首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transforming growth factor beta (TGF-beta) activates Ras/MAPK signaling in many cell types. Because TGF-beta and BMP-2 exert similar effects, we examined if this signaling is stimulated by both factors and analyzed the relationship between this signaling and the Smads in osteoblasts. BMP-2 and TGF-beta stimulated Ras, MAPK, and AP-1 activities. The DNA binding activities of c-Fos, FosB/Delta FosB, Fra-1, Fra-2, and JunB were up-regulated whereas JunD activity was decreased. c-Fos, FosB/Delta FosB, and JunB were associated with Smad4. The stimulation of AP-1 by BMP-2 and TGF-beta was dependent on Smad signaling, and anti-Smad4 antibody interfered with AP-1 activity. Thus, BMP-2 and TGF-beta activate both Ras/MAPK/AP-1 and Smad signaling in osteoblasts with Smads modulating AP-1 activity. To determine the roles of MAPK in BMP-2 and TGF-beta function, we analyzed the effect of ERK and p38 inhibitors on the regulation of bone matrix protein expression and JunB and JunD levels by these two factors. ERK and p38 mediated TGF-beta suppression of osteocalcin and JunD as well as stimulation of JunB. p38 was essential in BMP-2 up-regulation of type I collagen, fibronectin, osteopontin, osteocalcin, and alkaline phosphatase activity whereas ERK mediated BMP-2 stimulation of fibronectin and osteopontin. Thus, ERK and p38 differentially mediate TGF-beta and BMP-2 function in osteoblasts.  相似文献   

3.
4.
The activities of three bone morphogenetic proteins (BMPs), BMP-1, BMP-2 and BMP-3, on alkaline phosphatase activity, collagen synthesis and DNA synthesis were studied in cultured osteoblastic cells, MC3T3-E1. Treatment of cells with BMP-2 for 48 h induces an increase in cellular alkaline phosphatase activity. This stimulatory effect is evident at a concentration as low as 20 ng/ml of BMP-2 and becomes greater with increasing doses of BMP-2. The BMP-2-induced increase in alkaline phosphatase activity is enhanced by the presence of beta-estradiol, dexamethasone or 1 alpha, 25(OH)2D3. BMP-2 and BMP-3 slightly but significantly stimulate collagen synthesis. None of the BMPs stimulates DNA synthesis in MC3T3-E1 cells at doses tested. These results indicate that BMPs act directly on osteoblastic cells and stimulate the expression of the osteoblastic phenotypes.  相似文献   

5.
Generally, fibroblast-like cells and other types of human cells have been used to demonstrate the principles of replicative senescence in vitro and in vivo. These cells go through three stages of proliferation, including vigorous proliferation, declining proliferation and quiescence or no proliferation. Any variation of this process occurring in osteoprogenitor cells may offer insight into the mechanism of age-related osteopaenia that predisposes individuals to osteoporosis and bone fractures. We selected MC3T3-E1 cells derived from mouse calvaria to study the mechanism of replicative senescence of pre-osteogenic cells because: (i) these cells constitute a well-known model for studying osteogenesis in vitro; (ii) they undergo a developmental sequence of proliferation and differentiation similar to primary cells in culture; and (iii) they show signs of replicative senescence. These cells were aged by multiple passaging before their use for studying growth kinetics and the effects of population density, effect of extracellular matrix (ECM), size and phases of the cell cycle. Our results show that (i) MC3T3-E1 cells go through the first two stages of proliferation in a manner similar to human cells, but escape the quiescent phase; (ii) the rate of proliferation is similar for low passage (LP) and high passage (HP) cells, but is decreased in very high passage cells (VHP); (iii) growth inhibition is observed using HP cells seeded at high density; (iv) HP ECM stimulates proliferation of both LP and HP cells; (v) a small increase in cell size is observed in HP cells, but no change is seen in the distribution analysis of their cell cycle; (vi) distribution analysis of the cell cycle of VHP cells reveals a decreased and an increased frequency of cells in S and G2 + M phases of their cell cycle, respectively. These results suggest that the mouse MC3T3-E1 cell line exhibits many of the cellular and molecular markers associated with replicative senescence in culture as defined by human cells, such as fibroblast-like cells. Alteration in the sensitivity of MC3T3-E1 cells to intercellular contact and increase in cell size are the primary factors contributing to decreased proliferation of HP cells.  相似文献   

6.
Choi EM  Suh KS  Kim YS  Choue RW  Koo SJ 《Phytochemistry》2001,56(7):733-739
To investigate the bioactivities of soybean, which act on bone metabolism, we studied the effect of a soybean ethanol extract on the activity of osteoblast MC3T3-E1 cells. Soy extract (0.01-0.1 g/l) dose-dependently increased survival (P<0.05) and DNA synthesis (P<0.05) of MC3T3-E1 cells. In addition, soy extract (0.05 g/l) increased alkaline phosphatase activity (P<0.05) and collagen synthesis (P<0.05) of MC3T3-E1 cells. Moreover, the anti-estrogen tamoxifen eliminated the stimulation of MC3T3-E1 cells on the proliferation, ALP activity and collagen synthesis by soy extract, indicating that the main action of the soy extract on osteoblastic MC3T3-E1 cells is similar to that of estrogen effects. Treatment with soy extract prevented apoptosis, as assessed by a one-step sandwich immunoassay and DNA gel electrophoresis studies. This effect may be associated with the activation of the estrogen receptor, since we observed soy extract-mediated survival against apoptosis was blocked by the estrogen receptor antagonist tamoxifen in cells, further supporting a receptor-mediated mechanism of cell survival. These results suggest that osteoblast function is promoted by soy extract and that the estrogen receptor is involved in the response, thereby playing an important role in bone remodeling. In conclusion, soy extract has a direct stimulatory effect on bone formation in cultured osteoblastic cell in vitro. Presumably, dietary soy products are useful in the prevention of osteoporosis.  相似文献   

7.
The effects of luteolin on the function of osteoblastic MC3T3-E1 cells and the production of local factors in osteoblasts were investigated. Luteolin (1microM) caused a significant elevation of collagen content, alkaline phosphatase (ALP) activity, and osteocalcin secretion in the cells (P<0.05). The effect of luteolin in increasing collagen content and ALP activity was completely prevented by the presence of 10(-6)M cycloheximide and 10(-6)M tamoxifen, suggesting that luteolin's effect results from a newly synthesized protein component and might be partly involved in estrogen action. We then examined the effect of luteolin on the 3-morpholinosydnonimine (SIN-1)-induced production of oxidative stress markers [nitric oxide (NO) and prostaglan E(2) (PGE(2))] and cytokines [tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6)] in osteoblasts. Luteolin (1 and 10microM) decreased the SIN-1-induced production of NO, PGE(2), TNF-alpha, and IL-6 in osteoblasts. These results suggest that inflammatory mediators can be regulated by luteolin stimulating osteoblastic function.  相似文献   

8.
Chronic excessive fluoride intake is known to be toxic and can lead to fluorosis and bone pathologies. However, the cellular mechanisms underlying NaF-induced cytotoxicity in osteoblasts are not well understood. The objectives of this study were to determine the effects of fluoride treatment on MC3T3-E1 osteoblastic cell viability, cell cycle analysis, apoptosis and the expression levels of bcl-2 family members: bcl-2 and bax. MC3T3-E1 cells were treated with 10−5; 5 × 10−5; 10−4; 5 × 10−4 and 10−3 M NaF for up to 48 h. NaF was found to reduce cell viability in a temporal and concentration dependent manner and promote apoptosis even at low concentrations (10−5 M). This increased apoptosis was due to alterations in the expression of both pro-apoptotic bax and anti-apoptotic bcl-2. The net result was a decrease in the bcl-2/bax ratio which was found at both the mRNA and protein levels. Furthermore, we also noted that NaF-induced S-phase arrest during the cell cycle of MC3T3-E1 cells. These data suggest that fluoride-induced osteoblast apoptosis is mediated by direct effects of fluoride on the expression of bcl-2 family members.  相似文献   

9.
Despite their clinical importance for skeletal growth and homeostasis, the actions of androgens on osteoblastic cells are not well understood. MC3T3-E1 cells, a nontransformed murine preosteoblastic cell line, that traverse the stages of osteoblastic differentiation within 30 days in vitro, were exposed to mibolerone (an androgen receptor (AR) agonist) or 5alpha-dihydroxytestosterone (DHT) from days 3 to 30 post-plating. Cells exposed to this hormonal regimen exhibited a significant increase in mineralization (calcium deposition) compared to vehicle-treated cells. Delaying treatment for 4-11 days (treatment still completed on day 30 post-plating) enhanced mineralization further. Within 2 days post-plating, AR protein increased 7.2-fold in androgen-treated cells and 2.5-fold in vehicle-treated cells. MC3T3-E1 cells transfected with an androgen- and glucocorticoid-responsive reporter construct on day 1 post-plating followed by a 2 day exposure to DHT, mibolerone, or dexamethasone (dex; a glucocorticoid receptor agonist) exhibited reporter gene activation only with dex treatment. In contrast, delaying transfection and treatment for at least 1 day resulted in comparable androgen- and dex-mediated reporter gene transactivation. Therefore, the ability of MC3T3-E1 cells to respond to androgens is dependent on the timing of androgen administration.  相似文献   

10.
Intercellular communication by gap junctions has been implicated to function in the control of cell growth and differentiation in osseous tissues—processes which are regulated, in part, by peptide growth factors, including transforming growth factor-beta (TGF-β) and the bone morphogenetic proteins (BMPs). Using the osteoblastic cell line MC3T3-E1, we tested the hypothesis that the effects of TGF-β and BMPs on cell proliferation may be correlated to changes in intercellular communication. In a series of proliferation assays, MC3T3-E1 cells were cultured in the presence of bone morphogenetic protein-2 (BMP-2) or TGF-β for up to 48 hr. Proliferation of cells during the linear log phase (days 2 to 4) was assessed by 3H-thymidine (3H-TdR) incorporation. After times ranging from 6 to 48 hr, BMP-2 significantly inhibited uptake of 3H-TdR at doses of 50–800 ng/ml. Similarly, TGF-β inhibited uptake of 3H-TdR at doses of 2–32 ng/ml. In a separate group of experiments, intercellular communication through gap junctions was demonstrated by cell-cell transfer of the fluorescent tracer, lucifer yellow, after microinjection. One series of experiments showed that the gap junctional intercellular communication (GJIC) of cells, incubated for 48 hr in the presence of the higher dose of osteogenin (OG) (5.0 vs. 0.5 μg/ml) or higher dose of TGF-β (2.0 vs. 0.2 ng/ml), was significantly inhibited compared to control. In another series of experiments, time and dose dependent effects of BMP-2 and TGF-β on GJIC were investigated. In the time course experiments (3, 6, 12, 24, and 48 hr), TGF-β (2.0 ng/ml) demonstrated a statistically significant effect in inhibiting GJIC as early as 6 hr, while BMP-2 (50 ng/ml) inhibited GJIC after 24 and 48 hr of treatment. The dose-dependent effects of BMP-2 and TGF-β on cell couplings, determined at 48 hr, showed significant inhibitory effects with BMP-2 at 25 and 50 ng/ml and with TGF-β at 2 and 4 ng/ml. The cell count results and injection study performed at 12 hr, at a fixed cell density, confirmed that the inhibitory effect was not due to differences in cell density. The 50% effective inhibitory concentrations (EC50) calculated for BMP-2 and TGF-β at 48 hr, showed no dose correlation between proliferation and GJIC, suggesting that these two events are independent occurrences. Additionally, marked morphological change was observed in the cells treated with TGF-β. The observation may suggest that TGF-β may have effects upon cytoskeletal elements in osseous tissues. © 1996 Wiley-Liss, Inc.  相似文献   

11.
12.
Covalent intermolecular cross-linking of collagen is initiated by the action of lysyl oxidase (LOX) on the telopeptidyl lysine and hydroxylysine residues. Recently, several LOX isoforms, i.e., LOX-like proteins 1-4 (LOXL1-4), have been identified but their specific tissue distribution and functions are still largely unknown. In this study, mRNA expression of LOX and LOXL1-4 in MC3T3-E1 osteoblastic cells was screened by RT-PCR and quantitatively analyzed by real-time PCR during cell differentiation and matrix mineralization. The results demonstrated that LOX and all LOXLs, except LOXL2, were expressed in this cell line and that the expression pattern during cell differentiation and matrix mineralization was distinct from one another. This indicates that the expression of LOX and its isoforms is highly regulated during osteoblast differentiation, suggesting their distinct roles in collagen matrix stabilization and subsequent mineralization.  相似文献   

13.
Although zinc (Zn) is known to participate in bone formation, its exact role in the remodeling of this tissue has not been fully clarified. The present study was designed to investigate whether Zn has a role at the resorptive sites in vitro. We investigated the migration of osteoblastic MC3T3-E1 cells in response to Zn using a Boyden chamber assay. Exposure of MC3T3-E1 cells to Zn stimulated the migration of MC3T3-E1 cells. Checkerboard analysis revealed that the migration of MC3T3-E1 cells toward Zn was a directional (chemotaxis) rather than a random (chemokinesis) motion. Pretreatment of MC3T3-E1 cells with pertussis toxin completely blocked the chemotactic response of cells to Zn, indicating that it is mediated by G-protein-coupled receptors. Because the bone is one of the major Zn storage sites, we suggest that Zn released from bone-resorptive sites plays an important role in the recruitment of osteoblasts and bone renewal.  相似文献   

14.
Glucocorticoids are widely used as anti-inflammatory and chemotherapeutic agents. However, prolonged use of glucocorticoids leads to osteoporosis. This study was designed to examine the mechanism of dexamethasone (DEX)-induced apoptosis in murine osteoblastic MC3T3-E1 cells. Total RNA was extracted from MC3T3-E1 cells treated with 10(-7) M DEX for 6 h. DEX exerted a variety of effects on apoptotic gene expression in osteoblasts. Ribonuclease protection assays (RPA) revealed that DEX upregulated mRNA levels of caspases-1, -3, -6, -8, -11, -12, and bcl-XL. Western blot analysis showed enhanced processing of these caspases, with the appearance of their activated enzymes 8 h after DEX treatment. In addition, DEX also induced the activation of caspase-9. DEX elevated the levels of cleaved poly(ADP-ribose) polymerase and lamin A, a caspase-3 and a caspase-6 substrate, respectively. Expression of bcl-XL protein level was upregulated by DEX. Cytochrome c release was detected in the cytosol of DEX-treated cells. Furthermore, caspase-3 enzyme activity was elevated by 2-fold after DEX treatment for 7 h. Finally, early apoptotic cells were detected in cells treated with DEX for 3 h. Our results demonstrate that DEX-induced apoptosis involves gene activation of a number of caspases.  相似文献   

15.
16.
Wang QP  Xie H  Yuan LQ  Luo XH  Li H  Wang D  Meng P  Liao EY 《Amino acids》2009,36(1):57-63
Progesterone (P) has been suggested as a bone-trophic hormone. Previous studies have shown that P promoted bone formation by stimulating the proliferation and differentiation of osteoblasts. But, the effect of P on apoptosis of osteoblast in vitro has not been reported. We propose that P may promote bone formation by suppressing the apoptosis of osteoblast. The present study was performed to investigate the effect of P on apoptosis of murine MC3T3-E1 osteoblastic cells. Cell apoptosis was measured by acidine orange/ethidium bromide (AO/EB) staining and sandwich-enzyme-immunoassay. Progesterone receptor (PR), cytochrome c, caspase-9 and caspase-3 protein levels were determined by Western blot analysis. The enzyme substrate was also used to assess the activation of caspase-3 and caspase-9. Progesterone suppressed MC3T3-E1 cells apoptosis induced by serum deprivation, and this effect was blocked by a PR antagonist RU486. Furthermore, the suppressive effects of P on cytochrome c release and caspase-9 and caspase-3 activation in serum-deprived MC3T3-E1 cells were also reversed by RU486. Our study demonstrated that P protects osteoblast against apoptosis through PR and the downstream mitochondrial pathway. Thus, the data suggest that the effects of P on osteoblast apoptosis may contribute to the mechanisms by which P exerts its action on bone formation.  相似文献   

17.
18.
Thrombospondin 1 (TSP1) is a multifunctional extracellular glycoprotein present mainly in the fetal and adult skeleton. Although an inhibitory effect of TSP1 against pathological mineralization in cultured vascular pericytes has been shown, its involvement in physiological mineralization by osteoblasts is still unknown. To determine the role of TSP1 in biomineralization, mouse osteoblastic MC3T3-E1 cells were cultured in the presence of antisense phosphorothioate oligodeoxynucleotides complementary to the TSP1 sequence. The 18- and 24-mer antisense oligonucleotides caused concentration-dependent increases in the number of mineralized nodules, acid-soluble calcium deposition in the cell/matrix layer, and alkaline phosphatase activity within 9 days, without affecting cell proliferation. The corresponding sense or scrambled oligonucleotides did not affect these parameters. In the antisense oligonucleotide-treated MC3T3-E1 cells, thickened extracellular matrix, well-developed cell processes, increased intracellular organelles, and collagen fibril bundles were observed. On the other hand, the addition of TSP1 to the culture decreased the production of a mineralized matrix by MC3T3-E1 cells. Furthermore, MC3T3-E1 clones overexpressing mouse TSP1 were established and assayed for TSP1 protein and their capacity to mineralize. TSP1 dose-dependently inhibited mineralization by these cells both in vitro and in vivo. These results indicate that TSP1 functions as an inhibitory regulator of bone mineralization and matrix production by osteoblasts to sustain bone homeostasis.  相似文献   

19.
20.
Mitochondrial dysfunction, particularly respiratory chain disruption, is often responsible for aging-related bone diseases. In this study, the protective effects of glabridin, an isoflavan isolated from licorice root, against pharmacological inhibition of the respiratory chain were studied using osteoblastic MC3T3-E1 cells treated with antimycin A, which inhibits complex III of the electron transport system. Glabridin restored mitochondrial membrane potential dissipation, ATP loss, inactivation of complex IV, intracellular calcium elevation, and cytochrome c release that was induced by antimycin A treatment. This compound also prevented cell death. These results imply that glabridin protects osteoblasts from antimycin A-induced cell death via improved mitochondrial function. Glabridin scavenged ROS and mitochondrial superoxide anions generated by antimycin A. In addition, glabridin prevented antimycin A-induced nitrotyrosine increase and thioredoxin reductase inactivation, suggesting that glabridin may be useful for protecting mitochondria against a burst of oxidative stress. Since phosphoinositide 3-kinase (PI3K) and cAMP-response element-binding protein (CREB) signaling is known to be pro-survival, we determined whether PI3K and CREB activation is associated with the cytoprotective effects of glabridin in the MC3T3-E1 cells. Glabridin restored antimycin A-induced inactivation of PI3K and CREB, suggesting that PI3K and CREB-dependent pathways may be involved in glabridin-induced cytoprotective responses. Our study demonstrates that glabridin reduces mitochondrial dysfunction induced during aging, and could significantly prevent osteoblast damage in osteoporotic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号