首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple assay formats have been developed for the pharmacological characterization of G-protein-coupled receptors (GPCRs) and for screening orphan receptors. However, the increased pace of target identification and the rapid expansion of compound libraries present the need to develop novel assay formats capable of screening multiple GPCRs simultaneously. To address this need, the authors have developed a generic dual-reporter gene assay that can detect ligand activity at 2 GPCRs within the same assay. Two stable HEK293 cell lines were generated expressing either a firefly (Photinus) luciferase gene under the control of multiple cAMP-response elements (CREs) or a Renilla luciferase gene under the control of multiple 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive elements (TREs). Coseeded reporter cells were used to assess ligand binding activity at both Galphas-and Galphaq-coupled receptors. By selectively coexpressing receptors with a chimeric G-protein, agonist activity was assessed at Galphai/o-coupled receptors in combination with either Galphas-or Galphaq-coupled receptors. The dual-reporter gene assay was shown to be capable of simultaneously performing duplexed screens for a variety of agonist and/or antagonist combinations. The data generated from the duplexed reporter assays were pharmacologically relevant, and Z' factor analysis indicated the suitability of both agonist and antagonist screens for use in high-throughput screening.  相似文献   

2.
G protein-coupled receptors (GPCRs) are involved in various physiological processes, such as behavior changes, mood alteration, and regulation of immune-system activity. Thus, GPCRs are popular targets in drug screening, and a well-designed assay can speed up the discovery of novel drug candidates. The Promega cAMP-Glo Assay is a homogenous bioluminescent assay to monitor changes in intracellular cyclic adenosine monophosphate (cAMP) concentrations in response to the effect of an agonist, antagonist, or test compound on GPCRs. Together with the Labcyte Echo 555 acoustic liquid handler and the Deerac Fluidics Equator HTS reagent dispenser, this setup can screen compounds in 96-, 384-, and 1536-well formats for their effects on GPCRs. Here, we describe our optimization of the cAMP-Glo assay in 1536-well format, validate the pharmacology, and assess the assay robustness for HTS. We have successfully demonstrated the use of the assay in primary screening applications of known agonist and antagonist compounds, and confirmed the primary hits via secondary screening. Implementing a high-throughput miniaturized GPCR assay as demonstrated here allows effective screening for potential drug candidates.  相似文献   

3.
In this study, the authors developed HEK293 cell lines that stably coexpressed optimal amounts of beta-arrestin2-Rluc and VENUS fusions of G protein-coupled receptors (GPCRs) belonging to both class A and class B receptors, which include receptors that interact transiently or stably with beta-arrestins. This allowed the use of a bioluminescence resonance energy transfer (BRET) 1- beta-arrestin2 translocation assay to quantify receptor activation or inhibition. One of the developed cell lines coexpressing CCR5-VENUS and beta-arrestin2- Renilla luciferase was then used for high-throughput screening (HTS) for antagonists of the chemokine receptor CCR5, the primary co-receptor for HIV. A total of 26,000 compounds were screened for inhibition of the agonist-promoted beta-arrestin2 recruitment to CCR5, and 12 compounds were found to specifically inhibit the agonist-induced beta-arrestin2 recruitment to CCR5. Three of the potential hits were further tested using other functional assays, and their abilities to inhibit CCR5 agonist-promoted signaling were confirmed. This is the 1st study describing a BRET1-beta-arrestin recruitment assay in stable mammalian cells and its successful application in HTS for GPCRs antagonists.  相似文献   

4.
Fluorescent detection of calcium mobilization has been used successfully to identify modulators of G-protein-coupled receptors (GPCRs); however, inherent issues with fluorescence may limit its potential for high-throughput screening miniaturization. The data presented here demonstrate that the calcium-sensitive photoprotein aequorin (AequoScreen), when compared with FLUO-4 in the same cellular background, allows for miniaturization of functional kinetic calcium flux assays, in which the rank order of potency and efficacy was maintained for a series of diverse small-molecule modulators. Small-volume (<10 microL) 384- and 1536-well aequorin assays were implemented by integration of acoustic dispensing (Echo 550) and kinetic flash luminometry (CyBi Lumax). The enhanced high signal-to-background ratios observed relative to fluorescence were readily manipulated by altering per-well cell densities and yielded acceptable screening statistics in miniaturized format for both agonist and antagonist screening scenarios. In addition, the authors demonstrate the feasibility of using agonist concentrations less than EC(50) in a miniaturized antagonist assay. These features, coupled with improved sample handling, should enhance sensitivity and provide the benefits of miniaturization including cost reduction and throughput gains.  相似文献   

5.
Ligand binding studies reveal information about affinity to G protein-coupled receptors (GPCRs) rather than functional properties. Increase in intracellular Ca(2+) appears to represent a universal second messenger signal for a majority of recombinant GPCRs. Here, we exploit Ca(2+) signaling as a fast and sensitive functional screening method for a number of GPCRs coupled to different G proteins. Ca(2+) fluorescence measurements are performed using Oregon Green 488 BAPTA-1/AM and a microplate reader equipped with an injector. Buffer alone or test compounds dissolved in buffer are injected into a cell suspension, and fluorescence intensity is recorded for 30 s. Each of the GPCRs tested--G(q)-coupled P2Y(2), G(s)-coupled dopamine D1 and D5, G(i)-coupled dopamine D2L, and G(q/11)-coupled muscarinic acetylcholine M1--yielded a significant rise in intracellular free [Ca(2+)] on agonist stimulation. Agonist stimulation was dose dependent, as shown for ATP or UTP stimulation of P2Y(2) receptors (EC(50) = 1 microM), SKF38393 stimulation of hD1 and hD5 (EC(50) = 18.1 nM and 2.7 nM), and quinpirole at hD2L (EC(50) = 6.5 nM). SCH23390 (at hD1 and hD5) and spiperone, haloperidol, and clozapine (at hD2L) competitively antagonized the Ca(2+) response. Furthermore, the Ca(2+) assay served to screen suramin analogs for antagonistic activity at P2Y(2) receptors. Screening at dopamine receptors revealed LE300, a new lead for a dopamine receptor antagonist. Advantages of the assay include fast and simple 96- or 384-well plate format (high-throughput screening), use of a visible light-excitable fluorescent dye, applicability to a majority of GPCRs, and simultaneous analysis of distinct Ca(2+) fluxes.  相似文献   

6.
Discovery of novel agonists and antagonists for G protein-coupled receptors (GPCRs) relies heavily on cell-based assays because determination of functional consequences of receptor engagement is often desirable. Currently, there are several key parameters measured to achieve this, including mobilization of intracellular Ca2+ and formation of cyclic adenosine monophosphate or inositol triphosphate. However, no single assay platform is suitable for all situations, and all of the assays have limitations. The authors have developed a new high-throughput homogeneous assay platform for GPCR discovery as an alternative to current assays, which employs detection of phosphorylation of the key signaling molecule p42/44 MAP kinase (ERK 1/2). The authors show that ERK 1/2 is consistently activated in cells stimulated by Gq-coupled GPCRs and provides a new high-throughput platform for screening GPCR drug candidates. The activation of ERK 1/2 in Gq-coupled GPCR systems generates comparable pharmacological data for receptor agonist and antagonist data obtained by other GPCR activation measurement techniques.  相似文献   

7.
G protein-coupled receptors (GPCRs) are important targets for medicinal agents. Four different G protein families, G(s), G(i), G(q), and G(12), engage in their linkage to activation of receptor-specific signal transduction pathways. G(12) proteins were more recently studied, and upon activation by GPCRs they mediate activation of RhoGTPase guanine nucleotide exchange factors (RhoGEFs), which in turn activate the small GTPase RhoA. RhoA is involved in many cellular and physiological aspects, and a dysfunction of the G(12/13)-Rho pathway can lead to hypertension, cardiovascular diseases, stroke, impaired wound healing and immune cell functions, cancer progression and metastasis, or asthma. In this study, regulator of G protein signaling (RGS) domain-containing RhoGEFs were tagged with enhanced green fluorescent protein (EGFP) to detect their subcellular localization and translocation upon receptor activation. Constitutively active Galpha(12) and Galpha(13) mutants induced redistribution of these RhoGEFs from the cytosol to the plasma membrane. Furthermore, a pronounced and rapid translocation of p115-RhoGEF from the cytosol to the plasma membrane was observed upon activation of several G(12/13)-coupled GPCRs in a cell type-independent fashion. Plasma membrane translocation of p115-RhoGEF stimulated by a GPCR agonist could be completely and rapidly reversed by subsequent application of an antagonist for the respective GPCR, that is, p115-RhoGEF relocated back to the cytosol. The translocation of RhoGEF by G(12/13)-linked GPCRs can be quantified and therefore used for pharmacological studies of the pathway, and to discover active compounds in a G(12/13)-related disease context.  相似文献   

8.
G-protein-coupled receptors (GPCRs) represent one of the largest gene families in the human genome and have long been regarded as valuable targets for small-molecule drugs. The authors describe a new functional assay that directly monitors GPCR activation. It is based on the interaction between beta-arrestin and ligand-activated GPCRs and uses enzyme fragment complementation technology. In this format, a GPCR of interest is fused to a small (approximately 4 kDa), optimized alpha fragment peptide (termed ProLink) derived from beta-galactosidase, and beta-arrestin is fused to an N-terminal deletion mutant of beta-galactosidase (termed the enzyme acceptor [EA]). Upon activation of the receptor, the beta-arrestin-EA fusion protein binds the activated GPCR. This interaction drives enzyme fragment complementation, resulting in an active beta-galactosidase enzyme, and thus GPCR activation can be determined by quantifying beta-galactosidase activity. In this report, the authors demonstrate the utility of this technology to monitor GPCR activation and validate the approach using a Galphai-coupled GPCR, somatostatin receptor 2. Potential application to high-throughput screens in both agonist and antagonist screening modes is exemplified.  相似文献   

9.
A variety of functional assays are available for agonist or antagonist screening of G protein-coupled receptors (GPCRs), but it is a priori not predictable which assay is the most suitable to identify agonists or antagonists of GPCRs with therapeutic value in humans. More specifically, it is not known how a given set of GPCR agonists compares in different functional assays with respect to potency and efficacy and whether the level of the signaling cascade that is analyzed has any impact on the detection of agonistic responses. To address this question, the authors used the recently cloned human S1P(5) receptor as a model and compared a set of 3 lipid ligands (sphingosine 1-phosphate [S1P], dihydro sphingosine 1-phosphate [dhS1P], and sphingosine) in 5 different functional assays: GTPgammaS binding, inhibition of adenylyl cyclase activity, mobilization of intracellular Ca(2+) via the FLIPR and aequorin technology, and MAP kinase (ERK1/2) activation. S1P induced agonistic responses in all except the ERK1/2 assays with EC(50) values varying by a factor of 10. Whereas dhS1P was identified as a partial agonist in the GTPgammaS assay, it behaved as a full agonist in all other settings. Sphingosine displayed partial agonistic activity exclusively in GTPgammaS binding assays. The findings suggest that assays in a given cellular background may vary significantly with respect to suitability for agonist finding and that ligands producing a response may not readily be detectable in all agonist assays.  相似文献   

10.
Y Shi  R Sheng  T Zhong  Y Xu  X Chen  D Yang  Y Sun  F Yang  Y Hu  N Zhou 《PloS one》2012,7(8):e42185
The histamine H3 receptor (H3R) has been recognized as a promising target for the treatment of various central and peripheral nervous system diseases. In this study, a non-imidazole compound, ZEL-H16, was identified as a novel histamine H3 receptor agonist. ZEL-H16 was found to bind to human H3R with a Ki value of approximately 2.07 nM and 4.36 nM to rat H3R. Further characterization indicated that ZEL-H16 behaved as a partial agonist on the inhibition of forskolin-stimulated cAMP accumulation (the efficacy was 60% of that of histamine) and activation of ERK1/2 signaling (the efficacy was 50% of that of histamine) at H3 receptors, but acted as a full agonist just like histamin in the guinea-pig ileum contraction assay. These effects were blocked by pertussis toxin and H3 receptor specific antagonist thioperamide. ZEL-H16 showed no agonist or antagonist activities at the cloned human histamine H1, H2, and H4 receptors and other biogenic amine GPCRs in the CRE-driven reporter assay. Furthermore, our present data demonstrated that treatment of ZEL-H16 resulted in intensive H3 receptor internalization and delayed recycling to the cell surface as compared to that of control with treatment of histamine. Thus, ZEL-H16 is a novel and potent nonimidazole agonist of H3R, which might serve as a pharmacological tool for future investigations or as possible therapeutic agent of H3R.  相似文献   

11.
G protein-coupled receptors (GPCRs) are a superfamily of proteins that include some of the most important drug targets in the pharmaceutical industry. Despite the success of this group of drugs, there remains a need to identify GPCR-targeted drugs with greater selectivity, to develop screening assays for validated targets, and to identify ligands for orphan receptors. To address these challenges, the authors have created a multiplexed GPCR assay that measures greater than 3000 receptor: ligand interactions in a single microplate. The multiplexed assay is generated by combining reverse transfection in a 96-well plate format with a calcium flux readout. This assay quantitatively measures receptor activation and inhibition and permits the determination of compound potency and selectivity for entire families of GPCRs in parallel. To expand the number of GPCR targets that may be screened in this system, receptors are cotransfected with plasmids encoding a promiscuous G protein, permitting the analysis of receptors that do not normally mobilize intracellular calcium upon activation. The authors demonstrate the utility of reverse transfection cell microarrays to GPCR-targeted drug discovery with examples of ligand selectivity screening against a panel of GPCRs as well as dose-dependent titrations of selected agonists and antagonists.  相似文献   

12.
G-protein-coupled receptors (GPCRs) are crucial cell surface receptors that transmit signals from a wide range of extracellular ligands. Indeed, 40% to 50% of all marketed drugs are thought to modulate GPCR activity, making them the major class of targets in the drug discovery process. Binding assays are widely used to identify high-affinity, selective, and potent GPCR drugs. In this field, the use of radiolabeled ligands has remained so far the gold-standard method. Here the authors report a less hazardous alternative for high-throughput screening (HTS) applications by the setup of a nonradioactive fluorescence-based technology named Tag-lite(?). Selective binding of various fluorescent ligands, either peptidic or not, covering a large panel of GPCRs from different classes is illustrated, particularly for chemokine (CXCR4), opioid (δ, μ, and κ), and cholecystokinin (CCK1 and CCK2) receptors. Affinity constants of well-known pharmacological agents of numerous GPCRs are in line with values published in the literature. The authors clearly demonstrate that the Tag-lite binding assay format can be successfully and reproducibly applied by using different cellular materials such as transient or stable recombinant cells lines expressing SNAP-tagged GPCR. Such fluorescent-based binding assays can be performed with adherent cells or cells in suspension, in 96- or 384-well plates. Altogether, this new technology offers great advantages in terms of flexibility, rapidity, and user-friendliness; allows easy miniaturization; and makes it completely suitable for HTS applications.  相似文献   

13.
14.
The authors report the characterization of a novel cyclic adenosine monophosphate (cAMP)-responsive luciferase (Luc) reporter that exhibits optimal performance in high-throughput screens of agonist binding at G protein-coupled receptors (GPCRs). This reporter (RIP1-CRE-Luc) incorporates a nonpalindromic cAMP response element (CRE) originally identified within the 5' promoter of the rat insulin 1 gene (RIP1). When multimerized and fused to the coding sequence of firefly luciferase, the CRE of RIP1 allows for the efficient activation of luciferase expression by cAMP-elevating agents or by cAMP itself. Of primary importance is the demonstration that RIP1-CRE-Luc does not exhibit the relatively high levels of basal luciferase activity inherent to reporters incorporating the palindromic CRE first identified in the somatostatin gene promoter. Furthermore, studies of HEK cells expressing class II GPCRs for the cAMP-elevating hormones GLP-1, GIP, and glucagon demonstrate that RIP1-CRE-Luc affords a much wider dynamic range of activation upon exposure to agonist. Such properties of RIP1-CRE-Luc indicate its usefulness as a new and powerful tool for the identification of small-molecule compounds with receptor-stimulating actions or for the identification of constitutively active orphan receptors with cAMP-signaling properties.  相似文献   

15.
Pelaprat D 《Peptides》2006,27(10):2476-2487
Three neurotensin (NT) receptors have been cloned to date, two of which, NTS1 and NTS2, belong to the family of seven transmembrane domain receptors coupled to G proteins (GPCRs). NTS1 and NTS2 may activate multiple signal transduction pathways, involving several G proteins. However, whereas NT acts as an agonist towards all NTS1-mediated pathways, this peptide may exert either agonist or antagonist activities, depending on the NTS2-mediated pathway in question. Studies on these receptors reinforce the concept of independence between multiple signals potentially mediated through a single GPCR, generating a wide diversity of functional responses depending on the host cell and the ligand.  相似文献   

16.
The concept of functional selectivity offers great potential for the development of drugs that selectively activate a specific intracellular signaling pathway. During the last few years, it has become possible to systematically analyse compound libraries on G protein-coupled receptors (GPCRs) for this ‘biased’ form of signaling. We screened over 800 compounds targeting the class of adenosine A1 receptors using a β-arrestin-mediated signaling assay in U2OS cells as a G protein-independent readout for GPCR activation. A selection of compounds was further analysed in a G protein-mediated GTPγS assay. Additionally, receptor affinity of these compounds was determined in a radioligand binding assay with the agonist [3H]CCPA. Of all compounds tested, only LUF5589 9 might be considered as functionally selective for the G protein-dependent pathway, particularly in view of a likely overestimation of β-arrestin signaling in the U2OS cells. Altogether, our study shows that functionally selective ligands for the adenosine A1 receptor are rare, if existing at all. A thorough analysis of biased signaling on other GPCRs also reveals that only very few compounds can be considered functionally selective. This might indicate that the concept of functional selectivity is less common than speculated.  相似文献   

17.
Enzymes are often considered less "druggable" targets than ligand-regulated proteins such as G-protein-coupled receptors, ion channels, or other hormone receptors. Reasons for this include cellular location (intracellular vs. cell surface), typically lower affinities for the binding of small molecules compared to ligand-specific receptors, and binding (catalytic) sites that are often charged or highly polar. A practical drawback to the discovery of compounds targeting enzymes is that screening of compound libraries is typically carried out in cell-free activity assays using purified protein in an inherently artificial environment. Cell-based assays, although often arduous to design for enzyme targets, are the preferred discovery tool for the screening of large compound libraries. The authors have recently described a novel cell-based approach to screening for inhibitors of a phosphatase enzyme and now report on the development and implementation of a homogeneous 3456-well plate assay for D-amino acid oxidase (DAO). Human DAO was stably expressed in Chinese hamster ovary (CHO) cells, and its activity was measured as the amount of hydrogen peroxide detected in the growth medium following feeding the cells with D-serine. In less than 12 weeks, the authors proved the concept in 96-and then 384-well formats, miniaturized the assay to the 3456-well (nanoplate) scale, and screened a library containing more than 1 million compounds. They have identified several cell-permeable inhibitors of DAO from this cell-based high-throughput screening, which provided the discovery program with a few novel and attractive lead structures.  相似文献   

18.
G-protein-coupled receptors (GPCRs) represent the largest class of drug targets, accounting for more than 40% of marketed drugs; however, discovery efforts for many GPCRs have failed to provide viable drug candidates. Historically, drug discovery efforts have focused on developing ligands that act at the orthosteric site of the endogenous agonist. Recently, efforts have focused on functional assay paradigms and the discovery of ligands that act at allosteric sites to modulate receptor function in either a positive, negative, or neutral manner. Allosteric modulators have numerous advantages over orthosteric ligands, including high subtype selectivity; the ability to mimic physiological conditions; the lack of densensitization, downregulation, and internalization; and reduced side effects. Despite these virtues, challenging issues have now arisen for allosteric modulators of metabotropic glutamate receptors (mGluRs): shallow SAR, ligand-directed trafficking, and the identification of subtle "molecular switches" that modulate the modes of pharmacology. Here, we will discuss the impact of modest structural changes to multiple mGluR allosteric ligands scaffolds that unexpectedly modulate pharmacology and raise concerns over metabolism and the pharmacology of metabolites.  相似文献   

19.
Abstract

Accompanying the advances in basic biology of G protein-coupled receptors (GPCRs) is the practical need among biopharmaceutical companies for sensitive assays to assess GPCR function, particularly formats that are compatible with high-throughput drug screening. Here we describe a novel cell-based assay format for the high-throughput detection of ligands for G, protein-coupled receptors. Two Gi-GPCRs, μ-opioid receptor (μ-OPR) and 5-hydroxytryptamine receptor la (5HTlaR) are employed as model receptor targets. The key feature of this assay system is the isolation of stable, clonal Chinese hamster ovary (CHO) cell lines that carry three separate expression plasmids: (1) a chimeric Gq/i5 protein (which re-directs a negative Gi-type signal to a positive Gq-type response), (2) a given Gi-GPCR, and (3) a β-lactamase (βla) reporter gene responsive to Gi-GPCR signaling. Cell-based assays built using this format show appropriate rank order of potency among a reference set of receptor agonist and antagonist compounds. Such assays are also robust, reliable, and can be used for industrial-scale applications such as high-throughput screening for drug leads.  相似文献   

20.
We have provided the first evidence for specific heteromerization between the α(1A)-adrenoceptor (α(1A)AR) and CXC chemokine receptor 2 (CXCR2) in live cells. α(1A)AR and CXCR2 are both expressed in areas such as the stromal smooth muscle layer of the prostate. By utilizing the G protein-coupled receptor (GPCR) heteromer identification technology on the live cell-based bioluminescence resonance energy transfer (BRET) assay platform, our studies in human embryonic kidney 293 cells have identified norepinephrine-dependent β-arrestin recruitment that was in turn dependent upon co-expression of α(1A)AR with CXCR2. These findings have been supported by co-localization observed using confocal microscopy. This norepinephrine-dependent β-arrestin recruitment was inhibited not only by the α(1)AR antagonist Terazosin but also by the CXCR2-specific allosteric inverse agonist SB265610. Furthermore, Labetalol, which is marketed for hypertension as a nonselective β-adrenoceptor antagonist with α(1)AR antagonist properties, was identified as a heteromer-specific-biased agonist exhibiting partial agonism for inositol phosphate production but essentially full agonism for β-arrestin recruitment at the α(1A)AR-CXCR2 heteromer. Finally, bioluminescence resonance energy transfer studies with both receptors tagged suggest that α(1A)AR-CXCR2 heteromerization occurs constitutively and is not modulated by ligand. These findings support the concept of GPCR heteromer complexes exhibiting distinct pharmacology, thereby providing additional mechanisms through which GPCRs can potentially achieve their diverse biological functions. This has important implications for the use and future development of pharmaceuticals targeting these receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号