首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Association studies offer an exciting approach to finding underlying genetic variants of complex human diseases. However, identification of genetic variants still includes difficult challenges, and it is important to develop powerful new statistical methods. Currently, association methods may depend on single-locus analysis--that is, analysis of the association of one locus, which is typically a single-nucleotide polymorphism (SNP), at a time--or on multilocus analysis, in which multiple SNPs are used to allow extraction of maximum information about linkage disequilibrium (LD). It has been shown that single-locus analysis may have low power because a single SNP often has limited LD information. Multilocus analysis, which is more informative, can be performed on the basis of either haplotypes or genotypes. It may lose power because of the often large number of degrees of freedom involved. The ideal method must make full use of important information from multiple loci but avoid increasing the degrees of freedom. Therefore, we propose a method to capture information from multiple SNPs but with the use of fewer degrees of freedom. When a set of SNPs in a block are correlated because of LD, we might expect that the genotype variation among the different phenotypic groups would extend across all the SNPs, and this information could be compressed into the low-frequency components of a Fourier transform. Therefore, we develop a test based on weighted Fourier transformation coefficients, with more weight given to the low-frequency components. Our simulation results demonstrate the validity and substantially higher power of the proposed method compared with other common methods. This method provides an additional tool to existing methods for identification of causative genetic variants underlying complex diseases.  相似文献   

2.
Microsatellites, short tandem repeats, are useful markers for genetic analysis because of their high frequency of occurrence over the genome, high information content due to variable repeat lengths, and ease of typing. To establish a panel of microsatellite markers useful for genetic studies for hereditary hearing loss in the Korean population, the allele frequencies and heterozygosities of 32 microsatellite markers in 172 unrelated Korean individuals were examined. The heterozygosity values for these markers ranged from 48 to 87%. All the markers except D6S1038 and D14S1034 marker showed PIC values over 0.5. This indicates these markers have a high degree of polymorphism and are randomly distributed in the Korean population. Therefore, the combinations of these STR loci provide a powerful tool to find the candidate loci of a causative gens for non-syndromic hearing loss in the Korean population.  相似文献   

3.
Complexity and power in case-control association studies   总被引:12,自引:0,他引:12       下载免费PDF全文
A general method is described for estimation of the power and sample size of studies relating a dichotomous phenotype to multiple interacting loci and environmental covariates. Either a simple case-control design or more complex stratified sampling may be used. The method can be used to design individual studies, to evaluate the power of alternative test statistics for complex traits, and to examine general questions of study design through explicit scenarios. The method is used here to study how the power of association tests is affected by problems of allelic heterogeneity and to investigate the potential role for collective testing of sets of related candidate genes in the presence of locus heterogeneity. The results indicate that allele-discovery efforts are crucial and that omnibus tests or collective testing of alleles can be substantially more powerful than separate testing of individual allelic variants. Joint testing of multiple candidate loci can also dramatically improve power, despite model misspecification and inclusion of irrelevant loci, but requires an a priori hypothesis defining the set of loci to investigate.  相似文献   

4.
Large-scale genetic-association studies that take advantage of an extremely dense set of genetic markers have begun to produce very compelling statistical associations between multiple makers exhibiting strong linkage disequilibrium (LD) in a single genomic region and a phenotype of interest. However, the ultimate biological or "functional" significance of these multiple associations has been difficult to discern. In fact, the LD relationships between not only the markers found to be associated with the phenotype but also potential functionally or causally relevant genetic variations that reside near those markers have been exploited in such studies. Unfortunately, LD, especially strong LD, between variations at neighboring loci can make it difficult to distinguish the functionally relevant variations from nonfunctional variations. Although there are (rare) situations in which it is impossible to determine the independent phenotypic effects of variations in LD, there are strategies for accommodating LD between variations at different loci, and they can be used to tease out their independent effects on a phenotype. These strategies make it possible to differentiate potentially causative from noncausative variations. We describe one such approach involving ridge regression. We showcase the method by using both simulated and real data. Our results suggest that ridge regression and related techniques have the potential to distinguish causative from noncausative variations in association studies.  相似文献   

5.
Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped, and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear models are developed for meta-analyses that connect genetic data to quantitative traits, adjusting for covariates. The models can be used to analyze rare variants, common variants, or a combination of the two. Both likelihood-ratio test (LRT) and F-distributed statistics are introduced to test association between quantitative traits and multiple variants in one genetic region. Extensive simulations are performed to evaluate empirical type I error rates and power performance of the proposed tests. The proposed LRT and F-distributed statistics control the type I error very well and have higher power than the existing methods of the meta-analysis sequence kernel association test (MetaSKAT). We analyze four blood lipid levels in data from a meta-analysis of eight European studies. The proposed methods detect more significant associations than MetaSKAT and the P-values of the proposed LRT and F-distributed statistics are usually much smaller than those of MetaSKAT. The functional linear models and related test statistics can be useful in whole-genome and whole-exome association studies.  相似文献   

6.
Unraveling the genetic background of economic traits is a major goal in modern animal genetics and breeding. Both candidate gene analysis and QTL mapping have previously been used for identifying genes and chromosome regions related to studied traits. However, most of these studies may be limited in their ability to fully consider how multiple genetic factors may influence a particular phenotype of interest. If possible, taking advantage of the combined effect of multiple genetic factors is expected to be more powerful than analyzing single sites, as the joint action of multiple loci within a gene or across multiple genes acting in the same gene set will likely have a greater influence on phenotypic variation. Thus, we proposed a pipeline of gene set analysis that utilized information from multiple loci to improve statistical power. We assessed the performance of this approach by both simulated and a real IGF1-FoxO pathway data set. The results showed that our new method can identify the association between genetic variation and phenotypic variation with higher statistical power and unravel the mechanisms of complex traits in a point of gene set. Additionally, the proposed pipeline is flexible to be extended to model complex genetic structures that include the interactions between different gene sets and between gene sets and environments.  相似文献   

7.
Jung J  Fan R  Jin L 《Genetics》2005,170(2):881-898
Using multiple diallelic markers, variance component models are proposed for high-resolution combined linkage and association mapping of quantitative trait loci (QTL) based on nuclear families. The objective is to build a model that may fully use marker information for fine association mapping of QTL in the presence of prior linkage. The measures of linkage disequilibrium and the genetic effects are incorporated in the mean coefficients and are decomposed into orthogonal additive and dominance effects. The linkage information is modeled in variance-covariance matrices. Hence, the proposed methods model both association and linkage in a unified model. On the basis of marker information, a multipoint interval mapping method is provided to estimate the proportion of allele sharing identical by descent (IBD) and the probability of sharing two alleles IBD at a putative QTL for a sib-pair. To test the association between the trait locus and the markers, both likelihood-ratio tests and F-tests can be constructed on the basis of the proposed models. In addition, analytical formulas of noncentrality parameter approximations of the F-test statistics are provided. Type I error rates of the proposed test statistics are calculated to show their robustness. After comparing with the association between-family and association within-family (AbAw) approach by Abecasis and Fulker et al., it is found that the method proposed in this article is more powerful and advantageous based on simulation study and power calculation. By power and sample size comparison, it is shown that models that use more markers may have higher power than models that use fewer markers. The multiple-marker analysis can be more advantageous and has higher power in fine mapping QTL. As an application, the Genetic Analysis Workshop 12 German asthma data are analyzed using the proposed methods.  相似文献   

8.
Li H 《Human genetics》2012,131(9):1395-1401
Many common human diseases are complex and are expected to be highly heterogeneous, with multiple causative loci and multiple rare and common variants at some of the causative loci contributing to the risk of these diseases. Data from the genome-wide association studies (GWAS) and metadata such as known gene functions and pathways provide the possibility of identifying genetic variants, genes and pathways that are associated with complex phenotypes. Single-marker-based tests have been very successful in identifying thousands of genetic variants for hundreds of complex phenotypes. However, these variants only explain very small percentages of the heritabilities. To account for the locus- and allelic-heterogeneity, gene-based and pathway-based tests can be very useful in the next stage of the analysis of GWAS data. U-statistics, which summarize the genomic similarity between pair of individuals and link the genomic similarity to phenotype similarity, have proved to be very useful for testing the associations between a set of single nucleotide polymorphisms and the phenotypes. Compared to single marker analysis, the advantages afforded by the U-statistics-based methods is large when the number of markers involved is large. We review several formulations of U-statistics in genetic association studies and point out the links of these statistics with other similarity-based tests of genetic association. Finally, potential application of U-statistics in analysis of the next-generation sequencing data and rare variants association studies are discussed.  相似文献   

9.
Zhang X  Huang S  Sun W  Wang W 《Genetics》2012,190(4):1511-1520
Genome-wide expression quantitative trait loci (eQTL) studies have emerged as a powerful tool to understand the genetic basis of gene expression and complex traits. In a typical eQTL study, the huge number of genetic markers and expression traits and their complicated correlations present a challenging multiple-testing correction problem. The resampling-based test using permutation or bootstrap procedures is a standard approach to address the multiple-testing problem in eQTL studies. A brute force application of the resampling-based test to large-scale eQTL data sets is often computationally infeasible. Several computationally efficient methods have been proposed to calculate approximate resampling-based P-values. However, these methods rely on certain assumptions about the correlation structure of the genetic markers, which may not be valid for certain studies. We propose a novel algorithm, rapid and exact multiple testing correction by resampling (REM), to address this challenge. REM calculates the exact resampling-based P-values in a computationally efficient manner. The computational advantage of REM lies in its strategy of pruning the search space by skipping genetic markers whose upper bounds on test statistics are small. REM does not rely on any assumption about the correlation structure of the genetic markers. It can be applied to a variety of resampling-based multiple-testing correction methods including permutation and bootstrap methods. We evaluate REM on three eQTL data sets (yeast, inbred mouse, and human rare variants) and show that it achieves accurate resampling-based P-value estimation with much less computational cost than existing methods. The software is available at http://csbio.unc.edu/eQTL.  相似文献   

10.
Zhang F  Guo X  Deng HW 《PloS one》2011,6(2):e16739
Because of combining the genetic information of multiple loci, multilocus association studies (MLAS) are expected to be more powerful than single locus association studies (SLAS) in disease genes mapping. However, some researchers found that MLAS had similar or reduced power relative to SLAS, which was partly attributed to the increased degrees of freedom (dfs) in MLAS. Based on partial least-squares (PLS) analysis, we develop a MLAS approach, while avoiding large dfs in MLAS. In this approach, genotypes are first decomposed into the PLS components that not only capture majority of the genetic information of multiple loci, but also are relevant for target traits. The extracted PLS components are then regressed on target traits to detect association under multilinear regression. Simulation study based on real data from the HapMap project were used to assess the performance of our PLS-based MLAS as well as other popular multilinear regression-based MLAS approaches under various scenarios, considering genetic effects and linkage disequilibrium structure of candidate genetic regions. Using PLS-based MLAS approach, we conducted a genome-wide MLAS of lean body mass, and compared it with our previous genome-wide SLAS of lean body mass. Simulations and real data analyses results support the improved power of our PLS-based MLAS in disease genes mapping relative to other three MLAS approaches investigated in this study. We aim to provide an effective and powerful MLAS approach, which may help to overcome the limitations of SLAS in disease genes mapping.  相似文献   

11.
Sun G  Schliekelman P 《Genetics》2011,187(3):939-953
We describe a method for integrating gene expression information into genome scans and show that this can substantially increase the statistical power of QTL mapping. The method has three stages. First, standard clustering methods identify small (size 5-20) groups of genes with similar expression patterns. Second, each gene group is tested for a causative genetic locus shared with the clinical trait of interest. This is done using an EM algorithm approach that treats genotype at the putative causative locus as an unobserved variable and combines expression information from all of the genes in the group to infer genotype information at the locus. Finally, expression QTL (eQTL) are mapped for each gene group that shares a causative locus with the clinical trait. Such eQTL are candidates for the causative locus. Simulation results show that this method has far superior power to standard QTL mapping techniques in many circumstances. We applied this method to existing data on mouse obesity. Our method identified 27 putative body weight QTL, whereas standard QTL mapping produced only one. Furthermore, most gene groups with body weight QTL included cis genes, so candidate genes could be immediately identified. Eleven body weight QTL produced 16 candidate genes that have been previously associated with body weight or body weight-related traits, thus validating our method. In addition, 15 of the 16 other loci produced 32 candidate genes that have not been associated with body weight. Thus, this method shows great promise for finding new causative loci for complex traits.  相似文献   

12.
Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta-analysis approach is that our combined study has significantly higher power and improved resolution compared to any single study thus explaining the large number of loci discovered in the combined study.  相似文献   

13.
Transmission/disequilibrium tests have attracted much attention in genetic studies of complex traits because (a) their power to detect genes having small to moderate effects may be greater than that of other linkage methods and (b) they are robust against population stratification. Highly polymorphic markers have become available throughout the human genome, and many such markers can be studied within short physical distances. Studies using multiple tightly linked markers are more informative than those using single markers. However, such information has not been fully utilized by existing statistical methods, resulting in possibly substantial loss of information in the identification of genes underlying complex traits. In this article, we propose novel statistical methods to analyze multiple tightly linked markers. Simulation studies comparing our methods versus existing methods suggest that our methods are more powerful. Finally, we apply the proposed methods to study genetic linkage between the dopamine D2 receptor locus and alcoholism.  相似文献   

14.
In recent years, several F2 crosses between outbred lines of livestock have been developed to identify quantitative trait loci (QTL). These populations are valuable for further genetic analysis, including positional candidate gene loci (CGL). Analysis of CGL in F2 populations is, however, hindered by extensive between-breed linkage disequilibrium (LD). The objectives here were to develop and evaluate three tests for CGL in simulated F2 breed-cross populations. 1) A standard association test, based on the fixed effect of CGL genotype. This test was significant for CGL at considerable distances from the QTL. 2) A marker-assisted association test, based on a test at the CGL of the fixed effect of CGL genotype in a breed-cross QTL interval mapping model. This removed the impact of between-breed LD, but was not powerful in detecting CGL closely linked to the QTL, unless the CGL was the QTL. 3) An F-drop test, comparing F ratios for a QTL at the CGL with and without the CGL included as fixed effect. It had low power to distinguish close from distant CGL. Power to distinguish two CGL within 10 cM from the QTL was limited and little improved by including QTL effects associated with markers to remove between-breed LD, although the power was greater when one of the CGL was the causative mutation. Therefore, while we conclude that candidate gene tests in QTL mapping populations must be interpreted with caution, we now have a clearer picture of the value of candidate gene tests in these populations.  相似文献   

15.
Complex human diseases do not have a clear inheritance pattern, and it is expected that risk involves multiple genes with modest effects acting independently or interacting. Major challenges for the identification of genetic effects are genetic heterogeneity and difficulty in analyzing high-order interactions. To address these challenges, we present MDR-Phenomics, a novel approach based on the multifactor dimensionality reduction (MDR) method, to detect genetic effects in pedigree data by integration of phenotypic covariates (PCs) that may reflect genetic heterogeneity. The P value of the test is calculated using a permutation test adjusted for multiple tests. To validate MDR-Phenomics, we compared it with two MDR-based methods: (1) traditional MDR pedigree disequilibrium test (PDT) without consideration of PCs (MDR-PDT) and (2) stratified phenotype (SP) analysis based on PCs, with use of MDR-PDT with a Bonferroni adjustment (SP-MDR). Using computer simulations, we examined the statistical power and type I error of the different approaches under several genetic models and sampling scenarios. We conclude that MDR-Phenomics is more powerful than MDR-PDT and SP-MDR when there is genetic heterogeneity, and the statistical power is affected by sample size and the number of PC levels. We further compared MDR-Phenomics with conditional logistic regression (CLR) for testing interactions across single or multiple loci with consideration of PC. The results show that CLR with PC has only slightly smaller power than does MDR-Phenomics for single-locus analysis but has considerably smaller power for multiple loci. Finally, by applying MDR-Phenomics to autism, a complex disease in which multiple genes are believed to confer risk, we attempted to identify multiple gene effects in two candidate genes of interest—the serotonin transporter gene (SLC6A4) and the integrin beta 3 gene (ITGB3) on chromosome 17. Analyzing four markers in SLC6A4 and four markers in ITGB3 in 117 white family triads with autism and using sex of the proband as a PC, we found significant interaction between two markers—rs1042173 in SLC6A4 and rs3809865 in ITGB3.  相似文献   

16.
Yang HC  Hsieh HY  Fann CS 《Genetics》2008,179(2):1057-1068
Association mapping (i.e., linkage disequilibrium mapping) is a powerful tool for positional cloning of disease genes. We propose a kernel-based association test (KBAT), which is a composite function of "P-values of single-locus association tests" and "kernel weights related to intermarker distances and/or linkage disequilibria." The KBAT is a general form of some current test statistics. This method can be applied to the study of candidate genes and can scan each chromosome using a moving average procedure. We evaluated the performance of the KBAT through simulation studies that considered evolutionary parameters, disease models, sample sizes, kernel functions, test statistics, window attributes, empirical P-value estimations, and genetic/physical maps. The results showed that the KBAT had a well-controlled false positive rate and high power compared to existing methods. In addition, the KBAT was also applied to analyze a genomewide data set from the Collaborative Study on the Genetics of Alcoholism. Important genes associated with alcoholism dependence were identified. In summary, the merits of the KBAT are multifold: the KBAT is robust against the inclusion of nuisance markers, is invariant to the map scale, and accommodates different types of genomic data, study designs, and study purposes. The proposed methods are packaged in the user-friendly software, KBAT, available at http://www.stat.sinica.edu.tw/hsinchou/genetics/association/KBAT.htm.  相似文献   

17.
Czika W  Weir BS 《Biometrics》2004,60(1):69-74
Disease genes can be mapped on the basis of associations between genetic markers and disease status, with the case-control design having the advantage of not requiring individuals from different generations. When the marker loci have multiple alleles, there has been debate on whether the power of tests for association increases or decreases. We show here that the multiple-allele version of Armitage's trend test has increased power over the two-allele version under the requirement of equifrequent alleles, but not in general. The trend test has the advantage of remaining valid even when the sampled population is not in Hardy-Weinberg equilibrium. A departure from Hardy-Weinberg means that association tests depend on gametic and nongametic linkage disequilibrium between marker and disease loci, and we illustrate the magnitude of these effects with simulated data.  相似文献   

18.
Meta-analysis is an important tool in linkage analysis. The pooling of results across primary linkage studies allows greater statistical power to detect quantitative-trait loci (QTLs) and more-precise estimation of their genetic effects and, hence, yields conclusions that are stronger relative to those of individual studies. Previous methods for the meta-analysis of linkage studies have been proposed, and, although some methods address the problem of between-study heterogeneity, most methods still require linkage analysis at the same marker or set of markers across studies, whereas others do not result in an estimate of genetic variance. In this study, we present a meta-analytic procedure to evaluate evidence from several studies that report Haseman-Elston statistics for linkage to a QTL at multiple, possibly distinct, markers on a chromosome. This technique accounts for between-study heterogeneity and estimates both the location of the QTL and the magnitude of the genetic effect more precisely than does an individual study. We also provide standard errors for the genetic effect and for the location (in cM) of the QTL, using a resampling method. The approach can be applied under other conditions, provided that the various studies use the same linkage statistic.  相似文献   

19.
In this paper we consider the detection of individual loci controlling quantitative traits of interest (quantitative trait loci or QTLs) in the large half-sib family structure found in some species. Two simple approaches using multiple markers are proposed, one using least squares and the other maximum likelihood. These methods are intended to provide a relatively fast screening of the entire genome to pinpoint regions of interest for further investigation. They are compared with a more traditional single-marker least-squares approach. The use of multiple markers is shown to increase power and has the advantage of providing an estimate for the location of the QTL. The maximum-likelihood and the least-squares approaches using multiple markers give similar power and estimates for the QTL location, although the likelihood approach also provides estimates of the QTL effect and sire heterozygote frequency. A number of assumptions have been made in order to make the likelihood calculations feasible, however, and computationally it is still more demanding than the least-squares approach. The least-squares approach using multiple markers provides a fast method that can easily be extended to include additional effects.  相似文献   

20.
Infectious pathogens have long been recognized as potentially powerful agents impacting on the evolution of human genetic diversity. Analysis of large-scale case-control studies provides one of the most direct means of identifying human genetic variants that currently impact on susceptibility to particular infectious diseases. For over 50 years candidate gene studies have been used to identify loci for many major causes of human infectious mortality, including malaria, tuberculosis, human immunodeficiency virus/acquired immunodeficiency syndrome, bacterial pneumonia and hepatitis. But with the advent of genome-wide approaches, many new loci have been identified in diverse populations. Genome-wide linkage studies identified a few loci, but genome-wide association studies are proving more successful, and both exome and whole-genome sequencing now offer a revolutionary increase in power. Opinions differ on the extent to which the genetic component to common disease susceptibility is encoded by multiple high frequency or rare variants, and the heretical view that most infectious diseases might even be monogenic has been advocated recently. Review of findings to date suggests that the genetic architecture of infectious disease susceptibility may be importantly different from that of non-infectious diseases, and it is suggested that natural selection may be the driving force underlying this difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号