首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We have previously reported the Ras-dependent activation of the mitogen-activated protein kinases p44 and p42, also termed extracellular signal-regulated kinases (ERK)1 and 2 (ERK1/2), mediated through Gs-coupled serotonin receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Whereas Gi- and Gq-coupled receptors have been shown to activate Ras through the guanine nucleotide exchange factor (GEF) called Ras-GRF1 (CDC25Mm) by binding of Ca2+/calmodulin to its N-terminal IQ domain, the mechanism of Ras activation through Gs-coupled receptors is not fully understood. We report the endogenous expression of Ras-GRF1 in HEK293 cells. Serotonin stimulation of HEK293 cells transiently expressing Gs-coupled 5-HT7 receptors induced protein kinase A-dependent phosphorylation of the endogenous human Ras-GRF1 on Ser927 and of transfected mouse Ras-GRF1 on Ser916. Ras-GRF1 overexpression increased basal and serotonin-stimulated ERK1/2 phosphorylation. Mutations of Ser916 inhibiting (Ser916Ala) or mimicking (Ser916Asp/Glu) phosphorylation did not alter these effects. However, the deletion of amino acids 1-225, including the Ca2+/calmodulin-binding IQ domain, from Ras-GRF1 reduced both basal and serotonin-stimulated ERK1/2 phosphorylation. Furthermore, serotonin treatment of HEK293 cells stably expressing 5-HT7 receptors increased [Ca2+]i, and the serotonin-induced ERK1/2 phosphorylation was Ca2+-dependent. Therefore, both cAMP and Ca2+ may contribute to the Ras-dependent ERK1/2 activation after 5-HT7 receptor stimulation, through activation of a guanine nucleotide exchange factor with activity towards Ras.  相似文献   

4.
We investigated whether thrombin, the final activator of coagulation cascade, regulates expression of matrix metalloproteinases (MMP)-9 in human monocytes.We show that thrombin stimulation induced MMP-9 secretion of monocytes dose- and time-dependently as revealed by gelatin zymography. Real-time RT-PCR and Western blot analysis demonstrated that thrombin up-regulated mRNA and protein levels of MMP-9. Pre-incubation with anti-protease-activated receptor (PAR)-1 or anti-PAR-3 antibody partially inhibited the thrombin-induced MMP-9 secretion. Simultaneous incubation with both showed synergistic effect, indicating the involvement of both receptors in this thrombin effect. BAPTA, a Ca2+ chelator, abolished the thrombin-induced MMP-9 secretion, indicating the requirement of Ca2+ mobilization in this process. Inhibition of thrombin-induced MMP-9 secretion by either MEK inhibitor or p38 kinase inhibitor revealed that the thrombin effect was mediated by both ERK1/2 and p38 pathways. The activation of NFκB by thrombin as demonstrated by electromobility shift assay was also shown to be critical to the thrombin-induced MMP-9 up-regulation.  相似文献   

5.
6.
The growth factor heregulin-β1 (HRG-β1), which is expressed in breast cancer, activates the HER-2 signaling pathway through induction of heterodimeric complexes of HER-2 with HER-3 or HER-4. It has been shown in many studies that HRG-β1 induces the tumorigenicity and metastasis of breast cancer cells. Matrix metalloproteinase (MMP) 9 is a key enzyme in the degradation of extracellular matrices, and its expression may be dysregulated in breast cancer invasion and metastasis. Resveratrol, a major component in grape, exhibited potential anticarcinogenic activities in both in vitro and in vivo studies. However, the inhibitory effect of resveratrol on HER-2-mediated expression of MMP-9 has not been demonstrated yet.

In the present study, we investigated the anti-invasive mechanism of resveratrol in human breast cancer cells. Human breast cancer MCF-7 cells were exposed to resveratrol (2, 5 and 10 μM). The expression activity of MMP-9 was measured by zymogram analysis. Phosphorylated levels of HER-2 and mitogen-activated protein kinase (MAPK)/ERK were measured by Western blot analysis. Total actin was used as internal control for protein expression. HRG-β1 induced the phosphorylation of HER-2/neu receptor and MMP-9 expression in human breast cancer MCF-7 cells. Resveratrol significantly inhibited HRG-β1-mediated MMP-9 expression in human breast cancer cells. MEK inhibitor induced a marked reduction in MMP-9 expression, and it suggested that ERK1/2 cascade could play an important role in HRG-β1-mediated MMP-9 expression. Furthermore, resveratrol significantly suppressed HRG-β1-mediated phosphorylation of ERK1/2 and invasion of breast cancer cells. However, resveratrol had negligible effects on either HRG-β1-mediated phosphorylation of HER-2 receptor or expression of the tissue inhibitor of MMP, tissue inhibitor metalloproteinase protein 1.

Taken together, our results suggest that resveratrol inhibited MMP-9 expression in human breast cancer cells. The inhibitory effects of resveratrol on MMP-9 expression and invasion of breast cancer cells are, in part, associated with the down-regulation of the MAPK/ERK signaling pathway.  相似文献   


7.
Eicosapentaenoic acid (EPA) is an omega-3 (ω-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-κB activation induced by tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-α-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-α induced MMP-9 expression by NF-κB-dependent pathway. Pretreatment of EPA inhibited TNF-α-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect IκB-α phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-κB. EPA inhibited TNF-α-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKKα-dependent event. Taken together, we demonstrate that EPA inhibits TNF-α-induced MMP-9 expression through inhibition of p38 and Akt activation.  相似文献   

8.
9.
This report demonstrates that the expression of melanoma growth stimulatory activity (MGSA) mRNA can be modulated in a positive fashion in the Hs294T human melanoma cell line by PDGF and MGSA. There is close correlation between MGSA expression and the pattern of cell growth in Hs294T cells.  相似文献   

10.
Recent evidence supports a role of Toll-like receptor (TLR) signaling in the development of atherosclerotic lesions. It was confirmed that the presence of functional TLR4 promotes a proinflammatory phenotype and proliferation of vascular smooth muscle cells (VSMCs). Here we tested whether designed TLR4 small interfering RNAs (TLR4 siRNAs) is capable of inducing TLR4 deficient and simultaneously regulating the expression of matrix metalloproteinase-9 (MMP-9) in human aortic smooth muscle cells (HASMCs). Human aortic smooth muscle cells were obtained from Cascade Biologics (Portland, USA). The siRNAs used in this study were chemically synthesized by Ambion, diluted in RNase free water at concentration of 2 μg/ml. The TLR4 siRNAs were complexed with LipofectamineTM2000 in transfection buffer. After 30 min incubation at room temperature, the complexes were added to the cells. Subsequent to 5 h incubation, cells were treated with 10 ng/ml LPS for 24 h. RT–PCR analysis was used to detect mRNA expression of GAPDH, TLR4 and MMP-9; Western blot analysis was used to examine GAPDH, TLR4 and MMP-9 protein expression. It was shown that all three designed TLR4 siRNAs inhibited the expression of TLR4 in HASMCs as compared to nontargeting siRNA. Notably, TLR4 siRNA-1 exhibited the strongest inhibition effect. Transfection of HASMCs with TLR4 siRNA-1 resulted in down-regulation of LPS-induced expression of MMP-9. It was concluded that TLR4 siRNA-transfected HASMCs were capable for regulating the expression of MMP-9, providing support for the rational design of siRNAs as atherosclerotic therapy.  相似文献   

11.
BackgroundOne of the most challenging stumbling blocks for the treatment of cancer is the ability of cancer cells to break the natural barriers and spread from its site of origin to non-adjacent regional and distant sites, accounting for high cancer mortality rates. Gamut experimental and epidemiological data advocate the use of pharmacological or nutritional interventions to inhibit or delay various stage(s) of cancer such as invasion and metastasis. Genistein, a promising chemopreventive agent, has gained considerable attention for its powerful anti-carcinogenic, anti-angiogenic and chemosensitizing activities.MethodsIn this study, the cytotoxic potential of genistein on HeLa cells by cell viability assay and the mode of cell death induced by genistein were determined by nuclear morphological examination, DNA laddering assay and cell cycle analysis. Moreover, to establish its inhibitory effect on migration of HeLa cells, scratch wound assay was performed and these results were correlated with the expression of genes involved in invasion and migration (MMP-9 and TIMP-1) by RT-PCR.ResultsThe exposure of HeLa cells to genistein resulted in significant dose- and time-dependent growth inhibition, which was found to be mediated by apoptosis and cell cycle arrest at G2/M phase. In addition, it induced migration-inhibition in a time-dependent manner by modulating the expression of MMP-9 and TIMP-1.ConclusionOur results signify that genistein may be an effective anti-neoplastic agent to prevent cancer cell growth and invasion and metastasis. Therefore therapeutic strategies utilizing genistein could be developed to substantially reduce cancer morbidity and mortality.  相似文献   

12.
13.
14.
15.
16.
17.
In response to vascular injury, smooth muscle cells migrate from the media into the intima, where they contribute to the development of neointimal lesions. Increased matrix metalloproteinase (MMP) expression contributes to the migratory response of smooth muscle cells by releasing them from their surrounding extracellular matrix. MMPs may also participate in the remodeling of extracellular matrix in vascular lesions that could lead to plaque weakening and subsequent rupture. Neurotrophins and their receptors, the Trk family of receptor tyrosine kinases, are expressed in neointimal lesions, where they induce smooth muscle cell migration. We now report that nerve growth factor (NGF)-induced activation of the TrkA receptor tyrosine kinase induces MMP-9 expression in both primary cultured rat aortic smooth muscle cells and in a smooth muscle cell line genetically manipulated to express TrkA. The response to NGF was specific for MMP-9 expression, as the expression of MMP-2, MMP-3, or the tissue inhibitor of metalloproteinase-2 was not changed. Activation of the Shc/mitogen-activated protein kinase pathway mediates the induction of MMP-9 in response to NGF, as this response is abrogated in cells expressing a mutant TrkA receptor that does not bind Shc and by pretreatment of cells with the MEK-1 inhibitor, U0126. Thus, these results indicate that the neurotrophin/Trk receptor system, by virtue of its potent chemotactic activity for smooth muscle cells and its ability to induce MMP-9 expression, is a critical mediator in the remodeling that occurs in the vascular wall in response to injury.  相似文献   

18.
The tetraspanin membrane protein CD151 has been suggested to regulate cancer invasion and metastasis by initiating signaling events. The CD151-mediated signaling pathways involved in this regulation remain to be revealed. In this study, we found that stable transfection of CD151 into MelJuSo human melanoma cells lacking CD151 expression significantly increased cell motility, matrix metalloproteinase-9 (MMP-9) expression, and invasiveness. The enhancement of cell motility and MMP-9 expression by CD151 overexpression was abrogated by inhibitors and small interfering RNAs targeted to focal adhesion kinase (FAK), Src, p38 MAPK, and JNK, suggesting an essential role of these signaling components in CD151 signaling pathways. Also, CD151-induced MMP-9 expression was shown to be mediated by c-Jun binding to AP-1 sites in the MMP-9 gene promoter, indicating AP-1 activation by CD151 signaling pathways. Meanwhile, CD151 was found to be associated with alpha(3)beta(1) and alpha(6)beta(1) integrins in MelJuSo cells, and activation of associated integrins was a prerequisite for CD151-stimulated MMP-9 expression and activation of FAK, Src, p38 MAPK, JNK, and c-Jun. Furthermore, CD151 on one cell was shown to bind to neighboring cells expressing CD151, suggesting that CD151 is a homophilic interacting protein. The homophilic interactions of CD151 increased motility and MMP-9 expression of CD151-transfected MelJuSo cells, along with FAK-, Src-, p38 MAPK-, and JNK-mediated activation of c-Jun in an adhesion-dependent manner. Furthermore, C8161 melanoma cells with endogenous CD151 were also shown to respond to homophilic CD151 interactions for the induction of adhesion-dependent activation of FAK, Src, and c-Jun. These results suggest that homophilic interactions of CD151 stimulate integrin-dependent signaling to c-Jun through FAK-Src-MAPKs pathways in human melanoma cells, leading to enhanced cell motility and MMP-9 expression.  相似文献   

19.
We investigated the gene expression of matrix metalloproteinases-9 (MMP-9) and tissue inhibitors of matrix metalloproteinases-1 (TIMP-1) in peripheral blood cells from infected cattle with Mycobacterium avium subsp. paratuberculosis (Map) in the ELISA-negative subclinical stage compared with uninfected control cattle. Significant decreased MMP-9 expression and increased TIMP-1 expression were found in peripheral blood cells from Map-infected cattle after stimulation with Map lysate and Map purified protein derivative (PPD) than in control cattle by real-time RT-PCR analysis. In contrast to the uninfected controls, the activity of MMP-9 was also decreased in peripheral blood cell culture supernatants from Map-infected cattle at 24?hr after Map lysate and MapPPD stimulation by gelatin zymography analysis. As a result, the MMP-9 may play an important role in the development of Mycobacterium avium subsp. paratuberculosis disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号