silencing complex (miRISC)--can regulate the translation of their targets in such diverse ways. We demonstrate here a direct interaction between the miRISC and the ribosome by showing that a constituent of the eukaryotic 40S subunit, receptor for activated C-kinase (RACK1), is important for miRNA-mediated gene regulation in animals. In vivo studies demonstrate that RACK1 interacts with components of the miRISC in nematodes and mammals. In both systems, the alteration of RACK1 expression alters miRNA function and impairs the association of the miRNA complex with the translating ribosomes. Our data indicate that RACK1 can contribute to the recruitment of miRISC to the site of translation, and support a post-initiation mode of miRNA-mediated gene repression.  相似文献   

15.
Like other organs, the C. elegans gonad develops from a simple primordium that must undergo axial patterning to generate correct adult morphology. Proximal/distal (PD) polarity in the C. elegans gonad is established early during gonadogenesis by the somatic gonad precursor cells, Z1 and Z4. Z1 and Z4 each divide asymmetrically to generate one daughter with a proximal fate and one with a distal fate. PD polarity of the Z1/Z4 lineages requires the activity of a Wnt pathway that activates the TCF/LEF homolog pop-1. How the gonadal pathway controlling pop-1 is regulated by upstream factors has been unclear, as neither Wnt nor Dishevelled (Dsh) proteins have been shown to be required. Here we show that the C. elegansdsh homolog dsh-2 controls gonadal polarity. As in pop-1 mutants, dsh-2 hermaphrodites have Z1 and Z4 lineage defects indicative of defective PD polarity and are missing gonadal arms. Males have an elongated but disorganized gonad, also with lineage defects. DSH-2 protein is expressed in the Z1/Z4 gonadal precursor cells. Asymmetric distribution of nuclear GFP::POP-1 in Z1 and Z4 daughter cells is reversed in dsh-2 mutants, with higher levels in distal than proximal daughters. dsh-2 and the frizzled receptor homolog lin-17 have a strong genetic interaction, suggesting that they act in a common pathway. We suggest that DSH-2 functions as an upstream regulator of POP-1 in the somatic gonad to control asymmetric cell division, thereby establishing proximal-distal polarity of the developing organ.  相似文献   

16.
Miller KG  Emerson MD  McManus JR  Rand JB 《Neuron》2000,27(2):289-299
Recent studies describe a network of signaling proteins centered around G(o)alpha and G(q)alpha that regulates neurotransmitter secretion in C. elegans by controlling the production and consumption of diacylglycerol (DAG). We sought other components of the Goalpha-G(q)alpha signaling network by screening for aldicarb-resistant mutants with phenotypes similar to egl-30 (G(q)alpha) mutants. In so doing, we identified ric-8, which encodes a novel protein named RIC-8 (synembryn). Through cDNA analysis, we show that RIC-8 is conserved in vertebrates. Through immunostaining, we show that RIC-8 is concentrated in the cytoplasm of neurons. Exogenous application of phorbol esters or loss of DGK-1 (diacylglycerol kinase) rescues ric-8 mutant phenotypes. A genetic analysis suggests that RIC-8 functions upstream of, or in conjunction with, EGL-30 (G(q)alpha).  相似文献   

17.
We have isolated and analyzed eight strict maternal effect mutations identifying four genes, par-1, par-2, par-3, and par-4, required for cytoplasmic localization in early embryos of the nematode C. elegans. Mutations in these genes lead to defects in cleavage patterns, timing of cleavages, and localization of germ line-specific P granules. Four mutations in par-1 and par-4 are fully expressed maternal effect lethal mutations; all embryos from mothers homozygous for these mutations arrest as amorphous masses of differentiated cells but are specifically lacking intestinal cells. Four mutations in par-2, par-3, and par-4 are incompletely expressed maternal effect lethal mutations and are also grandchildless; some embryos from homozygous mothers survive and grow to become infertile adults due to absence of functional germ cells. We propose that all of these defects result from the failure of a maternally encoded system for intracellular localization in early embryos.  相似文献   

18.
The mau-8(qm57) mutation inhibits the function of GPB-2, a heterotrimeric G protein beta subunit, and profoundly affects behavior through the Galphaq/Galphao signaling network in C. elegans. mau-8 encodes a nematode Phosducin-like Protein (PhLP), and the qm57 mutation leads to the loss of a predicted phosphorylation site in the C-terminal domain of PhLP that binds the Gbetagamma surface implicated in membrane interactions. In developing embryos, MAU-8/PhLP localizes to the cortical region, concentrates at the centrosomes of mitotic cells and remains associated with the germline blastomere. In adult animals, MAU-8/PhLP is ubiquitously expressed in somatic tissues and germline cells. MAU-8/PhLP interacts with the PAR-5/14.3.3 protein and with the Gbeta subunit GPB-1. In mau-8 mutants, the disruption of MAU-8/PhLP stabilizes the association of GPB-1 with the microtubules of centrosomes. Our results indicate that MAU-8/PhLP modulates G protein signaling, stability and subcellular location to regulate various physiological functions, and they suggest that MAU-8 might not be limited to the Galphaq/Galphao network.  相似文献   

19.
Ko KM  Lee W  Yu JR  Ahnn J 《FEBS letters》2007,581(28):5445-5453
Inorganic pyrophosphatase (PPase) catalyzes the hydrolysis of inorganic pyrophosphate (PPi) into phosphate (Pi), which provides a thermodynamic driving force for important biosynthetic reactions. The nematode Caenorhabditis elegans gene C47E12.4 encodes a PPase (PYP-1) which shows 54% amino acid identity with human PPase. PYP-1 exhibits specific enzyme activity and is mainly expressed in the intestinal and nervous system. A null mutant of pyp-1 reveals a developmental arrest at early larval stages and exhibits gross defects in intestinal morphology and function. The larval arrest phenotype was successfully rescued by reintroduction of the pyp-1 gene, suggesting that PYP-1 is required for larval development and intestinal function in C. elegans.  相似文献   

20.
Achaete-Scute basic helix-loop-helix (bHLH) proteins promote neurogenesis during metazoan development. In this study, we characterize a C. elegans Achaete-Scute homolog, HLH-14. We find that a number of neuroblasts express HLH-14 in the C. elegans embryo, including the PVQ/HSN/PHB neuroblast, a cell that generates the PVQ interneuron, the HSN motoneuron and the PHB sensory neuron. hlh-14 mutants lack all three of these neurons. The fact that HLH-14 promotes all three classes of neuron indicates that C. elegans proneural bHLH factors may act less specifically than their fly and mammalian homologs. Furthermore, neural loss in hlh-14 mutants results from a defect in an asymmetric cell division: the PVQ/HSN/PHB neuroblast inappropriately assumes characteristics of its sister cell, the hyp7/T blast cell. We argue that bHLH proteins, which control various aspects of metazoan development, can control cell fate choices in C. elegans by regulating asymmetric cell divisions. Finally, a reduction in the function of hlh-2, which encodes the C. elegans E/Daughterless bHLH homolog, results in similar neuron loss as hlh-14 mutants and enhances the effects of partially reducing hlh-14 function. We propose that HLH-14 and HLH-2 act together to specify neuroblast lineages and promote neuronal fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号