首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The microviscosity in mixed micelles formed in dilute aqueous solutions of sodium dodecyl sulphate (SDS) and a set of non-ionic cellulose ethers of different hydrophobicity has been determined by means of steady-state fluorescence probe techniques. Two hydrophobic probes have been applied in this investigation: 1,3-di(1-pyrenyl)propane (P3P) and perylene. Reference measurements of microviscosity have also been performed on SDS solutions including the uncharged polymers poly(ethyleneoxide) (PEO) or poly(vinylpyrrolidone) (PVP). All compositions investigated showed qualitatively the same general behaviour with an abrupt increase in microviscosity at the critical surfactant concentration where the polymer-surfactant interaction starts (c1) followed by a maximum and an asymptotically declining region as the surfactant concentration was increased further. Comparison with a recent investigation of a specific ethyl(hydroxyethyl)cellulose (EHEC fraction CST-103)/ SDS/water system (Evertsson & Nilsson (1997) Macromolecules, 30, 2377) revealed that the maximum in microviscosity generally corresponds to a low degree of SDS adsorption (≈ 0.5 mmol of SDS per gram of polymer) and consequently to a high polymer content of the mixed micelles formed in the type of systems studied herein. The hydrophobicity of the cellulose derivatives was found to correlate to the amplitude of the overall microviscosity pattern for the mixed micelles, i.e. an increased polymer hydrophobicity gave an increased rigidity of the polymersurfactant aggregates. An approximately exponential relation was demonstrated between the maxima in microviscosity of the different mixed micelles and the surface activities of the corresponding cellulose derivatives. All polymer/surfactant combinations investigated gave aggregates with a higher rigidity than ordinary SDS micelles. The microviscosity of the mixed micelles of the cellulose derivatives and SDS formed close to c1 increased as the temperature rose from 20 to 50 °C. This effect was attributed to an increased hydrophobicity of the cellulose ethers upon temperature elevation, hence giving rise to further close-packing of the aggregate structures.  相似文献   

2.
The association behavior of hydrophobically modified ethyl hydroxyethyl cellulose (HM-EHEC) and its interaction with the anionic surfactant sodium dodecyl sulfate (SDS) has been studied in the dilute concentration regime. Steady-state fluorescence probe techniques have been utilized to obtain microstructural information of the system properties and combined with macroscopic bulk information from equilibrium dialysis experiments in order to determine binding isotherms of SDS to HM-EHEC. HM-EHEC was found to self-associate and form polymeric micelles in semi-dilute aqueous solutions. c* for the self-association process was determined to be approximately 0.4%. The microviscosity of the polymeric micelles is much higher, and the micropolarity slightly higher, than that of ordinary SDS micelles. The onset of interaction between HM-EHEC and SDS was evidenced by a simultaneous strong increase in microviscosity and decrease in micropolarity upon successive addition of SDS. There is a minor, noncooperative SDS binding to the HM-EHEC starting from low concentrations of SDS (<5 mM) followed by a highly cooperative binding region at SDS concentrations ≥5 mM. The polymer–surfactant aggregates are rigid and hydrophobic with a maximum in microviscosity in the noncooperative binding region at a very low degree of SDS-adsorption.  相似文献   

3.
Yang J  Zhao J  Fang Y 《Carbohydrate research》2008,343(4):719-725
Interactions between the polyelectrolyte sodium alginate (NaAlg) and the anionic surfactant sodium dodecyl sulfate (SDS) have been investigated by microcalorimetric techniques. The polymer-surfactant interactions were observed between NaAlg and SDS at different pH values in dilute solution. The thermodynamic parameters for their interaction process are evaluated from the results of the observed dilution enthalpy curves. As the pH value of the solution decreases from 7 to 6, NaAlg polymers have an obvious effect on the cmc of SDS as a simple salt, which indicates no association between SDS and NaAlg owing to electrostatic repulsion. With the progressive decrease of pH value from 5 to 3, the hydrophobic segments in the alginate chains are increasing and the hydrophilic segments decreasing, and the aggregation between SDS and alginate due to hydrophobic interactions is observed.  相似文献   

4.
Rheological properties of sulfoacetate derivatives of cellulose   总被引:1,自引:0,他引:1  
Water-soluble cellulose acetate sulfate derivatives (CAS) have been prepared through chemical reaction involving sulfuric acid as a catalyst. These CAS have been obtained from cellulosic materials of different origins (pure cellulose, wheat bran, maize bran) and their rheological behavior in salt-free aqueous solution has been estimated in dilute and semi-dilute regime using dynamic viscoelastic and viscosity measurements. Influence of concentration, temperature of solubilization and temperature of measurement has been investigated. Weak gel-like properties were exhibited at elevated concentration (typically above 7-8 g/L). These systems also exhibited thixotropic properties: the structure was partly broken down upon shearing and recovered at rest. They also displayed thermoreversibility with large hysteresis, the melting temperature being approximately 15 degrees C higher than the temperature at which gelation took place. These overall observations clearly indicate that these distinctive properties arise from intermolecular association of the macromolecular chains of the cellulose derivative.  相似文献   

5.
In this study we investigated the in vitro toxicity, impact on cell permeability and mucoadhesive potential of polymer-coated liposomes intended for use in the oral cavity. A TR146 cell line was used as a model. The overall aim was to end up with a selection of safe polymer coated liposomes with promising mucoadhesive properties for drug delivery to the oral cavity. The following polymers were tested: chitosan, low-methoxylated pectin (LM-pectin), high-methoxylated pectin (HM-pectin), amidated pectin (AM-pectin), Eudragit, poly(N-isopropylacrylamide-co-methacrylic acid) (p(NIPAAM-co-MAA)), hydrophobically modified hydroxyethyl cellulose (HM-HEC), and hydrophobically modified ethyl hydroxyethyl cellulose (HM-EHEC). With chitosan as an exception, all the systems exhibited no significant effect on cell viability and permeability at the considered concentrations. Additionally, all the formulations showed to a varying degree an interaction with mucin (BSM type I-S); the positively charged formulations exhibited the strongest interaction, while the negatively and neutrally charged formulations displayed a moderate or low interaction. The ability to interact with mucin makes all the liposomal formulations promising for oromucosal administration. Although the chitosan-coated liposomes affected the cell viability, this formulation also influenced the cell permeability, which makes it an interesting candidate for systemic drug delivery from the oral cavity.  相似文献   

6.
The interactions of hemoglobin (Hb) with sodium dodecyl sulfate (SDS) and dodecyl trimethylammonium bromide (DTAB) are investigated by several methods. We observed the formation of hemichrome below the critical micelle concentration (cmc) of surfactant and the release of heme from Hb above the cmc. When pH value of Hb/surfactant system is lower than isoelectric point (pI) of Hb, the interaction of SDS with Hb is both electrostatic and hydrophobic, while the interaction of DTAB with Hb is hydrophobic mainly. On the contrary, when pH > pI, the interaction of SDS with Hb is hydrophobic mainly, while the interaction of DTAB with Hb is both electrostatic and hydrophobic. In the case where both the electrostatic interaction and hydrophobic interaction exist, the electrostatic interaction plays a more important role. Thus, SDS tends to interact with Hb more obviously than DTAB does when pH < pI and the interaction between DTAB and Hb is stronger when pH > pI.  相似文献   

7.
Two chitosan samples (fraction of acetylated units (FA) 0.15 and 0.52) were fractionated by preparative size exclusion chromatography (SEC). The molecular weights and molecular weight distributions of the fractions were analyzed by analytical size exclusion chromatography coupled to an on-line low angle laser light scattering detector and a differential refractive index detector (SEC-LALLS-DRI), and their intrinsic viscosities were determined. The exponent (a) of the Mark-Houwink-Kuhn-Sakurada (MHKS) equation was found to be 0.92 ± 0.07 and 1.1 ± 0.1, respectively, at I = 0.1 and pH 4.5. No variation in FA related to molecular weight was found. Reversible interaction between chitosans and different column packings strongly influenced the log M-V relationships. This interaction was generally most pronounced for the low-FA chitosan, suggesting that the protonated amino groups are involved. Ammonium acetate buffer reduced this effect and the use of a new type of SEC-packing seemed to eliminate it. The more highly acetylated chitosan also had a more pronounced tendency towards concentration dependent self-association, which most probably involve intermolecular hydrophobic interactions between the acetyl groups.  相似文献   

8.
The interactions between the diblock copolymer S(15)E(63) and the surfactants sodium dodecyl sulfate (SDS), sodium decyl sulfate (SDeS), and sodium octyl sulfate (SOS) have been investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and isothermal titration calorimetry (ITC). The surfactants with the same headgroup differentiate in their chain length. At 20 degrees C, the block copolymer is associated into micelles with a hydrodynamic radius of 11.6 nm, which is composed of a hydrophobic styrene oxide (S) core and a water-swollen oxypolyethylene (PEO or E) corona. The different copolymer/surfactant systems have been studied at a constant copolymer concentration of 2.5 g dm(-3) and in a vast range of surfactant concentrations, from 7.5 x 10(-6) up to 0.75 M. When SDS and SDeS are added to the block copolymer solution, different regions are observed in the DLS data: at low surfactant concentrations (c < 1.0 x 10(-4) M), single surfactant molecules associate with the copolymer micelle, probably the former being solubilized in the micelle core, leading to a certain disruption of the mixed micelle due to repulsive electrostatic interactions between surfactant headgroups followed by a stabilization of the mixed micelle. At higher concentrations (1.0 x 10(-4) < c < 0.1 M), two types of copolymer-surfactant complexes coexist: one large copolymer-rich/surfactant complex and one small complex consisting of one or a few copolymer chains and rich in surfactants. At higher SDS and SDeS concentrations, complete disintegration of mixed micelles takes place. In contrast, SOS-S(15)E(63) interactions are less important up to surfactant concentrations of 0.05 M due to its higher hydrophilicity, reducing the hydrophobic interactions between surfactant alkyl chains and copolymer micelles. At concentration larger than the critical aggregation concentration (cac) of the system, 0.05 M, disruption of copolymer micelles occurs. These regions have been confirmed by transmission electron microscopy. On the other hand, the titration calorimetric data for SDS and SDeS present an endothermic increase indicating the formation of mixed copolymer-rich-surfactant micelles. From that point, important differences in the ITC plot for both surfactants are present. However, the ITC curve obtained after titration of a SOS solution in the copolymer solution is quite similar to that of its titration in water.  相似文献   

9.
The process of physical degradation by means of the ultrasonic action towards chitosans with mole fraction of 2-acetamido-2-deoxy-β- -glucopyranose units (the degree of N-acetylation, FA) in the range of 0.10≤FA≤0.28, and the weight average polymerisation degree in the range of has been investigated. The decrease of as well as changes in the distribution of the degree of polymerisation (P) has been determined as a function of time, FA, temperature, concentration of chitosan solution and concentration of acetic acid in the solution. The use of low-power ultrasound emitter allowed to establish that in the case of chitosan (binary heteropolysaccharide) the general rate parameter (k) increased with FA. This can be explained by the relatively stronger aggregation of macromolecules with higher FA, which results in size increase of macromolecular individuals and hence in their higher susceptibility to ultrasonic action. It was also observed that k decreased with chitosan concentration and temperature. The value of limiting degree of polimerisation (xe) was found to be influenced by structural parameters of chitosan chains (FA, aggregation). The increase of acetic acid concentration caused the increase in the k value, what indicated accelerating effect of ultrasound towards acidic hydrolysis of chitosan. The shape of the P curve of sonochemically degraded chitosans are in good correlation with the mid-point breakage concept of degradation accepted in sonochemical degradation of polymers.  相似文献   

10.
Sodium carboxymethyl cellulose and hydroxyethyl starch were found to support rapid growth of two hematopoietic cell lines. The polymers were not metabolized by the cells. In the presence of these compounds, lower rates of glucose utilization and lactic acid production were observed. The uptake of glucose by the cells decreased as the concentration of the polymer in the medium was increased. These results indicate that sodium carboxymethyl cellulose and hydroxyethyl starch probably protect the cells against physical stress in suspended cultures.  相似文献   

11.
The viscosity in the low shear rate Newtonian domain of three biopolymers, locust bean gum, guar gum and xanthan gum was studied as a function of temperature and of polymer concentration in various aqueous solvents. The intrinsic viscosities [η]o of both galactomannans are not modified in the presence of 10 or 40% sucrose. In this case, a master curve relating the Newtonian specific viscosity (ηsp)o, to the reduced concentration c[η]o is obtained and allows (in good agreement with theoretical conjectures), two critical concentrations C* and C** to be defined, from which the value of the expansion coefficient may be estimated. For xanthan, as expected for a polyelectrolyte, [η]o depends strongly on salt concentration and on added sucrose and the results did not obey the above-mentioned master curve. However, it is shown that (ηsp)o depends only on xanthan concentration whenC > C**, and then it is assumed that chain dimensions have attained their unperturbed values whatever the solvent. Considering that both types of chains, random coils (galactomannans) and semi-rigid (xanthan) should give the same (ηsp)o-C[η]o master curve for C > C** when [η]o is replaced by its unperturbed counterpart [η]θ, a method for estimating [η]θ for the xanthan sample is proposed. In conclusion, the numerous exceptions to the widely accepted (ηsp)o vs C[η]o “universal” behaviour are mainly ascribed to significant differences in expansion coefficient values which depend on both the polymer and the solvent.  相似文献   

12.
The possibility to cultivate Lactococcus lactis in aqueous polymer two-phase system has been investigated. The phase system was made up of poly(ethylene imine) and (hydroxyethyl) cellulose. Long lag phases were needed for the microorganism to adapt to the polymer rich media. Cells favoured the (hydroxyethyl)cellulose rich top phase or they accumulated at the interface, while lactic acid showed affinity for the poly(ethylene imine) rich phase.Abbreviations PEG poly(ethylene glycol) - PEI poly(ethylene imine) - HEC (hydroxyethyl)cellulose  相似文献   

13.
A method for thermally induced switching of enzyme activity has been developed, based on the site-directed conjugation of end-reactive temperature-responsive polymers to a unique cysteine (Cys) residue positioned near the enzyme active site. The reversible temperature-induced collapse of N,N-dimethylacrylamide (DMA)/N-4-phenylazo-phenylacrylamide (AZAAm) copolymers (DMAAm) has been used as a molecular switch to control the catalytic activity of endoglucanase 12A (EG 12A). The polymer was conjugated to the EG 12A site-directed mutant N55C, directly adjacent to the cellulose binding cleft, and to the S25C mutant, where the conjugation site is more distant. The N55C conjugate displayed a larger activity shutoff efficiency in the collapsed polymer state than the S25C conjugate. Increasing the polymer molecular weight was also shown to increase the shutoff efficiency of the switch. Related to these effects of conjugation site and polymer size, the switching efficiency was found to be strongly dependent on substrate size. With a small substrate, o-nitrophenyl-beta-d-cellobioside (ONPC), there was minimal blocking of enzyme activity when the polymer was in the expanded state. With a large substrate, hydroxyethyl cellulose (HEC), there was a large reduction of enzyme activity in the polymer expanded state, even with relatively small polymer chains, and a further reduction when the polymer was collapsed. Similar general trends for the interactive effects of conjugation site, polymer size, and substrate size were observed for immobilized conjugates. Kinetic studies demonstrated that the switching activity was due to the blocking of substrate association by the collapsed polymers. These investigations provide mechanistic insight that can be utilized to design molecular switches for a variety of stimuli-responsive polymer-protein conjugates.  相似文献   

14.
Light scattering studies have been made on solutions of the sodium and tetra-methyl ammonium salts of the anionic heteropolysaccharide XM6. The polymers may be modelled as stiff wormlike chains. In dilute solution no conformational change was observed upon increasing the ionic strength. Models for gelation at higher polymer concentration are discussed. The measured mass per unit length of the polymer favours an ordered helical conformation and a gelation mechanism involving association and possibly crystallization of segments of the helical chains.  相似文献   

15.
Dissipative particle dynamics is used to simulate the oil/water/surfactant system in the absence and presence of polymer. Structural properties, interfacial properties, and their dependence on the surfactant concentration, polymer concentration and oil/water ratio were investigated. The snapshots illustrate the variation of the structure of oil/water/surfactant system. In the presence of polymer, the interface is supersaturated at a lower surfactant concentration. The end-to-end distance increases with surfactant concentration and polymer chains but shows weak dependence on the oil/water ratio. The peak of density grows higher with surfactant concentration, but it is not affected by oil/water ratio. The density profiles of polymer grow higher with polymer chains, indicating that most of the polymer chains stay at the interface for stability. Interfacial thickness shows an adsorption of polymer/surfactant complexes at the interface, where the polymer is in an extended conformation at the interface. The formation of polymer/surfactant complexes is favourable for the decrease of oil/water interfacial tension.  相似文献   

16.
Zhu J  Marchant RE 《Biomacromolecules》2006,7(4):1036-1041
Here, we report on the synthesis of dendritic saccharide surfactant polymers as antifouling interface materials to reduce platelet adhesion. An acetal-protected poly(amidoamine) (PAMAM) dendron (5, G = 2) was first synthesized by using aminoacetaldehyde dimethyl acetal (1) as the starting material to provide a monovalent focal structure with dimethyl acetal-protected aldehyde functionality. Maltose dendron (M4, 6) was obtained by reacting the peripheral amine groups of acetal-dendron (5) with maltonolactone. The dendritic surfactant polymers (9) were then synthesized via a two-step method by sequential addition of maltose dendron and hexanal to react with the amine groups on the poly(vinylamine) (PVAm) backbone. Surface activity of the amphiphilic glycopolymers at the air/water interface was demonstrated by reduction in water surface tension. Adsorption of the amphiphilic glycopolymers at the solid/water interface was examined on octadecyltrichlorosilane (OTS)-coated coverslips by water contact angle measurements. A nanoscale understanding of surface-induced self-assembly of the dendritic surfactant polymer on highly oriented pyrolytic graphite (HOPG) was gained using AFM operated in fluid tapping mode. A lateral ordering of adsorbing surfactant polymer was visualized with a pattern in strands 60 degrees out of alignment. The static platelet adhesion tests show that the hexyl side chains can facilitate adsorption of the surfactant polymers onto hydrophobic substrates, while the maltose dendron side chains can provide a dense canopy of protective glycocalyx-like layer as an antifouling interface to reduce platelet adhesion.  相似文献   

17.
Pyrenebutyrate-conjugated αs1-casein was prepared and the complex formation between αs1- and κ-casein polymers was investigated by fluorescence polarization. The complex formation was also investigated by a microcalorimetric technique. The positive enthalpy and entropy changes and endothermic nature suggested the hydrophobic interaction between αs1- and κ-casein polymers.

The degree of polarization of κ-casein polymer decreased with the addition of 1-anilino-8-naphthalenesulfonate (ANS), while that of αs1-casein polymer and αs1-κ-casein complex was invariant. Moreover the reaction of κ-casein polymer and ANS was exothermic. These facts suggested that the intermolecular hydrophobic regions in κ-casein polymer were disrupted by the adsorption of ANS. The rotational relaxation time of pyrenebutyrate conjugated complex between cyanoethyl-κ-casein and αs1-casein polymer was smaller than that of cyanoethyl-κ-casein alone. From these results, it was postulated that the dissociation of κ-casein polymer by the complex formation with αs1-casein polymer might be caused by the disruption of the intermolecular hydrophobic bonds in κ-casein polymer.  相似文献   

18.
The study includes partitioning of proteins in aqueous two-phase systems consisting of the polymer dextran and the non-ionic surfactant C12E5 (pentaethylene glycol mono-n-dodecyl ether). In this system a micelle-enriched phase is in equilibrium with a polymer-enriched phase. Charges can be introduced into the micelles by the addition of charged surfactants. The charge of the mixed micelles is easily varied in sign and magnitude independently of pH, by the addition of different amounts of negatively charged surfactant, sodium dodecyl sulphate (SDS), or positively charged surfactant dodecyl trimethyl ammonium chloride (DoTAC). A series of water-soluble model proteins (BSA, β-lactoglobulin, myoglobin, cytochrome c and lysozyme), with different net charges at pH 7.1, have been partitioned in non-charged systems and in systems with charged mixed micelles or charged polymer (dextran sulphate). It is shown that partition coefficients for charged proteins in dextran-C12E5 systems can be strongly affected by addition of charged surfactants (SDS, DoTAC) or polymer (dextran sulphate) and that the effects are directly correlated to protein net charge.  相似文献   

19.
The mechanisms governing the self-assembled structure of biomolecules (single chain and bundle of chains) are studied with an AB copolymer model via the coarse grained molecular dynamics simulations. Non-local hydrophobic interaction is found to play a critical role in the pattern formation of the assembled structure of polymer chains. We show that the polymer structure could be controlled by adjusting the balance between local (short range) and non-local (long range) hydrophobic interaction which are influenced by various factors such as the sequences, chain length, stiffness, confinement, and the topology of polymers. In addition, the competition between the intrachain hydrophobic interaction and interchain hydrophobic interaction determines the structural transition of the chain bundles. This work may provide important insights into the fundamental physics in the structure control and the self-assembly of biomolecules for various practical applications.  相似文献   

20.
Acetylation dramatically effects both the solution properties and the metal induced precipitation of alginates. The presence of acetyl groups on both bacterial and seaweed alginate polymers marginally increased the weight average molecular weight (Mw) of each polymer by 7% and 11%, respectively. Acetylated bacterial alginate showed a significant increase in solution viscosity compared to its deacetylated counterpart. However microbial acetylation of seaweed alginate did not change its solution viscosity. Acetylation altered the calcium induced precipitation of both alginates. The presence of acetyl groups decreased the ability of each polymer to bind with calcium but increased their ability to bind with ferric Ion (Fe3+). By controlling the degree of acetylation on the alginate chains, it was possible to modify solution viscosity and cation induced precipitation of these polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号