首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of normal and glycerol treated fibers of the closer muscle of the ghost crab, Ocypode cursor, was studiedmthe muscle is composed of presumably phasic (short sarcomeres) and tonic (long sarcomeres) fibers, the latter greatly predominating. Horseradish peroxidase (HRP) was used as an extracellular tracer to delineate the tubular system (TS), and to determine to what extent this system becomes detached from the extracellular space as a result of glycerol treatment. Sarcolemmal clefts invade deeply into the muscle at Z-lines and I-bands; tubules invaginate into the muscle from the clefts and from the surface sarcolemma at the Z-lines, A-I overlaps and A-bands. A tubules are in frequent diadic or tetradic contact with the sarcoplasmic reticulum (SR), whereas Z tubules appear to be randomly associated with SR, terminal cisterns (TC) and Z-line fibrils. When HRP was administered to normal muscle, black reaction product was found adjacent to the outer surface of the sarcolemma, within the clefts and within profiles of the TS throughout the tissue. In glycerol treated muscle peripheral vacuolation frequently occurred; black reaction product penetrated only as far as the vacuoles and into dilated Z-line tubules, but was virtually absent from the rest of the TS. This lack of continuity between the extracellular space and the A tubules indicated disruption or constriction of the A tubules as a result of glycerol treatment, although Z tubule contact with the extracellular space appeared unimpaired. These findings provide ultrastructural correlates of the electrophysiological changes produced by glycerol treatment of the closer muscle of the ghost crab (Papir, 1973), namely, interference with excitation-contraction (e-c) coupling. The random association of the Z tubules with SR and TC, and their resistance to disruption by glycerol treatment, tend to endorse the claims that the Z tubules in crustacean muscle are not directly involved in e-c coupling (Brandt et al., 1965; Peachey, 1967; Selverston, 1967).  相似文献   

2.
Summary Dilations of the sarcotubular system and misaligned myofilaments have been reported as early indicators of muscular dystrophy in skeletal muscle. Since the developing tubular component is believed instrumental in initial myofilament alignment during myogenesis, tubular development is evaluated using normal and dystrophic chick embryo skeletal muscle and cultures of normal and dystrophic embryonic pectoral muscle incubated in the presence of horse spleen ferritin. Comparisons of the findings show that periodic tubules are absent from dystrophic somitic muscle and that invaginating tubules from the sarcolemma are found in fewer, randomly located areas of dystrophic pectoral muscle cells. The results indicate that the tubular component is not involved in the bizarre vesiculations seen in mature dystrophic muscle, however, the malalignment of dystrophic myofilaments is probably the result of the poorer development of the T system in this muscle.  相似文献   

3.
Summary In Solenopsis spp., muscle histolysis or breakdown is a normal process in females and is initiated in the flight muscles only immediately after a mating flight. Information regarding the presence of the oxyradical scavenging enzyme superoxide dismutase (SOD) and the formation of the radical oxygen intermediate superoxide (SO) during the early stages of flight muscle histolysis in this insect was investigated. In normal fibrillar flight muscles from control animals, SOD was immunolocalized to vesicular and tubular components of the sarcotubular system. Lanthanum tracer studies indicated that some of these SOD-positive structures might be tubulovesicles continuous with the extracellular space. Following the injection of virgin alates with experimental haemolymph obtained from artificially inseminated females, the membrane delimited elements of the sarcotubular system became increasingly swollen and dilated with time (from 60 to 120 minutes postinjection) with a concomitant decrease in SOD activity and an increase in oxyradical formation. Many similar vesicles were lanthanum-positive. SO was not seen in the sarcoplasmic vesicles and tubules of control insects. The biochemical quantification of SO release over a 2-hour period showed a marked increase in oxyradical formation following treatment with the experimental haemolymph in comparison to control insects. Also, the addition of superoxide dismutase depressed SO formation under these conditions. Despite the histochemical and biochemical changes seen in the muscles of experimental insects, by 2 hours post-treatment there was no evidence of muscle necrosis. From these studies on flight muscle histolysis/necrosis in Solenopsis it appears that the formation of oxyradicals might represent an early event in myopathogenesis and subsequent tissue involution. The generation of SO is more than likely to be associated with alterations in the normal structure, biochemistry and permeability of the biomembranes which delimit the sarcotubular system.  相似文献   

4.
Summary The distribution of the sarcoplasmic reticulum and sarcolemmic tubules in the radula protractor muscle of the whelk, Busycon canaliculatum, has been investigated. The sarcoplasmic reticulum consists of an interconnected system of cisternae and tubular channels. The cisternae are closely associated with the sarcolemma. The tubular channels project from the cisternae into the interior of the cell and run parallel to the long axis of the myofilaments. Parallel tubular channels are interconnected with one another by short branches. This finding of an elaborate sarcoplasmic reticulum supports previous physiological work on this smooth muscle which indicated the presence of an intracellular compartmentalization of calcium ions. There is also an extensive system of tubular invaginations of the sarcolemma which we have termed sarcolemmic tubules. These tubules are 600 Å in diameter and about 0.5 microns in length. There is a substructure associated with the leaflet of the tubular membrane bordering the extracellular space. The sarcolemmic tubules penetrate only half a micron from the surface of the cell and interdigitate with the sarcoplasmic reticulum associated with the sarcolemma. Calculations have shown that the surface area of this smooth muscle cell is more than doubled by the presence of sarcolemmic tubules.  相似文献   

5.
The fine structure of the abdominal musculature of the copepod Macrocyclops albidus was investigated by electron microscopy. Tubules penetrate into the muscle fibers from the sarcolemma, continuity between the wall of the tubules and the sarcolemma being clear. A dense network of tubules envelops the myofibrils, its interstices being occupied by cisternal elements. At the Z lines the tubules traverse the interior of myofibrils, giving off branches which course longitudinally within the substance of the myofibrils. These branches are also accompanied by elongate, non-intercommunicating cisternae. Comparison of this fast acting copepod muscle with other vertebrate and invertebrate muscles indicates that the complexity of the tubular system is a function of the myofibrillar geometry, whereas the degree of development of the cisternal system is related to the contraction speed of the muscle.  相似文献   

6.
Caveolin-3, the muscle-specific isoform of the caveolae-associated protein caveolin, is often thought to be localized exclusively in the surface membrane in mature fibers and associated with transverse (t)-tubular system only transiently during development. Skeletal muscle fibers present a model where the surface membrane (sarcolemma) can be completely separated from the cell by mechanical dissection. Western blotting of matching portions of individual fibers from adult rat muscle in which the sarcolemma was either removed (skinned segment), or left in place (intact segment), revealed that ≥ 70% of caveolin-3 is actually located deeper in the fiber rather than in the sarcolemma itself. Triton solubility of caveolin-3 was no different between sarcolemmal and t-tubule compartments. Confocal immunofluorescence microscopy showed caveolin-3 present throughout the t-system in adult fibers, with ‘hot-spots’ at the necks of the tubules in the sub-sarcolemmal space. A similar representation was seen for the muscle specific voltage-dependent sodium channel Nav1.4 and it was found that at least some Nav1.4 co-immunoprecipitated with caveolin-3 in skinned muscle fibers. The caveolin-3 hot-spots just inside the opening of t-tubules may form regions that localize ion channels and kinases at the key place needed for efficient electrical transmission into the t-tubules as well as for other signaling processes.  相似文献   

7.
Components of nonlinear capacitance, or charge movement, were localized in the membranes of frog skeletal muscle fibers by studying the effect of 'detubulation' resulting from sudden withdrawal of glycerol from a glycerol-hypertonic solution in which the muscles had been immersed. Linear capacitance was evaluated from the integral of the transient current elicited by imposed voltage clamp steps near the holding potential using bathing solutions that minimized tubular voltage attenuation. The dependence of linear membrane capacitance on fiber diameter in intact fibers was consistent with surface and tubular capacitances and a term attributable to the capacitance of the fiber end. A reduction in this dependence in detubulated fibers suggested that sudden glycerol withdrawal isolated between 75 and 100% of the transverse tubules from the fiber surface. Glycerol withdrawal in two stages did not cause appreciable detubulation. Such glycerol-treated but not detubulated fibers were used as controls. Detubulation reduced delayed (q gamma) charging currents to an extent not explicable simply in terms of tubular conduction delays. Nonlinear membrane capacitance measured at different voltages was expressed normalized to accessible linear fiber membrane capacitance. In control fibers it was strongly voltage dependent. Both the magnitude and steepness of the function were markedly reduced by adding tetracaine, which removed a component in agreement with earlier reports for q gamma charge. In contrast, detubulated fibers had nonlinear capacitances resembling those of q beta charge, and were not affected by adding tetracaine. These findings are discussed in terms of a preferential localization of tetracaine-sensitive (q gamma) charge in transverse tubule membrane, in contrast to a more even distribution of the tetracaine-resistant (q beta) charge in both transverse tubule and surface membranes. These results suggest that q beta and q gamma are due to different molecules and that the movement of q gamma in the transverse tubule membrane is the voltage-sensing step in excitation-contraction coupling.  相似文献   

8.
Summary Sartorius muscles were exposed to a hypertonic Ringer's fluid containing 400mm glycerol and subsequently returned to normal Ringer's fluid. Employing lanthanum as an extracellular marker and after suitable preparation, sections of muscle fibers were examined with an electron-microscope. Extensive alteration in transverse tubular morphology occurs after glycerol treatment. The number of sites at the Z line level usually containing complete triads decreases by about two-thirds. In about half of the sites with altered morphology no transverse tubules were present, while in the other half the sites were completely empty. Fibers at all depths in glycerol-treated muscles were equally affected. The remnants of the transverse tubules which remain were not very accessible to extracellular lanthanum. Estimates based on measurements of the presence or absence of lanthanum indicate that glycerol treatment disconnects 90% of the transverse tubules from the external solution. The remaining tubules connected to the external solution are largely but not entirely located in a surface layer of about one-tenth the fiber radius in depth.  相似文献   

9.
Impedance of Frog Skeletal Muscle Fibers in Various Solutions   总被引:19,自引:11,他引:8       下载免费PDF全文
The linear circuit parameters of 140 muscle fibers in nine solutions are determined from phase measurements fitted with three circuit models: the disk model, in which the resistance to radial current flow is in the lumen of the tubules; the lumped model, in which the resistance is at the mouth of the tubules; and the hybrid model, in which it is in both places. The lumped model fails to fit the data. The disk and hybrid model fit the data, but the optimal circuit values of the hybrid model seem more reasonable. The circuit values depend on sarcomere length. The conductivity of the lumen of the tubules is less than, and varies in a nonlinear manner with, the conductivity of the bathing solution, suggesting that the tubules are partially occluded by some material like basement membrane which restricts the mobility of ions and has fixed charge. The x2.5 hypertonic sucrose solution used in many voltage clamp experiments produces a large increase in the radial resistance, suggesting that control of the potential across the tubular membranes would be difficult to achieve. Glycerol-treated fibers have 90% of their tubular system insulated from the extracellular solution and 10% connected to the extracellular solution through a high resistance. We discuss the implications of our results for calculations of the nonlinear properties of muscle fibers, including the action potential and the radial spread of contraction.  相似文献   

10.
The structure of a small strand of rabbit heart muscle fibers (trabecula carnea), 30–80 µ in diameter, has been examined with light and electron microscopy. By establishing a correlation between the appearance of regions of close fiber contact in light and electron microscopy, the extent and distribution of regions of close apposition of fibers has been evaluated in approximately 200 µ length of a strand. The distribution of possible regions of resistive coupling between fibers has been approximated by a model system of cables. The theoretical linear electrical properties of such a system have been analyzed and the implications of the results of this analysis are discussed. Since this preparation is to be used for correlated studies of the electrical, mechanical, and cytochemical properties of cardiac muscle, a comprehensive study of the morphology of this preparation has been made. The muscle fibers in it are distinguished from those of the rabbit papillary muscle, in that they have no triads and have a kind of mitochondrion not found in papillary muscle. No evidence of a transverse tubular system was found, but junctions of cisternae of the sarcoplasmic reticulum and the sarcolemma, peripheral couplings, were present. The electrophysiological implications of the absence of transverse tubules are discussed. The cisternae of the couplings showed periodic tubular extensions toward the sarcolemma. A regularly spaced array of Z line-like material was observed, suggesting a possible mechanism for sarcomere growth.  相似文献   

11.
The electron microscopic study of the tail of Cercaria chackai reveals that it contains four sets of striated muscle bundles located central to the nonstriated circular and longitudinal muscles. The striated muscle consists of longitudinally oriented lamellar myofibres. Each myofibre contains a single "U" shaped myofibril. The banding pattern is analogous to that of vertebrate striated muscle. The sarcolemma is a simple surface membrane. There are no transverse tubular extensions of sarcolemma. The sarcoplasmic reticulum (SR) is very well developed with cisternae, tubules, and vesicles. SR cisternae form dyadic couplings with the sarcolemma. There is a set of flattened tubules of SR origin traversing the myofibril exactly at the Z region. These tubules are unique to the striated muscle of the cercarian tail and may have functional significance. A diagrammatic reconstruction of the myofibre is presented.  相似文献   

12.
FINE STRUCTURE OF RAT INTRAFUSAL MUSCLE FIBERS : The Polar Region   总被引:2,自引:1,他引:1       下载免费PDF全文
An ultrastructural comparison of the two types of intrafusal muscle fibers in muscle spindles of the rat was undertaken. Discrete myofibrils with abundant interfibrillar sarcoplasm and organelles characterize the nuclear chain muscle fiber, while a continuous myofibril-like bundle with sparse interfibrillar sarcoplasm distinguishes the nuclear bag muscle fiber. Nuclear chain fibers possess well-defined and typical M bands in the center of each sarcomere, while nuclear bag fibers contain ill-defined M bands composed of two parallel thin densities in the center of the pseudo-H zone of each sarcomere. Mitochondria of nuclear chain fibers are larger and more numerous than they are in nuclear bag fibers. Mitochondria of chain fibers, in addition, often contain conspicuous dense granules, and they are frequently intimately related to elements of the sarcoplasmic reticulum (SR). Striking differences are noted in the organization and degree of development of the sarcotubular system. Nuclear bag fibers contain a poorly developed SR and T system with only occasional junctional couplings (dyads and triads). Nuclear chain fibers, in contrast, possess an unusually well-developed SR and T system and a variety of multiple junctional couplings (dyads, triads, quatrads, pentads, septads). Greatly dilated SR cisternae are common features of nuclear chain fibers, often forming intimate associations with T tubules, mitochondria, and the sarcolemma. Such dilatations of the SR were not encountered in nuclear bag fibers. The functional significance of these structural findings is discussed.  相似文献   

13.
The capacitance of skeletal muscle fibers was measured by recording with one microelectrode the voltage produced by a rectangular pulse of current applied with another microelectrode. The ionic strength of the bathing solution was varied by isosmotic replacement of NaCl with sucrose, the [K] [Cl] product being held constant. The capacitance decreased with decreasing ionic strength, reaching a value of some 2 µF/cm2 in solutions of 30 mM ionic strength, and not decreasing further in solutions of 15 mM ionic strength. The capacitance of glycerol-treated fibers did not change with ionic strength and was also some 2 µF/cm2. It seems likely that lowering the ionic strength reduces the capacitance of the tubular system (defined as the charge stored in the tubular system), and that the 2 µF/cm2 which is insensitive to ionic strength is associated with the surface membrane. The tubular system is open to the external solution in low ionic strength solutions since peroxidase is able to diffuse into the lumen of the tubules. Twitches and action potentials were also recorded from fibers in low ionic strength solutions, even though the capacitance of the tubular system was very small in these solutions. This finding can be explained if there is an action potential—like mechanism in the tubular membrane.  相似文献   

14.
Using immunocytochemical methods we have studied the distribution of vinculin in the anterior and posterior latissimus dorsi skeletal (ALD and PLD, respectively) muscles of the adult chicken. The ALD muscle is made up of both tonic (85%) and twitch (15%) myofibers, and the PLD muscle is made up entirely of twitch myofibers. In indirect immunofluorescence, antivinculin antibodies stained specific regions adjacent to the sarcolemma of the ALD and PLD muscles. In the central and myotendinous regions of the ALD, staining of the tonic fibers was intense all around the fiber periphery. Staining of the twitch fibers of both ALD and PLD muscles was intense only at neuromuscular junctions and myotendinous regions. Electron microscopy revealed subsarcolemmal, electron-dense plaques associated with the membrane only in those regions where vinculin was localized by immunofluorescence. Using antivinculin antibody and protein A conjugated to colloidal gold, we found that the electron-dense subsarcolemmal densities in the tonic fibers of the ALD contain vinculin; no other structures were labeled. The basal lamina overlying the densities appeared to be connected to the sarcolemma by fine, filamentous structures, more enriched at these sites than elsewhere along the muscle fiber. Increased amounts of endomysial connective tissue were often found just outside the basal lamina near the densities. In tonic ALD muscle fibers, the subsarcolemmal densities were present preferentially over the I-bands. In partially contracted ALD muscle, subsarcolemmal densities adjacent to the Z-disk appeared to be connected to that structure by short filaments. We propose that in the ALD muscle, through their association with the extracellular matrix, the densities stabilize the muscle membrane and perhaps assist in force transmission.  相似文献   

15.
With light and electron microscopy a comparison has been made of the morphology of ventricular (V) and Purkinje (P) fibers of the hearts of guinea pig, rabbit, cat, dog, goat, and sheep. The criteria, previously established for the rabbit heart, that V fibers are distinguished from P fibers by the respective presence and absence of transverse tubules is shown to be true for all animals studied. No evidence was found of a permanent connection between the sarcoplasmic reticulum and the extracellular space. The sarcoplasmic reticulum (SR) of V fibers formed couplings with the sarcolemma of a transverse tubule (interior coupling) and with the peripheral sarcolemma (peripheral coupling), whereas in P fibers the SR formed only peripheral couplings. The forms of the couplings were identical. The significance, with respect to excitation-contraction coupling, of the difference in the form of the couplings in cardiac versus skeletal muscle is discussed together with the electrophysiological implications of the differing geometries of bundles of P fibers from different animals.  相似文献   

16.
The physiological properties of mechanical response and the ultrastructure in the longitudinal body wall muscle (LBWM) of the opisthobranch mollusc Dolabella auricularia were studied to obtain information about excitation-contraction coupling in somatic smooth muscles responsible for smooth and slow body movement of molluscans. The contracture tension produced by 400 mM K was not affected by Mn ions (5--10 mM) and low pH (up to 4.0), but was reduced by procaine (2 mM). The K-contracture tension was not readily eliminated in a Ca-free solution containing ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'- tetraacetate (EGTA). A large contracture tension was also produced by rapid cooling of the surrounding fluid from 20 degrees to 5 degrees--3 degrees C even when the preparation showed no mechanical response to 400 mM K after prolonged (more than 2 h) soaking in the Ca-free solution. These results indicate that the LBWM fibers contain a large amount of intracellularly stored Ca which can be effectively released by membrane depolarization. The fibers were connected with each other, forming the gap junctions, the desmosomes, and the intermediate junctions. The sarcoplasmic reticulum (SR) consisted of vesicular and tubular elements, and was mostly located near the fiber surface. The plasma membrane showed marked tubular invaginations of 600-800 A in diameter, with many branches (surface tubules), extending inwards for approximately 2 micron. These surface tubules were closely apposed to the SR, and the bridgelike structures analogous to those in the triadic junction of vertebrate skeletal muscle were observed in the space between the surface tubules and the SR. It is suggested that the influence of membrane depolarization is transmitted inwards along the surface tubules to cause the release of Ca from the SR.  相似文献   

17.
Striated muscle fibers from the body and tail myotomes of a fish, the black Mollie, have been examined with particular attention to the sarcoplasmic reticulum (SR) and transverse tubular (or T) system. The material was fixed in osmium tetroxide and in glutaraldehyde, and the images provided by the two kinds of fixatives were compared. Glutaraldehyde fixes a fine structure that is broadly comparable with that preserved by osmium tetroxide alone but differs in some significant details. Especially significant improvements were obtained in the preservation of the T system, that is, the system of small tubules that pervades the fiber at every Z line or A-I junction level. As a result of this improved glutaraldehyde fixation, the T system is now clearly defined as an entity of fine structure distinct from the SR but uniquely associated with the SR and myofibrils. Glutaraldehyde fixation also reveals that the T system is a sarcolemmal derivative that retains its continuity with the sarcolemma and limits a space that is in direct communication with the extracellular environment. These structural features favor the conclusion that the T system plays a prominent role in the fast intracellular conduction of the excitatory impulse. The preservation of other elements of muscle fine structure, including the myofibrils, seems for reasons discussed, to be substantially improved by glutaraldehyde.  相似文献   

18.
In the frog skeletal muscle cell a well defined and highly organized system of tubular elements is located in the sarcoplasm between the myofibrils. The sarcoplasmic component is called the sarcotubular system. By means of differential centrifugation it has been possible to isolate from the frog muscle homogenate a fraction composed of small vesicles, tubules, and particles. This fraction is without cytochrome oxidase activity, which is localized in the mitochondrial membranes. This indicates that the structural components of this fraction do not derive from the mitochondrial fragmentation, but probably from the sarcotubular system. This fraction, called sarcotubular fraction, has a Mg++-stimulated ATPase activity which differs from that of muscle mitochondria in that it is 3 to 4 times higher on the protein basis as compared with the mitochondrial ATPase, and is inhibited by Ca++ and by deoxycholate like the Kielley and Meyerhof ATPase. We therefore conclude that the "granules" of the Kielley and Meyerhof ATPase, which were shown to have a relaxing effect, are fragments of the sarcotubular system. The isolated sarcotubular fraction has a high RNA content and demonstrable activity in incorporating labeled amino acids, even in the absence of added supernatant.  相似文献   

19.
An electron microscope study of sheep myocardial cells has demonstrated the presence of a transverse tubular system, apparently forming a network across the cell at each Z band level. The walls of these tubules resemble the sarcolemma in consisting of two dense layers—plasma membrane and basement menbrane; continuity of the tubule walls with the sarcolemma can be seen when longitudinal sections of a cell are obtained between two subsarcolemmal myofibrils and at the same time perpendicular to the cell surface. The demonstration of communication between the lumen of the transverse tubular system and the extracellular space appears to be more definite in this study than in any work hitherto published. It provides anatomical evidence of a possible direct pathway for transmission of the activating impulse from the sarcolemma to the myofibril Z bands.  相似文献   

20.
S. Hunt 《Tissue & cell》1981,13(2):283-297
Fine structure of intestinal muscle in the gastropod Buccinum undatum is described. Myofibrillar organization is typical of non-pseudostriated molluscan muscles. The dense body system is poorly developed but there are extensive attachment plaques. The sarcolemma is elaborately modified. Deep infoldings of the membrane give the cells an irregular outline. Such infoldings enclose extracellular matrix and are associated with attachment plaques. Arising from these and from the general sarcolemma are numerous tubular membranous invaginations ending blindly at varying depth in the sarcoplasm. These structures have a helical coat of particles on the cytoplasmic face. Associated with both types of invagination are subsarcolemmal vesicles. The possibility that the tubular invaginations are analogues of vertebrate smooth muscle caveolae or striated muscle T-tubules and that the vesicles are the corresponding sarcoplasmic reticulum is discussed. The occurrence of such structures in molluscan muscle and elsewhere is reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号