共查询到20条相似文献,搜索用时 0 毫秒
1.
Judianne Davis-Salinas Susan M. Saporito-Irwin Carl W. Cotman William E. Van Nostrand 《Journal of neurochemistry》1995,65(2):931-934
Abstract: The progression of Alzheimer's disease and related disorders involves amyloid β-protein (Aβ) deposition and pathologic changes in the parenchyma as well as cerebral blood vessels. The cerebrovascular Aβ deposits in these disorders are associated with degenerating smooth muscle cells in the vessel wall, which have been shown to express the Aβ precursor (AβPP) and Aβ. Here, we show that Aβ1–42 , an abundant cerebrovascular form of Aβ, causes cellular degeneration in cultured human cerebrovascular smooth muscle cells. This stress response is accompanied by a striking increase in the levels of cellular AβPP and soluble Aβ peptide produced in these degenerating cells. These data provide the first experimental evidence that Aβ can potentially contribute to the onset and progression of the cerebrovascular pathology. The present findings suggest that this mechanism may involve a molecular cascade with a novel product-precursor relationship that results in the adverse production and subsequent accumulation of Aβ. 相似文献
2.
Abstract: It has been previously reported that Alzheimer's amyloid β protein (Aβ) induces reactive astrocytosis in culture. In the present study, we found that Aβ potently inhibits cellular redox activity of cultured astrocytes, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. The following comparative studies revealed several differences between these two actions of Aβ on astrocytes. First, Aβ-induced reactive morphological change was suppressed by the presence of serum or thrombin, and Aβ inhibition of cellular redox activity was observed in either the presence or the absence of serum. Second, micromolar concentrations (10 µ M or more) were required for Aβ to induce reactive astrocytosis, whereas nanomolar concentrations (0.1–100 n M ) were sufficient to inhibit cellular redox activity. Third, the effect of micromolar Aβ was virtually irreversible, but nanomolar Aβ-induced inhibition of cellular redox activity was reversed by washing out Aβ. Furthermore, as it has been reported that Aβ neurotoxicity is mediated by reactive oxygen species, we also examined if similar mechanisms are involved in astrocytic response to Aβ. However, neither Aβ-induced morphological change nor inhibition of redox activity was blocked by antioxidants, suggesting that these effects are not caused by oxidative stress. 相似文献
3.
Robert D. Moir Ralph N. Martins Ashley I. Bush David H. Small Elizabeth A. Milward Baden A. Rumble Gerd Multhaup Konrad Beyreuther Colin L. Masters 《Journal of neurochemistry》1992,59(4):1490-1498
The major component of the amyloid deposition that characterizes Alzheimer's disease is the 4-kDa beta A4 protein, which is derived from a much larger amyloid protein precursor (APP). A procedure for the complete purification of APP from human brain is described. The same amino terminal sequence of APP was found in two patients with Alzheimer's disease and one control subject. Two major forms of APP were identified in human brain with apparent molecular masses of 100-110 kDa and 120-130 kDa. Soluble and membrane fractions of brain contained nearly equal amounts of APP in both humans and rats. Immunoprecipitation with carboxyl terminus-directed antibodies indicates that the soluble forms of APP are truncated. Carboxyl terminus truncation of membrane-associated forms of human brain APP was also found to occur during postmortem autolysis. The availability of purified human brain APP will facilitate the investigation of its normal function and the events that lead to its abnormal cleavage in patients with Alzheimer's disease. 相似文献
4.
Paula C. Southwick Susan K. Yamagata Charles L. Echols Jr. Gail J. Higson Scott A. Neynaber Robert E. Parson William A. Munroe 《Journal of neurochemistry》1996,66(1):259-265
Abstract: The principal constituent of amyloid plaques found in the brains of individuals with Alzheimer's disease (AD) is a 39–42-amino-acid protein, amyloid β protein (Aβ). This study examined whether the measurement of Aβ levels in CSF has diagnostic value. There were 108 subjects enrolled in this prospective study: AD (n = 39), non-AD controls (dementing diseases/syndromes; n = 20), and other (n = 49). CSF was obtained by lumbar puncture, and Aβ concentrations were determined using a dual monoclonal antibody immunoradiometric sandwich assay. The mean Aβ value for the AD group (15.9 ± 6.8 ng/ml) was not significantly different from that for the non-AD control group (13.0 ± 7.1 ng/ml; p = 0.07), and substantial overlap in results were observed. Aβ values did not correlate with age ( r = −0.05, p = 0.59), severity of cognitive impairment ( r = 0.22, p = 0.21), or duration of AD symptoms ( r = 0.14, p = 0.45). These findings are in conflict with other reports in the literature; discrepant results could be due to the instability of Aβ in CSF. Aβ immunoreactivity decays rapidly under certain conditions, particularly multiple freeze/thaw cycles. Use of a stabilizing sample treatment buffer at the time of lumbar puncture allows storage of CSF without loss of Aβ reactivity. In conclusion, the total CSF Aβ level is not a useful marker for current diagnosis of AD. 相似文献
5.
† Henry W. Querfurth Jinwei Jiang §Jonathan D. Geiger ‡Dennis J. Selkoe 《Journal of neurochemistry》1997,69(4):1580-1591
Abstract: Extracellular amyloid β-peptide (Aβ) deposition is a pathological feature of Alzheimer's disease and the aging brain. Intracellular Aβ accumulation is observed in the human muscle disease, inclusion body myositis. Aβ has been reported to be toxic to neurons through disruption of normal calcium homeostasis. The pathogenic role of Aβ in inclusion body myositis is not as clear. Elevation of intracellular calcium following application of calcium ionophore increases the generation of Aβ from its precursor protein (βAPP). A receptor-based mechanism for the increase in Aβ production has not been reported to our knowledge. Here, we use caffeine to stimulate ryanodine receptor (RYR)-regulated intracellular calcium release channels and show that internal calcium stores also participate in the genesis of Aβ. In cultured HEK293 cells transfected with βAPP cDNA, caffeine (5–10 m M ) significantly increased the release of Aβ fourfold compared with control. These actions of caffeine were saturable, modulated by ryanodine, and inhibited by the RYR antagonists ruthenium red and procaine. The calcium reuptake inhibitors thapsigargin and cyclopiazonic acid potentiated caffeine-stimulated Aβ release. NH4 Cl and monensin, agents that alter acidic gradients in intracellular vesicles, abolished both the caffeine and ionophore effects. Immunocytochemical studies showed some correspondence between the distribution patterns of RYR and cellular βAPP immunoreactivities. The relevance of these findings to Alzheimer's disease and inclusion body myositis is discussed. 相似文献
6.
Indrapal N. Singh Giuseppe Sorrentino Julian N. Kanfer 《Journal of neurochemistry》1997,69(1):252-258
Abstract: The amyloid β protein (25–35) stimulated appearance of 3 H-inositol phosphates from [3 H]inositol-prelabeled LA-N-2 cells was investigated. This stimulation was unaltered by extra- and intracellular calcium chelators in a calcium-free medium or by several protein kinase inhibitors. This phospholipase C stimulation by amyloid β protein appeared to be pertussis toxin sensitive. It is possible that this phospholipase C stimulation by amyloid β protein is a receptor-mediated process. This possibility is based on two related observations. The stimulation is ablated by the presence of conventional antagonists for metabotropic, adrenergic, and bombesin agonists. The IC50 values were 12 µ M for propranolol, 15 µ M for AP-3, and 25 n M for [Tyr4 , d -Phe12 ]bombesin. Additional support comes from results of densensitization and resensitization experiments. Amyloid β protein stimulation of phospholipase C was absent from LA-N-2 cells previously treated with norepinephrine, trans -1-amino-1,3-cyclopentanedicarboxylic acid (t-ACPD), bombesin, or amyloid β peptide. In a similar manner, LA-N-2 cells previously treated with amyloid β protein were no longer responsive to norepinephrine, t-ACPD, or bombesin. The responsiveness to amyloid β protein returned, subsequent to a period of resensitization for the individual agonists. It is suggested that this observed amyloid β protein stimulation of phospholipase C may be responsible for the elevated quantity of inositol seen in the brains of Alzheimer's disease patients. 相似文献
7.
Philippe Marambaud Nathalie Chevallier Helene Barelli Sherwin Wilk Frederic Checler 《Journal of neurochemistry》1997,68(2):698-703
Abstract: A major histopathological hallmark in Alzheimer's disease consists of the extracellular deposition of the amyloid β-peptide (Aβ) that is proteolytically derived from the β-amyloid precursor protein (βAPP). An alternative, nonamyloidogenic cleavage, elicited by a protease called α-secretase, occurs inside the Aβ sequence and gives rise to APPα, a major secreted C-terminal-truncated form of βAPP. Here, we demonstrate that human embryonic kidney 293 (HK293) cells contain a chymotryptic-like activity that can be ascribed to the proteasome and that selective inhibitors of this enzyme reduce the phorbol 12,13-dibutyrate-sensitive APPα secretion by these cells. Furthermore, we establish that a specific proteasome blocker, lactacystin, also induces increased secretion of Aβ peptide in stably transfected HK293 cells overexpressing wild-type βAPP751. Altogether, this study represents the first identification of a proteolytic activity, namely, the proteasome, contributing likely through yet unknown intracellular relays, to the α-secretase pathway in human cells. 相似文献
8.
The cellular factors regulating the generation of β-amyloid from the amyloid precursor protein (APR) are unknown. Activation of protein kinase C (PKC) by phorbol ester treatment inhibited the generation of the 4-kDa β-amyloid peptide in transfected COS cells, a human glioma cell line, and human cortical astrocytes. An analogue of diacylglycerol, the endogenous cellular activator of PKC, also inhibited the generation of β-amyloid. Activation of PKC increased the level of secreted APP in transfected COS cells but did not significantly affect the level of secreted APP in primary human astrocytes or in the glioma cell line. Cell-associated APP and the secreted APP derivative, but not β-amyloid, were phosphorylated on serine residues. Activation of PKC did not increase the level of APP phosphorylation, suggesting that PKC modulates the proteolytic cleavage of APP indirectly by phosphorylation of other substrates. These results indicate that PKC activation inhibits β-amyloid production by altering APP processing and suggest that β-amyloid production can be regulated by the phospholipase C-diacylglycerol signal transduction pathway. 相似文献
9.
Jan Näslund Anders R. Karlström Lars O. Tjernberg †Angelika Schierhorn Lars Terenius Christer Nordstedt 《Journal of neurochemistry》1996,67(1):294-301
Abstract: In Alzheimer's disease (AD), one of the cardinal neuropathological signs is deposition of amyloid, primarily consisting of the amyloid β-peptide (Aβ). Structural variants of AD-associated Aβ peptides have been difficult to purify by high-resolution chromatographic techniques. We therefore developed a novel chromatographic protocol, enabling high-resolution reverse-phase liquid chromatography (RPLC) purification of Aβ variants displaying very small structural differences. By using a combination of size-exclusion chromatography and the novel RPLC protocol, Aβ peptides extracted from AD amyloid were purified and subsequently characterized. Structural analysis by microsequencing and electrospray-ionization mass spectrometry revealed that the RPLC system resolved a complex mixture of Aβ variants terminating at either residue 40 or 42. Aβ variants differing by as little as one amino acid residue could be purified rapidly to apparent homogeneity. The resolution of the system was further illustrated by its ability to separate structural isomers of Aβ1–40 . The present chromatography system might provide further insight into the role of N-terminally and posttranslationally modified Aβ variants, because each variant can now be studied individually. 相似文献
10.
Fumitaka Oyama Hiroyuki Shimada† Rieko Oyama Koiti Titani Yasuo Ihara†‡ 《Journal of neurochemistry》1993,60(5):1658-1664
Abstract: To learn whether or not the levels of β-amyloid protein precursor (APP) and τ mRNAs are related to the formation of β-amyloid and neurofibrillary tangles, we quantified these mRNA levels in three cortical regions of 38 aged human brains, which were examined immunocyto-chemically for β-amyloid and tangles. Marked individual variabilities were noted in APP and τ mRNA levels among elderly individuals. The mean APP mRNA level was slightly reduced in the β-amyloid plaque (++) group, but not in the plaque (+) group, compared to the plaque (−) group. Some brains in the plaque (−) group showed increased APP expression, the extent of which was not seen in the plaque (+)or(++) group. The differences in the mean τ mRNA levels were not statistically significant among the tangle (−), (+), and (++) groups. These results show that β-protein and τ deposition do not accompany increased expression of the APP and τ genes, respectively, and thus suggest that factors other than gene expression may be at work in the progression of β-amyloid and/or tangle formation in the aged human brain. 相似文献
11.
Abstract: Various data suggest that Alzheimer's disease results from the accumulation of amyloid β (Aβ) peptide fibrils and the consequent formation of senile plaques in the cognitive regions of the brain. One approach to lowering senile plaque burden in Alzheimer's disease brain is to identify compounds that will increase the degradation of existing amyloid fibrils. Previous studies have shown that proteoglycans and serum amyloid P (SAP), molecules that localize to senile plaques, bind to Aβ fibrils and protect the amyloid peptide from proteolytic breakdown. Therefore, molecules that prevent the binding of SAP and/or proteoglycans to fibrillar Aβ might increase plaque degradation and prove useful in the treatment of Alzheimer's disease. The nature of SAP and proteoglycan binding to Aβ is defined further in the present study. SAP binds to both fibrillar and nonfibrillar forms of Aβ. However, only the former is rendered resistant to proteolysis after SAP association. It is interesting that both SAP and proteoglycan binding to Aβ fibrils can be inhibited by glycosaminoglycans and Congo red. Unexpectedly, Congo red protects fibrillar Aβ from breakdown, suggesting that this compound and other structurally related molecules are unlikely to be suitable for use in the treatment of Alzheimer's disease. 相似文献
12.
† Virginia L. Smith-Swintosky ‡§L. Creed Pettigrew ‡§Susan D. Craddock ¶Alan R. Culwell ¶Russell E. Rydel †Mark P. Mattson 《Journal of neurochemistry》1994,63(2):781-784
Abstract: The β-amyloid precursor protein (βAPP) is the source of the amyloid β-peptide that accumulates in the brain in Alzheimer's disease. A major processing pathway for βAPP involves an enzymatic cleavage within the amyloid β-peptide sequence that liberates secreted forms of βAPP (APPS s) into the extracellular milieu. We now report that postischemic administration of these APPS s intracerebroventricularly protects neurons in the CA1 region of rat hippocampus against ischemic injury. Treatment with APPS 695 or APPS 751 resulted in increased neuronal survival, and the surviving cells were functional as demonstrated by their ability to synthesize protein. These data provide direct evidence for a neuroprotective action of APPS s in vivo. 相似文献
13.
Yoo-Hun Suh 《Journal of neurochemistry》1997,68(5):1781-1791
Abstract: Amyloid β protein (Aβ), 39–43 amino acids long, is the principal constituent of the extracellular amyloid deposits in brain that are characteristic of Alzheimer's disease (AD). Several lines of evidence indicate that Aβ may play an important role in the pathogenesis of AD. However, there are several discrepancies between the production of Aβ and the development of the disease. Thus, Aβ may not be the sole active fragment of β-amyloid precursor protein (βAPP) in the neurotoxicity associated with AD. Consequently, the possible effects of other cleaved products of βAPP need to be explored. The recent concentration on other potentially amyloidogenic products of βAPP has produced interesting candidates, the most promising of which are the amyloidogenic carboxyl-terminal (CT) fragments of βAPP. This review discusses a possible etiological role of CT fragments of βAPP in AD. 相似文献
14.
Abstract: The cerebral deposition of amyloid β-peptide (Aβ) is a histopathological characteristic of Alzheimer's disease. Because an impaired clearance of Aβ might be involved in the disease, we investigated the proteolytic degradation of synthetic Aβ (40-residue peptide) in cultures of glial cells and characterized a protease involved. Whereas rat astrocytes had a very low degradation capacity, cultivated rat microglia cells cleaved Aβ. Microglia activity was considerably enhanced by stimulation with lipopolysaccharide and to a lesser extent by phorbol esters. Most of the Aβ-degrading activity was released into the medium. By use of selective inhibitors the protease was characterized as a metalloprotease of ∼200 kDa that was different from neutral endopeptidase (a neuropeptide-degrading enzyme), matrix metalloproteases, or macrophage elastase. Its activity was efficiently reduced by four hydroxamic acid-based zinc-metalloprotease inhibitors that have been shown to inhibit membrane protein secretases (disintegrins). We conclude that activated microglia cells might impair amyloid plaque formation by release of a metalloprotease that degrades soluble Aβ before polymerization. 相似文献
15.
Gian Sberna Javier Sáez-Valero Qiao-Xin Li Christian Czech Konrad Beyreuther Colin L. Masters Catriona A. McLean David H. Small 《Journal of neurochemistry》1998,71(2):723-731
Abstract: Acetylcholinesterase (AChE) expression is markedly affected in Alzheimer's disease (AD). AChE activity is lower in most regions of the AD brain, but it is increased within and around amyloid plaques. We have previously shown that AChE expression in P19 cells is increased by the amyloid β protein (Aβ). The aim of this study was to investigate AChE expression using a transgenic mouse model of Aβ overproduction. The β-actin promoter was used to drive expression of a transgene encoding the 100-amino acid C-terminal fragment of the human amyloid precursor protein (APP CT100). Analysis of extracts from transgenic mice revealed that the human sequences of full-length human APP CT100 and Aβ were overexpressed in the brain. Levels of salt-extractable AChE isoforms were increased in the brains of APP CT100 mice. There was also an increase in amphiphilic monomeric form (GA 1 ) of AChE in the APP CT100 mice, whereas other isoforms were not changed. An increase in the proportion of GA 1 AChE was also detected in samples of frontal cortex from AD patients. Analysis of AChE by lectin binding revealed differences in the glycosylation pattern in APP CT100 mice similar to those observed in frontal cortex samples from AD. The results are consistent with the possibility that changes in AChE isoform levels and glycosylation patterns in the AD brain may be a direct consequence of altered APP metabolism. 相似文献
16.
The abundance of amyloid beta peptide (A beta) and the selective loss of neurons are characteristics of Alzheimer's disease. However, subpopulations of brain cells survive, including neurons near A beta-rich plaques. The surviving neurons may have gene expression profiles that allow them to be resistant to A beta toxicity. Here we use the differential display technique to compare the profiles of gene expression in an A beta-resistant cell line with its parental cells. Prominent among the changes are two components of the endosomal-lysosomal system, insulin growth factor II receptor/mannose-6-phosphate receptor and arylsulfatase B. Both are more highly expressed in the A beta-resistant clone, and arylsulfatase is inducible by A beta and hydrogen peroxide. Another lysosomal enzyme, beta-glucuronidase, is also up-regulated in A beta-resistant cells. These results are consistent with the observation that the endosomal-lysosomal system is highly activated in Alzheimer's disease brains, and they raise the possibility that the high expression of endosomal-lysosomal components is important for neuronal survival in the presence of A beta. 相似文献
17.
Fate of Cerebrospinal Fluid-Borne Amyloid β-Peptide: Rapid Clearance into Blood and Appreciable Accumulation by Cerebral Arteries 总被引:1,自引:1,他引:0
J.-F. Ghersi-Egea †P. D. Gorevic ‡J. Ghiso ‡B. Frangione §C. S. Patlak J. D. Fenstermacher 《Journal of neurochemistry》1996,67(2):880-883
Abstract: In Alzheimer's disease, the neuritic or senile amyloid plaques in hippocampus and association cortex, the diffuse plaques in brain areas such as the cerebellum and sensorimotor cortex, and the amyloid deposits in the walls of pial and parenchymal blood vessels are mainly composed of amyloid β-peptides. In the present study, either soluble 40-residue amyloid β-peptide radiolabeled with 125 I (I-sAβ) or [14 C]polyethylene glycol ([14 C]-PEG, a reference material) was briefly infused into one lateral ventricle of normal rats. By 3.5 min, 30% of the I-sAβ was cleared from ventricular CSF into blood; another 30% was removed over the next 6.5 min. No [14 C]PEG was lost from the CSF-brain system during the first 5 min, and only 20% was cleared by 10 min. Much of the I-sAβ that reached the subarachnoid space was retained by pial arteries and arterioles. Virtually no I-sAβ was found in brain. The clearance of amyloid β-peptides from the CSF-brain system, reported herein for normal rats, may be reduced in Alzheimer's disease, thus contributing to amyloid deposition in cerebral tissue and blood vessels. 相似文献
18.
Abraham M. Brown Donna M. Tummolo Kenneth J. Rhodes John R. Hofmann J. Steven Jacobsen June Sonnenberg-Reines 《Journal of neurochemistry》1997,69(3):1204-1212
Abstract: Zinc added to buffered solutions of synthetic β-amyloid peptide (Aβ) has been reported to induce accelerated formation of insoluble aggregates. This observation suggests that zinc may play a role in the formation of senile plaques, which contain Aβ, in Alzheimer's disease. To test this hypothesis under conditions more representative of the brain, we investigated the ability of zinc to induce aggregation of Aβ in freshly drawn canine CSF, which contains the same sequence as human Aβ. Aggregates were separated from CSF by ultracentrifugation before and after incubation with zinc and assayed by quantitative western blotting and ELISA. We found that zinc induced the rapid aggregation of endogenous Aβ in CSF, with an EC50 of 120–140 µ M . The reaction was specific, because most (≥95%) CSF protein remained soluble under conditions where most Aβ was insoluble, as assayed by scanning densitometry of Coomassie-stained gels. Staining of the precipitated material resulted in the visualization of punctate regions that were thioflavin positive or birefringent when stained with Congo red, suggesting the formation of amyloid-related structures. These results suggest that zinc could play a role in amyloid deposition, because there is overlap between the regions of the brain where zinc concentrations are highest and regions with the highest amyloid content. It is surprising that zinc induced the aggregation of endogenous soluble APP at lower concentrations than required for Aβ (EC50 80 µ M ). The possibility that zinc-induced aggregation of APP may precede the deposition of Aβ into plaques is discussed. Investigation of aggregation of Aβ in CSF will aid in assessing the biological relevance of other agents that have been reported to accelerate amyloid formation. 相似文献
19.
20.
β-Amyloid Precursor Protein Isoforms in Various Rat Brain Regions and During Brain Development 总被引:1,自引:0,他引:1
To address the question of the possible functions of different Alzheimer's disease beta-amyloid precursor protein (beta-APP) isoforms in the brain, we studied their expression at different times during postnatal rat brain development and in various regions of the adult rat brain. Polyclonal antibodies directed to two peptide antigens were used. The majority of all beta-APP forms was found to be soluble as revealed by western blot analysis. The highest level of most beta-APP forms was reached in the second postnatal week, which is the time of brain maturation and completion of synaptic connections. Strikingly high concentrations of the Kunitz protease inhibitor-containing beta-APP were present in the adult olfactory bulb, where continuous synaptogenesis occurs in the adult animal. These findings support the idea of an involvement of beta-APPs in the processes of cell differentiation and, probably, in the establishment of synaptic contacts. 相似文献