首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The driving force that causes enlargement of the ventricles remains unclear in case of normal pressure hydrocephalus (NPH). Both healthy and NPH brain conditions are characterized by a low transparenchymal pressure drop, typically 1 mm Hg. The present paper proposes an analytical model for normal and NPH brains using Darcy's and Biot's equations and simplifying the brain geometry to a hollow sphere with an internal and external radius. Self-consistent solutions for the large deformation problem that is associated with large ventricle dilation are presented and the notion of equilibrium or stable ventricle position is highlighted for both healthy and NPH conditions. The influence of different biomechanical parameters on the stable ventricle geometry is assessed and it is shown that both CSF seepage through the ependyma and parenchymal permeability play a key role. Although very simple, the present model is able to predict the onset and development of NPH conditions as a deviation from healthy conditions.  相似文献   

2.
Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltat相似文献   

3.
In this study, we investigate the effects of modelling choices for the brain–skull interface (layers of tissues between the brain and skull that determine boundary conditions for the brain) and the constitutive model of brain parenchyma on the brain responses under violent impact as predicted using computational biomechanics model. We used the head/brain model from Total HUman Model for Safety (THUMS)—extensively validated finite element model of the human body that has been applied in numerous injury biomechanics studies. The computations were conducted using a well-established nonlinear explicit dynamics finite element code LS-DYNA. We employed four approaches for modelling the brain–skull interface and four constitutive models for the brain tissue in the numerical simulations of the experiments on post-mortem human subjects exposed to violent impacts reported in the literature. The brain–skull interface models included direct representation of the brain meninges and cerebrospinal fluid, outer brain surface rigidly attached to the skull, frictionless sliding contact between the brain and skull, and a layer of spring-type cohesive elements between the brain and skull. We considered Ogden hyperviscoelastic, Mooney–Rivlin hyperviscoelastic, neo–Hookean hyperviscoelastic and linear viscoelastic constitutive models of the brain tissue. Our study indicates that the predicted deformations within the brain and related brain injury criteria are strongly affected by both the approach of modelling the brain–skull interface and the constitutive model of the brain parenchyma tissues. The results suggest that accurate prediction of deformations within the brain and risk of brain injury due to violent impact using computational biomechanics models may require representation of the meninges and subarachnoidal space with cerebrospinal fluid in the model and application of hyperviscoelastic (preferably Ogden-type) constitutive model for the brain tissue.  相似文献   

4.
This paper presents results from a finite element study of the biomechanics of hydrocephalus, with special emphasis on a reassessment of the parenchyma elastic modulus. A two-dimensional finite element model of the human brain/ventricular system is developed and analysed under hydrocephalic loading conditions. It is shown that the Young's modulus of the brain parenchyma used in previous studies (3000-10000 Pa) corresponds to strain rates much higher than those present in hydrocephalic brains. Consideration of the brain's viscoelasticity leads to the derivation of a considerably lower modulus value of approximately 584 Pa.  相似文献   

5.
6.
7.
The mechanics of the lung parenchyma is studied using models comprised of line members interconnected to form 3-D cellular structures. The mechanical properties are represented as elastic constants of a continuum. These are determined by perturbing each individual cell from a reference state by an increment in stress which is superimposed upon the uniform stretching forces initially present in the members due to the transpulmonary pressure. A force balance on the distorted structure, together with a force-deformation law for the members, leads to a calculation of the strain increments of the members. Predictions based on the analysis of the 3-D isotropic dodecahedron are in good agreement with experimental values for the Young's, shear, and bulk moduli reported in the literature. The model provides an explanation for the dependence of the elastic moduli on transpulmonary pressure, the geometrical details of the structure, and the stress-strain law of the tissue.  相似文献   

8.
The O2-depletion technique allows a continuous measurement of the complete O2-dissociation curve of high-affinity hemoglobins in the O2-partial pressure range of 700 to 10(-4) mm Hg. With this technique p50 values greater than or equal to 0.01 mm Hg (approximately equal to 1.3 Pa) can be determined for 3-microliter hemoglobin samples. As examples, O2-dissociation curves of sperm whale myoglobin (p50 = 0.9 mm Hg, 25 degrees C, pH 8.0) and Dicrocoelium hemoglobin (p50 = 0.06 mm Hg, 25 degrees C, pH 4.9) are demonstrated which show Hill coefficients of n = 1.0 over the complete O2-saturation range.  相似文献   

9.
The effects of external pressure on the relative terminal lymphatic flow rate following occlusion of the lymph system were studied. Sulfur colloid tagged with 99mTc was injected into the hind thigh of dogs prior to compressive loading. Initially, the lymphatic clearance of the tracer was measured for approximately forty minutes with no applied external pressure. The terminal lymph vessels were then occluded for thirty minutes with the application of an applied external pressure of 75 mm Hg. Finally, the lymphatic clearance following occlusion was measured with the application of a nonocclusive pressure. External pressures of 0, 30, and 45 mm Hg were tested to determine the effects of post-occlusive pressure application on terminal lymphatic clearance. Results indicated that terminal lymphatic clearance did not resume for an applied pressure of 45 mm Hg following occlusion. The relative lymphatic clearance rate at an external pressure of 30 mm Hg following occlusion was 54% of the clearance rate for a 0 mm Hg applied pressure prior to lymph occlusion. The results for a 0 mm Hg external pressure following occlusion indicated a 23 percent clearance rate compared to the pre-occlusive state. A two compartment model was utilized to determine the lymphatic clearance rate per unit tissue volume of subcutaneous tissue from the experimental data for each pressure phase.  相似文献   

10.
In conscious animals, the response to hemorrhage is biphasic. During phase 1, arterial pressure is maintained. Phase 2 is characterized by profound hypotension. Despite allied roles, less is known about the integrated cardiovascular and respiratory response to blood loss in conscious animals. We evaluated cardiorespiratory changes during hemorrhage to test the hypotheses that 1) respiratory rate (RR) and blood gases do not change during phase 1; 2) RR increases during phase 2; and 3) RR and blood gas changes during hemorrhage are similar in males and females. We measured mean arterial pressure, RR, and blood gases during hemorrhage in 16 conscious, chronically prepared, male and female New Zealand white rabbits. We removed venous blood until mean arterial pressure was < or =40 mmHg. Sex did not affect mean arterial pressure, heart rate, Pa(O(2)), Pa(CO(2)), or pH during hemorrhage or the blood loss required to induce phase 2. Pa(CO(2)) decreased significantly from 37 +/- 1 to 33 +/- 1 and 29 +/- 1 mmHg (P < 0.001) during phase 1 and 2, respectively. Before hemorrhage, Pa(O(2)) was 87 +/- 2 mmHg. Pa(O(2)) was unchanged in phase 1 (92 +/- 2 mmHg) but increased in phase 2 (101 +/- 2 mmHg; P < 0.001). Body temperature, Pv(CO(2)) (thoracic vena cava), and ventilation-perfusion mismatch (A-a gradient) were unchanged during phases 1 and 2. Neither sex increased RR during phase 1. While males doubled RR during phase 2, RR in females did not change (P < 0.001). Thus, while Pa(CO(2)) decreases in phase 1 and phase 2, the decreases are achieved in different ways across the two phases and in the two sexes.  相似文献   

11.
Changes in the oxygen partial pressure of air over the range of 8 to 258 mm of Hg did not adversely affect the photosynthetic capacity of Chlorella pyrenoidosa. Gas exchange and growth measurements remained constant for 3-week periods and were similar to air controls (oxygen pressure of 160 mm of Hg). Oxygen partial pressures of 532 and 745 mm of Hg had an adverse effect on algal metabolism. Carbon dioxide consumption was 24% lower in the gas mixture containing oxygen at a pressure 532 mm of Hg than in the air control, and the growth rate was slightly reduced. Oxygen at a partial pressure of 745 mm of Hg decreased the photosynthetic rate 39% and the growth rate 37% over the corresponding rates in air. The lowered metabolic rates remained constant during 14 days of measurements, and the effect was reversible after this time. Substitution of helium or argon for the nitrogen in air had no effect on oxygen production, carbon dioxide consumption, or growth rate for 3-week periods. All measurements were made at a total pressure of 760 mm of Hg, and all gas mixtures were enriched with 2% carbon dioxide. Thus, the physiological functioning and reliability of a photosynthetic gas exchanger should not be adversely affected by: (i) oxygen partial pressures ranging from 8 to 258 mm of Hg; (ii) the use of pure oxygen at reduced total pressure (155 to 258 mm of Hg) unless pressure per se affects photosynthesis, or (iii) the inclusion of helium or argon in the gas environment (up to a partial pressure of 595 mm of Hg).  相似文献   

12.
The immediate cardiovascular responses on active change from the squatting (control) to the standing position differ from those obtained in the lying-to-standing manoeuvre. Without exception, the first beat after changing from squatting to standing showed a decrease in systolic, diastolic and mean pressure by 2.0 +/- 1.1 kPa (14.6 +/- 8.3 mm Hg), 1.4 +/- 1.7 kPa (10.6 +/- 12.6 mm Hg) and 1.9 +/- 1.0 kPa (13.9 +/- 7.3 mm Hg), respectively. During the 4th or 5th pulse after standing the pulse pressure was significantly higher than when lying (P less than 0.01). Mean pressure reached a minimum of 7.7 +/- 1.9 kPa (57.8 +/- 14.4 mm Hg) after 7.1 +/- 1.1 s. Thereafter the blood pressure increased to a new level within about 15 s. 11 of 16 subjects demonstrated a biphasic heart rate (HR) response. The maximum HR was reached after 11.0 +/- 2.4 s of standing. In all experiments, the peaks in HR were distinctly delayed after the blood pressure dips. We conclude that an arterial baroreflex could be implicated in the immediate HR increase after a squatting-to-standing manoeuvre. The subsequent time course of the initial HR response, however, might be induced by other mechanisms.  相似文献   

13.
We hypothesized that the respiratory baroreflex in conscious rats is either more transient, or has a higher pressure threshold than in other species. To characterize the effect of arterial pressure changes on respiration in conscious rats, ventilation (V) was measured by the plethysmographic technique during injections, or infusions, of pressor and depressor agents. Bolus injections of angiotensin II (Ang II) or arginine vasopressin (AVP), transiently increased mean arterial pressure (MAP; mean +/- SE) 43+/-6 and 28+/-5 mm Hg (1 mm Hg = 133.3 Pa), respectively, and immediately reduced tidal volume (Vt) and, in the case of AVP, V. In contrast, by 10 min of a sustained elevation of MAP (40+/-3 mm Hg) with infusion of Ang II, Vt, f, and V were not different from control levels. Bolus injection of sodium nitroprusside (SNP) to lower MAP (-28+/-3 mm Hg) immediately increased breathing frequency (f) and V, whereas sustained infusion of SNP to lower MAP (-21+/-3 mm Hg) did not change for V at 10 and 20 min. In conscious rats, both injection and infusion of the pressor agent PE (+40 to 50 mm Hg) stimulated f and V; this contrasted with anesthetized rats where PE inhibited f and V, as reported by others. In conscious rats, respiratory responses associated with baroreflexes adapt rapidly and, in the case of PE, can be overridden by some other mechanism.  相似文献   

14.
Macroscopic elastic moduli governing the incremental deformations of lung parenchyma are calculated on the basis of a model for an individual lung element in the shape of a regular dodecahedron. Elastic stiffness within the element is provided by pin-jointed tension members along the edges of the dodecahedron, surface tension is incorporated into its pentagonal faces, and the influence of transpulmonary pressure is simulated by an externally applied hydrostatic tension. The analysis is based on a variational statement of nonlinear structural mechanics, and the results show how the moduli depend on the effective inflation pressure, the constitutive behavior of the idealized truss members, and the surface-area dependent surface tension. The theory is discussed in the light of available experimental information. A more general analysis is needed to account for the effects of structural as well as surface-tension hysteresis.  相似文献   

15.
The dioxygen affinity of Dicrocoelium dendriticum haemoglobin was determined as a function of pH with a thin-layer diffusion technique. From the oxygen dissociation and association curves Hill coefficients h equal 1 were obtained throughout. Ultracentrifugation studies prove this haemoglobin to be monomeric irrespective of pH and ligation state. Thus, Dicrocoelium haemoglobin is a non-cooperative monomer. It has the highest O2 affinity so far known for any monomeric haemoglobin: its half-saturation pressure, p50 value, ranges at 25 degrees C from 0.016 mm Hg to 0.15 mm Hg (2.13-20.0 Pa) dependent on pH. Dicrocoelium haemoglobin shows an acid Bohr effect only and as such it constitutes a new class of haemoglobins. Its log p50 versus pH plot (Bohr effect curve) is characterized by a large amplitude, delta log p50 = 0.96, and an inflection point (Bohr effect pK) at pH 5.0. A model for the acid Bohr effect of D. dendriticum haemoglobin is proposed. By generalization, both the alkaline and the acid Bohr effect in various monomeric haemoglobins may arise from a single Bohr group complex (salt bridge).  相似文献   

16.
Rats were "stressed" by a 30-min period of hypoxia (FIO2 = 7.5%) and hypotension (x arterial pressure = 30 mm Hg), and then "resusciated" by restoring FIO2 = 30% and reinfusing shed blood to restore arterial pressure toward baseline values. Concentrations of brain phosphocreatine, ATP and lactate were measured after "stress" and 20, 60, and 120 min after "resuscitation". A biphasic response was noted in which ATP was initially restored to baseline values by "resuscitation", and then progressively decreased. Physiologic mechanisms to explain the observed data are presented.  相似文献   

17.
18.
Using first principles of fluid and solid mechanics a comprehensive model of human intracranial dynamics is proposed. Blood, cerebrospinal fluid (CSF) and brain parenchyma as well as the spinal canal are included. The compartmental model predicts intracranial pressure gradients, blood and CSF flows and displacements in normal and pathological conditions like communicating hydrocephalus. The system of differential equations of first principles conservation balances is discretized and solved numerically. Fluid–solid interactions of the brain parenchyma with cerebral blood and CSF are calculated. The model provides the transitions from normal dynamics to the diseased state during the onset of communicating hydrocephalus. Predicted results were compared with physiological data from Cine phase-contrast magnetic resonance imaging to verify the dynamic model. Bolus injections into the CSF are simulated in the model and found to agree with clinical measurements.
  相似文献   

19.
Three current questions about alveolar mechanics are discussed: how is the liquid lining of the alveolus maintained, how does surface tension affect alveolar geometry and lung recoil, and how does the parenchyma respond to nonuniform deformations? Modeling the parenchyma as an interconnected network of alveolar walls is emphasized and modifications that are needed to make the models quantitatively successful are suggested.--Wilson, T. A. Parenchymal mechanics at the alveolar level.  相似文献   

20.
The previous models for predicting the forces acting on a needle during insertion into very soft organs (such as, e.g. brain) relied on oversimplifying assumptions of linear elasticity and specific experimentally derived functions for determining needle-tissue interactions. In this contribution, we propose a more general approach in which the needle forces are determined directly from the equations of continuum mechanics using fully non-linear finite element procedures that account for large deformations (geometric non-linearity) and non-linear stress-strain relationship (material non-linearity) of soft tissues. We applied these procedures to model needle insertion into a swine brain using the constitutive properties determined from the experiments on tissue samples obtained from the same brain (i.e. the subject-specific constitutive properties were used). We focused on the insertion phase preceding puncture of the brain meninges and obtained a very accurate prediction of the needle force. This demonstrates the utility of non-linear finite element procedures in patient-specific modelling of needle insertion into soft organs such as, e.g. brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号