首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the influence of climate on the carbon isotopic composition (sigma13C) and oxygen isotopic enrichment (delta18O) above the source water of different organic matter pools in European beech. In July and September 2002, sigma13C and delta18O were determined in phloem carbohydrates and in bulk foliage of adult beech trees along a transect from central Germany to southern France, where beech reaches its southernmost distributional limit. The data were related to meteorological and physiological parameters. The climate along the transect stretches from temperate [subcontinental (SC)] to submediterranean (SM). Both sigma13Cleaf and delta18Oleaf were representative of site-specific long-term environmental conditions. sigma13C of leaves collected in September was indicative of stomatal conductance, vapour pressure deficit (VPD) and radiation availability of the current growing season. delta18O was mainly correlated to mean growing season relative humidity (RH) and VPD. In contrast to the leaves, sigma13Cphloem varied considerably between July and September and was well correlated with canopy stomatal conductance (Gs) in a 2 d integral prior to phloem sampling. The relationship between sigma13C and delta18O in both leaves and phloem sap points, however, to a combined influence of stomatal conductance and photosynthetic capacity on the variation of sigma13C along the transect. delta18Ophloem could be described by applying a model that included 18O fractionation associated with water exchange between the leaf and the atmosphere and with the production of organic matter. Hence, isotope signatures can be used as effective tools to assess the water balance of beech, and thus, help predict the effects of climatic change on one of the ecologically and economically most important tree species in Central Europe.  相似文献   

2.
The analysis of stable isotope composition (delta13C, delta15N, delta18O) of phloem-transported organic matter is a useful tool for assessing short-term carbon and water balance of trees. A major constraint of the general application of this method to trees at natural field sites is that the collection of phloem sap with the "phloem bleeding" technique is restricted to particular species and plant parts. To overcome this restriction, we compared the contents (amino compounds and sugars) and isotope signatures (delta13C, delta15N, delta18O) of phloem sap directly obtained from incisions in the bark (bleeding technique) with phloem exudates where bark pieces were incubated in aqueous solutions (phloem exudation technique with and without chelating agents [EDTA, polyphosphate] in the initial sampling solution, which prevent blocking of sieve tubes). A comparable spectrum of amino compounds and sugars was detected using the different techniques. O, C, or N compounds in the initial sampling solution originating from the chelating agents always decreased precision of determination of the respective isotopic signatures, as indicated by higher standard deviation, and/or led to a significant difference of mean delta as compared to the phloem bleeding technique. Hence, depending on the element from which the ratio of heavy to light isotope is determined, compounds lacking C, N, and/or O should be used as chelating agents in the exudation solution. In applying the different techniques, delta13C of organic compounds transported in the phloem of the twig (exudation technique with polyphosphate as chelating agent) were compared with those in the phloem of the main stem (phloem bleeding technique) in order to assess possible differences in carbon isotope composition of phloem carbohydrates along the tree axis. In July, organic compounds in the stem phloem were significantly enriched in 13C by > 1.3 per thousand as compared to the twig phloem, whereas this effect was not observed in September. Correlation analysis between delta13C and stomatal conductance (Gs) revealed the gradient from the twigs to the stem observed in July may be attributed to temporal differences rather than to spatial differences in carbon isotope composition of sugars. As various authors have produced conflicting results regarding the enrichment/depletion of 13C in organic compounds in the leaf-to-stem transition, the different techniques presented in this paper can be used to provide further insight into fractionation processes associated with transport of C compounds from leaves to branches and down the main stem.  相似文献   

3.
This study investigated the influence of meteorological, pedospheric and physiological factors on the water relations of Scots pine, as characterized by the origin of water taken up, by xylem transport as well as by carbon isotope discrimination (Delta13C) and oxygen isotope enrichment (Delta18O) of newly assimilated organic matter. For more than 1 year, we quantified delta2H and delta18O of potential water sources and xylem water as well as Delta13C and Delta18O in twig and trunk phloem organic matter biweekly, and related these values to continuously measured or modelled meteorological parameters, soil water content, stand transpiration (ST) and canopy stomatal conductance (G(s)). During the growing season, delta18O and delta2H of xylem water were generally in a range comparable to soil water from a depth of 2-20 cm. Long residence time of water in the tracheids uncoupled the isotopic signals of xylem and soil water in winter. Delta18O but not Delta13C in phloem organic matter was directly indicative of recent environmental conditions during the whole year. Delta18O could be described applying a model that included 18O fractionation associated with water exchange between leaf and atmosphere, and with the production of organic matter as well as the influence of transpiration. Phloem Delta13C was assumed to be concertedly influenced by G(s) and photosynthetically active radiation (PAR) (as a proxy for photosynthetic capacity). We conclude that isotope signatures can be used as effective tools (1) to characterize the seasonal dynamics in source and xylem water, and (2) to assess environmental effects on transpiration and G(s) of Scots pine, thus helping to understand and predict potential impacts of climate change on trees and forest ecosystems.  相似文献   

4.
5.
6.
Temporal variations in the stable carbon isotope composition (δ13C) of leaves and current‐year stems were examined in beech trees over one year. The δ13C of both tissues were equal in the bud stage and started to diverge during growth, with values decreasing by 2·5 and 4·5‰ for stems and leaves, respectively. The dynamics of the δ13C and content of non‐structural sugars were also assessed. The beginning of the growth period was characterized by a decrease in starch content and high starch δ13C values. Later in the season, the δ13C of leaf soluble sugars progressively decreased from the end of May and the δ13C of stem sucrose was at least 1·5‰ higher than that of leaves. The δ13C of CO2 respired by stem tissue increased during stem growth and exhibited large seasonal variations ( from ?22·1 to ?26·3‰). These values generally fell between those of starch and total organic matter. The results of the study showed that the δ13C of stems is altered by two apparent fractionation steps: one during sugar transfer from leaves to stems and one during stem respiration. These results may have implications for analysis of isotopic signals in tree rings and forest ecosystems.  相似文献   

7.
Organic matter dissolved in thepercolation water of forest soils contributeslargely to element cycling and transport ofnatural and anthropogenic compounds. The wayand extent to which these processes areaffected depends on the amount and the chemicalcomposition of soluble organic matter. Becausethe amount of soluble organic matter variesseasonally with changes in the microbialactivity in soil, it seems reasonable to assumethat there may be also seasonal changes in thechemical composition of dissolved organicmatter. We examined dissolved organic matter inthe seepage waters of organic forest floorlayers over a 27-month period (1997–1999) intwo forest ecosystems, a 160-year-old Scotspine (Pinus sylvestris L.) stand and a90-year-old European beech (Fagussylvatica L.) forest. The forest floorleachates were analysed for bulk dissolvedorganic C, C in hydrophilic and hydrophobicdissolved organic matter fractions,lignin-derived phenols (CuO oxidation),hydrolysable neutral carbohydrates and uronicacids, hydrolysable amino sugars, and stablecarbon isotope composition. In addition, westudied the samples by use of liquid-state13C-nuclear magnetic resonance (NMR)spectroscopy.For both investigated forest sites we foundthat the dissolved organic carbonconcentrations in forest floor leachates werelargest during summer. They peaked after rainstorms following short dry periods (106–145 mgdissolved organic C l–1). The proportionsof C in the hydrophilic fractions were largestin winter and spring whereas in summer andautumn more C was found in the hydrophobicfraction. According to liquid-state 13C-NMR spectroscopy, summer and autumn samples hadlarger abundances of aromatic and aliphaticstructures as well as larger proportions ofcarboxyl groups whereas the winter and springsamples were dominated by resonances indicatingcarbohydrates. Wet-chemical analyses confirmedthese results. Winter and spring samples wererich in neutral carbohydrates and amino sugars.The summer and autumn samples contained morelignin-derived phenols which were also strongeroxidised than those in the winter and springsamples. Seasonal changes of 13C valueswere found to reflect the changes in thechemical composition of dissolved organicmatter. Most negative values occurred whenisotopically light lignin-derived compoundswere abundant and less negative values whencarbohydrates predominated.The different vegetation, age of thestands, and underlying mineral soils resultedin different concentrations of dissolvedorganic carbon and in differences in thedistribution between hydrophobic andhydrophilic organic carbon. Despite of this,the results suggest that the trends in temporalvariations in the composition of dissolvedorganic matter in forest floor seepage waterwere remarkably similar for both sites.Dissolved organic matter in winter and springseems to be mainly controlled by leaching offresh disrupted biomass debris with a largecontribution of bacterial and fungal-derivedcarbohydrates and amino sugars. Dissolvedorganic matter leached from the forest floor insummer and autumn is controlled by thedecomposition processes in the forest floorresulting in the production of stronglyoxidised, water-soluble aromatic and aliphaticcompounds. The chemical composition ofdissolved organic matter in forest floorseepage water in winter and spring indicateslarger mobility, larger biodegradability, andless interaction with metals and organicpollutants than that released during summer andautumn. Thus, the impact of dissolved organicmatter on transport processes may varythroughout the year due to changes in itscomposition.  相似文献   

8.
Carbon isotope discrimination (Δ) was measured in irrigated and droughted potato. Under irrigation, Δ in leaflets at given nodes increased (P < 0.001) between 21 and 63 d after emergence (DAE), which was attributed to increasing stomatal conductance (gs) during leaf expansion. The effect of leaf position on Δ was non-significant in mature leaves. Under drought, Δ decreased (P < 0.001) in successive leaves up the stem, reflecting changes in gs and water stress. At each node Δ remained constant or decreased, suggesting that effects of water stress were greater than changes with leaf expansion. There were significant differences in Δ between cultivars in both treatments, and in the progressive decrease in Δ up the stem under drought. Differences in Δ between cultivars were consistent with differences in stomatal control of leaf water status following water stress. Values for Δ in tubers were consistently lower than in stem and leaf, and decreased more rapidly. Differences in Δ between cultivars did not reflect dry matter production in either treatment, and differences in water use were non-significant between cultivars under drought. So, plants can achieve similar dry matter production through different growth strategies when irrigated or droughted, and Δ does not provide a simple, indirect method of selecting for dry matter production under water stress.  相似文献   

9.
Over large areas of Europe, coniferous monocultures are being transformed into mixed forests by the re-introduction of broadleaf tree species belonging to the potential natural vegetation. One important species of interest in this changing forest policy is European beech (Fagus sylvatica). However, at present, this forest management directive has ignored potential adverse effects of global climate change on wide-spread re-introduction of beech to these areas. Average global surface temperatures have risen by approx. 0.8°C in the period between 1861 and 2005 and are expected to continue to increase until the end of this century by 1.5–5.8°C above the 1990 value. To estimate the climate change in the southern part of central Europe in future, we reviewed calculations from regional climate models. Temperature increase for the southern part of central Europe is projected to be up to 2°C within the next 40 years. In contrast, the annual precipitation will most likely remain constant over the same time period, but will experience significant changes in seasonal patterns. Rising intensities of individual precipitation events may result in increasing number and intensities of flooding events and reduced precipitation during the growing season in a higher frequency of summer droughts. Growth and competitive ability of European beech will not, necessarily, respond to increasing CO2 concentrations but may be strongly impacted by intensive drought that occurs during the growing season. Seedlings as well as adult trees may suffer from xylem embolism, restricted nutrient uptake capacity and reduced growth under limited water availability. However, it remains uncertain to what extent other environmental factors (e.g. soil properties, competitive interactions) may modify the drought response of beech, thus either enhancing susceptibility or increasing drought tolerance and resilience potential. Water-logged soils, predicted during the spring for several regions due to higher than average precipitation, could negatively impact nutrient uptake and growth of beech. Whereas other dominant species as, e.g. oak are well adapted to that environmental stress, beech is known to be sensitive to water-logging and flooding. Thus, the competitive capacity of beech might—depending on the other environmental conditions—be reduced under the expected future climate conditions. Silvicultural practices must be aware today of the potential risks which a changing climate may impose on sustainable forest development.  相似文献   

10.
11.
The possible link between stomatal conductance (gL), leaf water potential ( Ψ L) and xylem cavitation was studied in leaves and shoots of detached branches as well as of whole plants of Laurus nobilis L. (Laurel). Shoot cavitation induced complete stomatal closure in air‐dehydrated detached branches in less than 10 min. By contrast, a fine regulation of gL in whole plants was the consequence of Ψ L reaching the cavitation threshold ( Ψ CAV) for shoots. A pulse of xylem cavitation in the shoots was paralleled by a decrease in gL of about 50%, while Ψ L stabilized at values preventing further xylem cavitation. In these experiments, no root signals were likely to be sent to the leaves from the roots in response to soil dryness because branches were either detached or whole plants were growing in constantly wet soil. The stomatal response to increasing evaporative demand appeared therefore to be the result of hydraulic signals generated during shoot cavitation. A negative feedback link is proposed between gL and Ψ CAV rather than with Ψ L itself.  相似文献   

12.
13.
The influence of climate on the radial growth of Fagus sylvatica was investigated using 15 chronologies developed from mature stands of the French Permanent Plot Network (RENECOFOR) growing under different climatic and soil conditions. The relationships between climate and ring widths were analyzed using extreme growth years, simple correlations and response functions analysis. Monthly climatic regressors were derived by a physiological water balance model that used daily climatic data and stand parameters to estimate soil water deficits. The three most frequent negative pointer years (1959, 1989, 1976) result from a particularly intense and durable drought, whereas positive years (1977, 1958) coincide with wet conditions. The total ring chronology variance attributable to climate averages 34.1% (15.8% –57%). Current early-summer soil water deficit enters in 10 models and the deficit in June explains alone a large part of the radial growth variability (mean value: 26.6%). Temperature or soil water deficit for the other months and weather conditions during the previous season were of little consistency across stands. The response pattern of earlywood is very similar and the percentage of variance explained is higher (16.2% –57.8%). Latewood widths present a different response pattern. High minimum temperature in August and/or September often favour wide latewood widths and monthly water deficits play a secondary role. The percentage of variance explained ranges from 8.8% to 67.4%. Soil water capacity strongly modulates ring characteristics and climate-growth relationships. Mean sensitivity, expressed population signal, signal-to-noise ratio and the strength of growth-climate correlations increase with decreasing soil water capacity.  相似文献   

14.
In the present study, the high‐resolution stable carbon (13C/12C) and oxygen (18O/16O) isotope ratio profiles in the wood of the mangrove Rhizophora mucronata Lam., a tropical tree species lacking distinct growth rings, were investigated. Variations of both isotope ratios revealed a remarkable annual cyclicity with lowest values occurring at the latewood/earlywood boundary (April–May) and highest values during the transition from earlywood to latewood (October–November). Based on the current knowledge of the physiology of this mangrove species, as well as on the current literature available on high‐resolution profiles of stable isotope ratios in tree rings, possible driving forces responsible for this seasonal pattern are discussed. The annual cyclicity, together with a conspicuous isotope pattern appearing in the El‐Niño year 1997, promises great potential for tropical dendrochronology.  相似文献   

15.
16.
Dirk Gansert 《Plant and Soil》1994,167(1):109-119
Root respiration of 10-year-old beech saplings (Fagus sylvatica L.) grown in the understorey (UND) and in a natural gap (GAP) of a mature beech forest in the Solling mountains, FRG, was investigated from April until December, 1990. Respiration rates of fine, medium and coarse roots were measured in situ by a PC-controlled cuvette system. Fine root respiration rates were in the range of 0.5–9.8 nmol CO2 gDW–1 s–1 at both sites, but respiration rates of UND saplings were higher, compared to those of GAP saplings. The dependence of respiratory activity on soil temperature proved to be highly significant (p<0.001) for both plots, following a quasi-Arrhenius type curve. Fine root respiration rates of UND saplings were highly significantly, negatively correlated with the water content of the attached organic material, whereas respiration rates of GAP saplings did not show such a correlation. Further, a significant correlation (p<0.01) between mycorrhizal biomass and respiration rate was detected at the UND site, but not at the GAP site. Medium and coarse root respiration rates were very similar and no significant differences between the two sites were detected. Maximum respiration rates of 3.1 nmol CO2 gDW–1 s–1 were reached in the middle of July. Due to low light intensities in the under storey, daily net CO2 assimilation rates of UND saplings were much smaller than those of GAP saplings. At both sites, net CO2 assimilation rates varied more than respiration rates and thus the carbon balance of beech saplings was more affected by the rate of carbon fixation than by the rate of respiratory carbon loss.  相似文献   

17.
Kim SH  Lieth JH 《Annals of botany》2003,91(7):771-781
The following three models were combined to predict simultaneously photosynthesis, stomatal conductance, transpiration and leaf temperature of a rose leaf: the biochemical model of photosynthesis of Farquhar, von Caemmerer and Berry (1980, Planta 149: 78-90), the stomatal conductance model of Ball, Woodrow and Berry (In: Biggens J, ed. Progress in photosynthesis research. The Netherlands: Martinus Nijhoff Publishers), and an energy balance model. The photosynthetic parameters: maximum carboxylation rate, potential rate of electron transport and rate of triose phosphate utilization, and their temperature dependence were determined using gas exchange data of fully expanded, young, sunlit leaves. The stomatal conductance model was calibrated independently. Prediction of net photosynthesis by the coupled model agreed well with the validation data, but the model tended to underestimate rates of stomatal conductance and transpiration. The coupled model developed in this study can be used to assist growers making environmental control decisions in glasshouse production.  相似文献   

18.
To study the incorporation of carbon and nitrogen in different plant fractions, 3‐year‐old‐beech (Fagus sylvatica L.) seedlings were exposed in microcosms to a dual‐labelling experiment employing 13C and 15N throughout one season. Leaves, stems, coarse and fine roots were harvested 6, 12 and 18 weeks after bud break (June to September) and used to isolate acid‐detergent fibre lignins (ADF lignin) for the determination of carbon and nitrogen and their isotope ratios. Lignin concentrations were also determined with the thioglycolic acid method. The highest lignin concentrations were found in fine roots. ADF lignins of all tissues analysed, especially those of leaves, also contained significant concentrations of nitrogen. This suggests that lignin‐bound proteins constitute an important cell wall fraction and shows that the ADF method is not suitable to determine genuine lignin. ADF lignin should be re‐named as ligno‐protein fraction. Whole‐leaf biomass was composed of 50 to 70% newly assimilated carbon and about 7% newly assimilated nitrogen; net changes in the isotope ratios were not observed during the experimental period. In the other tissues analysed, the fraction of new carbon and nitrogen was initially low and increased significantly during the time‐course of the experiment, whereas the total tissue concentrations of carbon remained almost unaffected and nitrogen declined. At the end of the experiment, the whole‐tissue biomass and ADF lignins of fine roots contained about 65 and 50% new carbon and about 50 and 40% new nitrogen, respectively. These results indicate that significant metabolic activity was related to the formation of structural biopolymers after leaf growth, especially below‐ground and that this activity also led to a substantial binding of nitrogen to structural compounds.  相似文献   

19.
Combined δ(13) C and δ(18) O analyses of water-soluble leaf and twig phloem material were used to determine intrinsic water-use efficiency (iWUE) and variability of stomatal conductance at different crown positions in adult European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) trees. Simultaneous gas exchange measurements allowed evaluation of the differences in calculating iWUE from leaf or phloem water-soluble compounds, and comparison with a semi-quantitative dual isotope model to infer variability of net photosynthesis (A(n) ) between the investigated crown positions. Estimates of iWUE from δ(13) C of leaf water-soluble organic matter (WSOM) outperformed the estimates from phloem compounds. In the beech crown, δ(13) C of leaf WSOM coincided clearly with gas exchange measurements. The relationship was not as reliable in the Douglas-fir. The differences in δ(18) O between leaf and phloem material were found to correlate with stomatal conductance. The semi-quantitative model approach was applicable for comparisons of daily average A(n) between different crown positions and trees. Intracanopy gradients were more pronounced in the beech than in the Douglas-fir, which reached higher values of iWUE at the respective positions, particularly under dry air conditions.  相似文献   

20.
Foliar water uptake (FWU), the direct uptake of water into leaves, is a global phenomenon, having been observed in an increasing number of plant species. Despite the growing recognition of its functional relevance, our understanding of how FWU occurs and which foliar surface structures are implicated, is limited. In the present study, fluorescent and ionic tracers, as well as microcomputed tomography, were used to assess potential pathways for water entry in leaves of beech, a widely distributed tree species from European temperate regions. Although none of the tracers entered the leaf through the stomatal pores, small amounts of silver precipitation were observed in some epidermal cells, indicating moderate cuticular uptake. Trichomes, however, were shown to absorb and redistribute considerable amounts of ionic and fluorescent tracers. Moreover, microcomputed tomography indicated that 72% of empty trichomes refilled during leaf surface wetting and microscopic investigations revealed that trichomes do not have a cuticle but are covered with a pectin‐rich cell wall layer. Taken together, our findings demonstrate that foliar trichomes, which exhibit strong hygroscopic properties as a result of their structural and chemical design, constitute a major FWU pathway in beech.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号