首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Desensitization of catecholamine stimulated adenylate cyclase (AC) activity is demonstrated in membranes derived from turkey erythrocytes pre-treated with isoproterenol. Membranes from desensitized cells had a loss in maximal catecholamine stimulated adenylate cyclase activity of 104 +/- 13 (pmols/mg protein/10', p less than .001) compared with controls. When adenylate cyclase was maximally stimulated with NaF or Gpp(NH)p, the decrements were 84 +/- 19 (p less than .005) and 92 +/- 32 (p less than .05) pmol/mg protein/10' respectively. There was no change in beta-adrenergic receptor number in membranes derived from treated cells. While the molecular mechanism accounting for the desensitization is uncertain, the data is consistent with the hypothesis that there is a lesion distal to the beta-adrenergic receptor, possibly involving the nucleotide site or the catalytic subunit of adenylate cyclase, causing the desensitization in the isoproterenol treated cells.  相似文献   

2.
S Braun  A Levitzki 《Biochemistry》1979,18(10):2134-2138
The mode of coupling of the adenosine receptor to adenylate cyclase in turkey erythrocyte membranes was probed by two independent approaches. The progressive inactivation of the adenosine receptor by an adenosine receptor affinity label resulted in the proportional reduction in the adenosine plus GppNHp dependent specific activity. In contrast, the intrinsic rate constant (k3), characterizing the process of adenylate cyclase activation by the adenosine-adenosine receptor complex, is independent of the extent of receptor inactivation. This behavior favors the precoupled mechanism, A + R.E: formula: (see text), where the receptor R and the enzyme E are permanently coupled to each other and the adenosine A binds to the receptor and induces the first-order process of cyclase activation to its active form ARE'. The finding that adenosine receptor is permanently coupled to the cyclase catalytic unit is corroborated by the observation that the progressive increase in membrane fluidity has no effect on the rate constant (k3) of adenylate cyclase activation by the adenosine-adenosine receptor complex and that the dose-response curve for adenosine is noncooperative.  相似文献   

3.
4.
5.
Preincubation of turkey erythrocytes with beta-adrenergic agonists leads to an attenuation of the responsiveness of adenylate cyclase to subsequent hormonal stimulation. Recently, our laboratory has shown (Stadel, J. M., Nambi, P., Shorr, R. G. L., Sawyer, D. D., Caron, M. G., and Lefkowitz, R. J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 3173-3177) using 32Pi incorporation that phosphorylation of the beta-adrenergic receptor accompanies this desensitization process. We now report that, as determined from intracellular [gamma-32P] ATP specific activity measurements, this phosphorylation reaction occurs in a stoichiometric fashion. Under basal conditions there exists 0.75 +/- 0.1 mol of phosphate per mol of receptor whereas under maximally desensitized conditions this ratio increases to 2.34 +/- 0.13 mol/mol. This phosphorylation of the receptor is dose-dependent with respect to isoproterenol and exhibits a dose-response curve coincidental with that for isoproterenol-induced desensitization of adenylate cyclase. The time courses for receptor phosphorylation and adenylate cyclase desensitization are identical. In addition, the rate of resensitization of adenylate cyclase activity is comparable to the rate of return of the phosphate/receptor stoichiometries to control levels. Both the phosphorylation and desensitization reactions are pharmacologically specific as indicated by the high degree of stereoselectivity, rank order of catecholamines, and blockade by the specific beta-adrenergic antagonist, propranolol. Incubation of turkey erythrocytes with cAMP and cAMP analogs maximally activates cAMP-dependent protein kinase but only partially mimics isoproterenol in promoting phosphorylation of the receptor in concordance with their partial effects in inducing desensitization. Conversely, activators or inhibitors of Ca2+/calmodulin kinase or protein kinase C do not affect the isoproterenol-induced desensitization. These results indicate that desensitization of turkey erythrocyte adenylate cyclase is highly correlated with phosphorylation of the beta-adrenergic receptor and that these events are mediated, at least partially, by cAMP.  相似文献   

6.
7.
8.
Cytochemical investigations showed adenylate cyclase in the rabbit small intestine enterocytes to be activated both with cholera toxin and sodium fluoride. Following double stimulation of adenylate cyclase in the intestinal enterocytes by the mentioned two substances maximal critical levels of cAMP were attained resulting in self-inhibition of adenylate cyclase; in this case only a low adenylate cyclase activity, if any, could be demonstrated by electron microscopy.  相似文献   

9.
Isolated hepatocytes converted exogenous [α-32P]ATP to cyclic [32P]AMP at high rates. This system was used for kinetic studies of the effects of glucagon, fluoride, free magnesium and free ATP4? on adenylate cyclase. In the absence or presence of glucagon, free Mg2+ activated adenylate cyclase by decreasing the Km for MgATP2? without changing V. Free ATP4? was not a potent inhibitor of adenylate cyclase and the only effect of glucagon was to increase V.Fluoride also increased the V of adenylate cyclase, but, in contrast to the results obtained with glucagon, the effect increased as the concentration of free Mg2+ increased. One explanation of the effect of fluoride, consistent with the idea that free Mg2+ activates adenylate cyclase and free ATP is not an inhibitor, is that fluoride increases the affinity of the enzyme for Mg2+. Weak inhibition of adenylate cyclase by ATP4? in the presence of fluoride cannot be excluded.  相似文献   

10.
R Jürss  M Hekman  E J Helmreich 《Biochemistry》1985,24(13):3349-3354
A protease that can be inhibited by glutathione, dithiothreitol, and o-phenanthroline but not by ethylenediaminetetraacetic acid converts the 50-kilodalton beta-adrenergic receptor in turkey erythrocyte membranes to a 40-kDa polypeptide which retains the specific ligand binding site. This conversion is attenuated in intact erythrocytes. The large 50-kDa peptide contains N-linked, complex carbohydrates and is retained on wheat germ agglutinin-Sepharose. The 40-kDa product of proteolysis does not bind to the wheat germ agglutinin and can thus be separated from the 50-kDa polypeptide by lectin chromatography. However, the large difference in molecular weights of the two receptor peptides cannot be accounted for solely by the different extent of glycosylation.  相似文献   

11.
Regulation of adenylate cyclase by adenosine   总被引:15,自引:0,他引:15  
Summary Adenosine may well be as important in the regulation of adenylate cyclase as hormones. Sattin and Rall first demonstrated in 1970 that adenosine was a potent stimulator of adenylate cyclase in the brain. However, adenosine is an equally potent inhibitor of adenylate cyclase in other cells such as adipocytes. The concentration of adenosine required for this regulation of adenylate cyclase is in the nanomolar range (10 to 100 nm). Both the inhibitory and stimulatory effects of low concentrations of adenosine on adenylate cyclase are antagonized by methylxanthines. This antagonism of adenosine action may account for all or part of the effects of methyl xanthines on cyclic AMP levels in many tissues. Adenosine appears to be a particularly important endogenous regulator of adenylate cyclase in brain, smooth muscle and fat cells. Under conditions in which intracellular AMP rises, adenosine formation and release is accelerated. In addition to its direct effects on adenylate cyclase, adenosine (at higher concentrations approaching millimolar) exerts multiple effects on cellular metabolism as a result of its intracellular metabolism and especially conversion to nucleotides.The effects of nanomolar concentrations of adenosine on adenylate cyclase are mediated through an adenosine site possessing strict structural specificity for the ribose moiety of the molecule (the R adenosine site) which is presumably located on the external surface of the plasma membrane. In brain, lung, platelets, bone, lymphocytes, skin, adrenals, Leydig tumors, and coronary arteries adenosine stimulates adenylate cyclase via this site. However, in rat adipocytes, brain astroblasts and ventricular myocardium adenosine inhibits adenylate cyclase through the R or adenosine site. Although the R site requires an intact ribose moiety, adenosine analogs modified in the purine ring such as N6-phenylisopropyladenosine appear to be potent agonists for this site. All effects of adenosine mediated via the R site are competitively antagonized by methyl xanthines.The effects of micromolar concentrations of adenosine appear to be mediated via a site with strict structural specificity with respect to the purine moiety of the molecule (the P or adenine adenosine site). This P site is postulated to be located on the intracellular face of the plasma membrane and mediates the effects of adenosine due to conversion of adenosine to 5-AMP or perhaps other nucleotides. The effects of high concentrations of adenosine are always inhibitory to adenylate cyclase activity, are readily demonstrated in broken cell preparations, and are unaffected by methylxanthines. An intact purine ring is required for these adenosine effects but modifications of the ribose moiety of the molecule generally increases the potency of the analog. A prime example is 2,5-dideoxyadenosine, which is the most potent known R-site specific adenosine analog.We propose a unitary model which explains both the stimulatory and inhibitory effects of low concentrations of adenosine on adenylate cyclase. In brief, adenylate cyclase is postulated to exist in three interconvertible activity states: (i) an inactive state (E0); (ii) a GTP-liganded state with high activity (EGTP); and (iii) a GDP-liganded state (EGDP) which is inactive in cells where adenosine stimulates adenylate cyclase, but active in cells where adenosine inhibits adenylate cyclase. We postulate that the enzyme cycles through these states in the following manner: the E0 state binds GTP and forms the EGTP state; hydrolysis of bound GTP converts the EGTP to the EGDP state; and release of bound GDP converts EGDP to the E0 state. The E0 state is the only form of the enzyme which can be stimulated by either hormones or GTP and its formation from the EGDP state is rate-limiting in this cycle. The conversion of EGDP to E0 regulates the ability of hormones and GTP to activate adenylate cyclase and is postulated to be adenosine sensitive.In cells where both EGDP and E0 states are inactive, adenosine stimulates adenylate cyclase activity. In cells where E0 is inactive, but EGDP is active, adenosine inhibits adenylate cyclase activity. In addition we suggest that in cells where adenosine inhibits adenylate cyclase activity (cells postulated to have an EGDP state which is active) high concentrations of GTP favor accumulation of the enzyme in EGDP and thus are inhibitory to activity. Prostaglandins may also regulate adenylate cyclase in a manner similar to that described above for adenosine.We conclude that adenosine is an important regulator of adenylate cyclase whose role has only been appreciated recently. Further studies are warranted on both its binding to cells and mechanisms by which it regulates adenylate cyclase.This work was supported by United States Public Health Service Research Grant AM-10149 from the National Institute of Arthritis, Metabolism and Digestive Diseases.  相似文献   

12.
Preincubation of duck erythrocytes with tumor promoting phorbol diesters or catecholamines leads to attenuation of adenylate cyclase activity. 12-0-Tetradecanoyl phorbol-13-acetate (TPA) and phorbol 12,13-dibutyrate treatment induced a 38% and 30% desensitization of isoproterenol-stimulated adenylate cyclase activity, respectively. In contrast, the inactive phorbol diester, 4 alpha-phorbol 12,13-didecanoate, was without effect in promoting adenylate cyclase desensitization. The catecholamine isoproterenol induced a 51% desensitization. Incubation of 32Pi labeled erythrocytes with TPA promoted a 3- to 4-fold increase in phosphorylation of the beta-adrenergic receptor as did incubation with isoproterenol. Treatment of the cells with both TPA and isoproterenol together resulted in desensitization and receptor phosphorylation which were no greater than those observed with either agent alone. These data suggest a potential role for protein kinase C in regulating beta-adrenergic receptor function.  相似文献   

13.
14.
The turkey erythrocyte beta 1-adrenergic receptor can be purified by affinity chromatography on alprenolol-Sepharose and characterized by photoaffinity labeling with N-(p-azido-m-[125I]iodobenzyl)-carazolol. Through the use of the specific glycosidases neuraminidase and endo-beta-N-acetylglucosaminidase H and affinity chromatography on lectin-Sepharose gels, we show here that the receptor is an N-glycosyl protein that contains complex carbohydrate chains. No high-mannose carbohydrate chains appear to be present. The binding of the radiolabeled antagonist dihydroalprenolol to the receptor is affected neither by the enzymic treatments nor by the presence of lectins, suggesting that the carbohydrate moiety is not involved in the catecholamine binding site.  相似文献   

15.
J M Stadel  R Rebar  S T Crooke 《Biochemistry》1987,26(18):5861-5866
Preincubation of turkey erythrocytes with isoproterenol is associated with (1) 50-60% attenuation of agonist-stimulated adenylate cyclase activity, (2) altered mobility of the beta-adrenergic receptor on sodium dodecyl sulfate-polyacrylamide gels, and (3) increased phosphorylation of the beta-adrenergic receptor. Using a low-cross-linked polyacrylamide gel, the beta-adrenergic receptor protein from isoproterenol-desensitized cells, labeled with 32P or with the photoaffinity label 125I-(p-azidobenzyl)carazolol, can be resolved into a doublet (Mr congruent to 37,000 and Mr congruent to 41,000) as compared to a single Mr congruent to 37,000 beta-adrenergic receptor protein from control erythrocytes. The appearance of the doublet was dependent on the concentration of agonist used to desensitize the cells. Incubation of erythrocytes with dibutyryl-cAMP did not promote formation of the doublet but decreased agonist-stimulated adenylate cyclase activity 40-50%. Limited-digestion peptide maps of 32P-labeled beta-adrenergic receptors using papain revealed a unique phosphopeptide in the larger molecular weight band (Mr congruent to 41,000) of the doublet from the agonist-desensitized preparation that was absent in the peptide maps of the smaller band (Mr congruent to 37,000), as well as control or dibutyryl-cAMP-desensitized receptor. These data provide evidence that maximal agonist-induced desensitization of adenylate cyclase coupled beta-adrenergic receptors in turkey erythrocytes occurs by a two-step mechanism.  相似文献   

16.
The stimulatory and inhibitory effects of adenosien of the adenylate cyclases of human and pig platelets were studied. Stimulation occurred at lower concentrations than did inhibition, and stimulatory effect was prevented by methylxanthines. Stimulation by adenosine was immediate in onset and was reversible, under conditions when cyclic AMP formation was linear with respect to time and protein concentration.The stimulatory and inhibitory effects could be distinguished further by the use of various analogues of adenosine and could be prevented by adenosine deaminase. The data suggest that both stimulation and inhibition were due to adenosine itself and not one of its degradation products and that in the platelet preparation, neither formation nor degradation of adenosine during the adenylate cyclase incubation appreciably influenced measured activity.Stimulation by adenosine was additive with the effects of GMP-P(NH)P, and α- or β-adrenergic stimulation, but was abolished by prostaglandin E1 or by NaF. Prostaglandin E1 and NaF increased the sensitivity of adenylate cyclase to inhibition by adenosine. The data suggests that guanly-5′-yl(β-γ imino)diphosphate and/or adrenergic stimulation and adenosine exert their effects on adenylate cyclase by distinct mechanisms, but that prostaglandin E1 or F? and adenosine increase enzyme activity by mechanisms which may involve common intermediates in the coupling to adenylate cyclase.  相似文献   

17.
Adenylate cyclase activity can be stimulated in goldfish retina by forskolin, GTP, NaF, dopamine and serotonin. Pharmacological characterisation of the dopamine and serotonin responses shows them to be mediated through specific receptors. A synergistic increase in the level of C-AMP is observed following application of forskolin together with NaF, GTP, dopamine, or serotonin. Dopamine and serotonin with or without GTP produced an additive response. When NaF and GTP are both together their combined effect in elevating C-AMP levels in the presence or absence of forskolin is less than additive. These results suggest that forskolin may be interacting with a Gs protein as well as directly stimulating adenylate cyclase. Increases in the level of C-AMP observed following application of forskolin or dopamine are decreased by carbachol in a dose-dependent manner. The carbachol response is blocked by pertussis toxin and is insensitive to the phosphodiesterase inhibitor, IBMX, suggesting an involvement of a Gi protein. Carbachol attenuation of elevated C-AMP levels is inhibited by atropine while pirenzapine has little effect suggesting the presence of a M2-type receptor.  相似文献   

18.
It has recently been suggested that adenylate cyclase activity is controlled by a regulatory cycle consisting of two reactions: a hormone induced formation of the active adenylate cyclase-GTP complex, and a subsequent turn-off reaction in which hydrolysis of the bound nucleotide reverts the system to the inactive state. To test this model each of the two reactions was measured separately and their rate constants were used to estimate the steady state adenylate cyclase and GTPase activities. The first order rate constants were kon = 3 min-1 for the activation reaction and koff = 15 min-1 for the turn-off reaction. Substitution of these rate constants in the steady state equation of the regulatory cycle gave values of hormone stimulated adenylate cyclase and GTPase activities similar to those determined by direct measurements. Treatment of the adenylate cyclase with cholera toxin caused a decrease of 96% in the rate constant of the turn-off reaction. In this case too the activities calculated from the steady state equation were in good agreement with those determined directly.  相似文献   

19.
《The EMBO journal》1986,5(12):3408
[This corrects the article on p. 1509 in vol. 5, PMID: 3017696.].  相似文献   

20.
Adenosine caused a dose-dependent stimulation of adenylate cyclase in homogenates from rat striatum and tuberculum olfactorium (200 and 300% stimulation by 100 muM adenosine). The effect of adenosine was not antagonized by haloperidol. Subcellular fractionation suggested that adenosine stimulates a different adenylate cyclase than dopamine. Basal adenylate cyclase activity in freshly prepared homogenates was reduced by dialysis and by the addition of adenosine deaminase. Basal adenylate cyclase activity was enchanced by papaverine and dipyridamole, but reduced by theophylline and isobutylmethylxanthine. The results are compatible with the opinion that endogenous adenosine is capable of activating adenylate cyclase in these areas of the rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号