首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of nucleotide sequences of the human glycophorin A (GPA) and glycophorin B (GPB) genes has indicated that the GPA gene most closely resembles the ancestral gene, whereas the GPB gene likely arose from the GPA gene by homologous recombination. To study the evolution of the glycophorin gene family in the hominoid primates, restricted DNA on Southern blots from man, pygmy chimpanzee, common chimpanzee, gorilla, orangutan, and gibbon was probed with cDNA fragments encoding the human GPA and GPB coding and 3-untranslated regions. This showed the presence in all of the hominoid primates of at least one GPA-like gene. In addition, at least one GPB-like gene was detected in man, both chimpanzee species, and gorilla, strongly suggesting that the event that produced the GPB gene occurred in the common ancestor of man-chimpanzee-gorilla. An unexpected finding in this study was the conservation ofEcoRI restriction sites relative to those of the other four enzymes used; the significance of this observation is unclear, but raises the question of nonrandomness ofEcoRI restriction sites in noncoding regions. Further analysis of the evolution of this multigene family, including nucleotide sequence analysis, will be useful in clarification of the evolutionary relationships of the hominoid primates, in correlation with the structure and function of the glycophorin molecules, and in assessment of the role of evolution in the autogenicity of glycophorin determinants.This work was supported in part by National Institutes of Health Grants AM33463 and CA33000.  相似文献   

2.
PKD2 gene encodes a critical cation channel protein that plays important roles in various developmental processes and is usually evolutionarily conserved. In the present study, we analyzed the evolutionary patterns of PKD2 and its homologous genes (PKD2L1, PKD2L2) from nine mammalian species. In this study, we demonstrated the orthologs of PKD2 gene family evolved under a dominant purifying selection force. Our results in combination with the reported evidences from functional researches suggested the entire PKD2 gene family are conserved and perform essential biological roles during mammalian evolution. In rodents, PKD2 gene family members appeared to have evolved more rapidly than other mammalian lineages, probably resulting from relaxation of purifying selection. However, positive selection imposed on synonymous sites also potentially contributed to this case. For the paralogs, our results implied that PKD2L2 genes evolved under a weaker purifying selection constraint than PKD2 and PKD2L1 genes. Interestingly, some loop regions of transmembrane domain of PKD2L2 exhibited higher P N/P S ratios than expected, suggesting these regions are more functional divergent in organisms and worthy of special attention. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Chun Ye, Huan Sun have contributed equally to this work.  相似文献   

3.
Pituitary prolactin, like growth hormone (GH) and several other protein hormones, shows an episodic pattern of molecular evolution in which sustained bursts of rapid change contrast with long periods of slow evolution. A period of rapid change occurred in the evolution of prolactin in primates, leading to marked sequence differences between human prolactin and that of nonprimate mammals. We have defined this burst more precisely by sequencing the coding regions of prolactin genes for a prosimian, the slow loris (Nycticebus pygmaeus), and a New World monkey, the marmoset (Callithrix jacchus). Slow loris prolactin is very similar in sequence to pig prolactin, so the episode of rapid change occurred during primate evolution, after the separation of lines leading to prosimians and higher primates. Marmoset prolactin is similar in sequence to human prolactin, so the accelerated evolution occurred before divergence of New World monkeys and Old World monkeys/apes. The burst of change was confined largely to coding sequence (nonsynonymous sites) for mature prolactin and is not marked in other components of the gene sequence. This and the observations that (1) there was no apparent loss of function during the episode of rapid evolution, (2) the rate of evolution slowed toward the basal rate after this burst, and (3) the distribution of substitutions in the prolactin molecule is very uneven support the idea that this episode of rapid change was due to positive adaptive selection. In the slow loris and marmoset there is no evidence for duplication of the prolactin gene, and evidence from another New World monkey (Cebus albifrons) and from the chimpanzee and human genome sequences, suggests that this is the general position in primates, contrasting with the situation for GH genes. The chimpanzee prolactin sequence differs from that of human at two residues and comparison of human and chimpanzee prolactin gene sequences suggests that noncoding regions associated with regulating expression may be evolving differently from other noncoding regions.  相似文献   

4.
A genomic pattern of new gene origination is often dependent on a genomic method that can efficiently identify a statistically adequate number of recently originated genes. The heterochromatic regions have often been viewed as genomic deserts with low coding potential and thus a low flux of new genes. However, increasing reports revealed unexpected roles of heterochromatic regions in the evolution of genes and genomes. We identified recently retroposed genes that originated in heterochromatic regions in Drosophila, by developing microarray-based comparative genomic hybridization (CGH) with multiple species. This new gene family, named Ifc-2h, originated in the common ancestor of the clade of D. simulans, D. mauritiana, and D. sechellia. The sequence features and phylogenetic distribution indicated that Ifc-2h resulted from the retroposition from its parental gene, Infertile crescent (Ifc), and integrated into heterochromatic region of common ancester of the three sibling species 2 million years ago. Expression analysis revealed that Ifc-2h had developed a new expression pattern by recruiting a putative regulatory element from its target sequence. The distribution of indel variation in Ifc-2h of D. simulans and D. mauritiana revealed a significant sequence constraint, suggesting that the Ifc-2h gene may be functional. These analyses cast fresh insight into the evolution of heterochromatin and the origin of its coding regions. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

5.
C/T-antigens are endogenous proteins expressed in normal testis, ovary, and placenta, or in a variety of tumors. Such expression pattern makes the C/T antigens promising targets for cancer vaccines. The SSX family comprises several C/T antigens. Here we applied comparative genomics techniques to study the evolution of the SSX genes. The human genomic SSX locus includes 11 genes localized on the X chromosome in two separate regions 4 Mb apart. Recent pseudogenization of two SSX genes was demonstrated using the available expression data. A comparative analysis of the human, chimpanzee and mouse genomic loci allowed us to describe the phylogeny of the family and to reconstruct the evolutionary history of the locus in terms of elementary events.  相似文献   

6.
7.
Studies of Y chromosome evolution often emphasize gene loss, but this loss has been counterbalanced by addition of new genes. The DAZ genes, which are critical to human spermatogenesis, were acquired by the Y chromosome in the ancestor of Old World monkeys and apes. We and our colleagues recently sequenced the rhesus macaque Y chromosome, and comparison of this sequence to human and chimpanzee enables us to reconstruct much of the evolutionary history of DAZ. We report that DAZ arrived on the Y chromosome about 38 million years ago via the transposition of at least 1.1 megabases of autosomal DNA. This transposition also brought five additional genes to the Y chromosome, but all five genes were subsequently lost through mutation or deletion. As the only surviving gene, DAZ experienced extensive restructuring, including intragenic amplification and gene duplication, and has been the target of positive selection in the chimpanzee lineage. Editor's suggested further reading in BioEssays Should Y stay or should Y go: The evolution of non‐recombining sex chromosomes Abstract  相似文献   

8.
Summary The nematode,Caenorhabditis elegans, has a six-member gene family encoding vitellogenins, the yolk protein precursors. These genes are expressed exclusively in the intestine of the adult hermaphrodite. Here we report the cloning of all five members of the homologous gene family from anotherCaenorhabditis species,Caenorhabditis briggsae. Nucleotide sequence analysis of these genes reveals they are about 85% identical to theC. elegans genes in the coding regions. Oveerall similarity is much reduced in noncoding and flanking regions. However, two repeated heptamers, previously identified in the upstream regions of theC. elegans genes, are largely conserved in both location and sequence inC. briggsae. Conservation of certain of these heptamers suggests that proteins bound at these positions may be especially important to promoter function and/or regulation. Comparative sequence analysis also suggests the possibility that the first 70 bases of the vitellogenin mRNAs can be folded into stable secondary structures. Almost all base differences between the two species occur in sequences predicted to be unpaired, suggesting that the ability to form intrastrand base pairs has been selected duringCaenorhabditis evolution.  相似文献   

9.
Ubiquitin is a highly conserved protein, and is encoded by a multigene family among eukaryote species. The polyubiquitin genes, UbB and UbC, comprise tandem multiple ubiquitin coding units without a spacer region or intron. We determined nucleotide sequences for the UbB and UbC of human, chimpanzee, gorilla, and orangutan. The ubiquitin repeat number of UbB was constant (3) in human and great apes, while that of UbC varied: 6 to 11 for human, 10 to 12 for chimpanzee, 8 for gorilla, and 10 for orangutan. The heterogeneity of the repeat number within closely related hominoid species suggests that a lineage-specific unequal crossover and/or gene duplication occurred. A marked homogenization of UbC occurred in gorilla with a low level of synonymous difference (ps). The homogenization of UbC also occurred in chimpanzee and less strikingly in human. The first and last ubiquitin coding units of UbC were clustered independently between species, and less affected by homogenization during the hominoid evolution. Therefore, the homogenization of ubiquitin coding units is likely due to an unequal crossing-over inside the ubiquitin units. The lineage-specific homogenization of UbC among closely related species suggests that concerted evolution has a key role in the short-term evolution of UbC.  相似文献   

10.
Phylogenomic Analysis of the PEBP Gene Family in Cereals   总被引:1,自引:0,他引:1  
The TFL1 and FT genes, which are key genes in the control of flowering time in Arabidopsis thaliana, belong to a small multigene family characterized by a specific phosphatidylethanolamine-binding protein domain, termed the PEBP gene family. Several PEBP genes are found in dicots and monocots, and act on the control of flowering time. We investigated the evolution of the PEBP gene family in cereals. First, taking advantage of the complete rice genome sequence and EST databases, we found 19 PEBP genes in this species, 6 of which were not previously described. Ten genes correspond to five pairs of paralogs mapped on known duplicated regions of the rice genome. Phylogenetic analysis of Arabidopsis and rice genes indicates that the PEBP gene family consists of three main homology classes (the so-called TFL1-LIKE, MFT-LIKE, and FT-LIKE subfamilies), in which gene duplication and/or loss occurred independently in Arabidopsis and rice. Second, phylogenetic analyses of genomic and EST sequences from five cereal species indicate that the three subfamilies of PEBP genes have been conserved in cereals. The tree structure suggests that the ancestral grass genome had at least two MFT-like genes, two TFL1-like genes, and eight FT-like genes. A phylogenomic approach leads to some hypotheses about conservation of gene function within the subfamilies. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

11.
We characterized the ectopic gene conversions in the genomes of the K-12 MG1655, O157:H7 Sakai, O157:H7 EDL933, and CFT073 strains of E coli. Compared to the three pathogenic strains, the K-12 strain has a much smaller number of gene families, its gene families contain fewer genes, and gene conversions are less frequent. Whereas the three pathogenic strains have gene conversions covering hundreds of nucleotides when their flanking regions have as little as 50% similarity, flanking region similarity of at least 94% on both sides of the converted region is required to observe conversions of more than 87 nucleotides in the K-12 strain. Recombination is therefore more frequent and requires less sequence similarity in the three pathogenic strains than in K-12. This higher recombination level might be due to mutations in some of their mismatch-repair genes. In contrast with the gene conversions present in the yeast genome, the gene conversions found in the E. coli genomes do not occur more frequently between duplicated genes that are close to one another than between duplicated genes that are far apart and are randomly distributed along the length of the genes. In E. coli, gene conversions are not more frequent near the origin of replication. However, they do occur more frequently near the terminus of replication of the Sakai genome, where multigene family members are more abundant. This suggests that, in E. coli, gene conversions occur randomly between genes located in different chromosomal locations or located on different copies of the multiple chromosomes found in E. coli cells.  相似文献   

12.
The Groucho/Tle family of corepressor proteins has important roles in development and in adult tissue in both Protostomes and Deuterostomes. In Drosophila, a single member of this family has been identified. Unlike in Protostomes, most Deutrostomes contain more than two full-length Tle genes. In this study, I analyse the genomic organization and phylogenetic relationship between the long and short forms of the Groucho/Tle family members in Chordata. The genomic location and sequence similarities suggest that Aes/Grg5 and Tle6/Grg6 arose from duplication of the Tle2 gene; each evolved independently and acquired new functions as negative regulators of the other Tle proteins. Based on these data, a model for Groucho/Tle gene evolution is proposed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The complete mitochondrial DNA (mtDNA) molecules ofHomo and of the common chimpanzee were sequenced. Each sequence was established from tissue of one individual and thus nonchimeric. Both sequences were assembled in their entirety from natural (not PCR amplified) clones. Comparison with sequences in the literature identified the chimpanzee specimen asPan troglodytes verus, the West African variety of the species. The nucleotide difference between the complete human and chimpanzee sequences is 8.9%. The difference between the control regions of the two sequences is 13.9% and that between the remaining portions of the sequences 8.5%. The mean amino acid difference between the inferred products of the 13 peptide-coding genes is 4.4%. Sequences of the complete control regions, the complete 12S rRNA genes, the complete cytochromeb genes, and portions of the NADH4 and NADH5 genes of two other chimpanzee specimens showed that they were similar but strikingly different from the same regions of the completely sequenced molecule fromPan troglodytes verus. The two specimens were identified asPan troglodytes troglodytes, the Central African variety of the common chimpanzee.  相似文献   

14.
In vertebrate development the Dickkopf protein family carries out multiple functions and is represented by at least four different genes with distinct biological activities. In invertebrates such as Drosophila and Caenorhabditis, Dickkopf genes have so far not been identified. Here we describe the identification and characterization of a Dickkopf gene with a deduced amino acid sequence closely related to that of chicken Dkk-3 in the basal metazoan Hydra. HyDkk-3 appears to be the only Dickkopf gene in Hydra. The gene is expressed in the gastric region in nematocytes at a late differentiation stage. In silico searches of EST and genome databases indicated the absence of Dkk genes from the protostomes Drosophila and Caenorhabditis, whereas within the deuterostomes, a Dkk-3 gene could be identified in the genome of the urochordate Ciona intestinalis. The results indicate that at an early stage of evolution of multicellularity Dickkopf proteins have already played important roles as developmental signals. They also suggest that vertebrate Dkk-1, 2 and 4 may have originated from a common ancestor gene of Dkk-3.H. Fedders and R. Augustin contributed equally to this workEdited by D. Tautz  相似文献   

15.
Genes of the DAZ (Deleted in AZoospermia) gene family, DAZ, DAZL (DAZ-Like), and BOULE, encode closely related RNA-binding proteins that are required for fertility in numerous organisms, yet the genomes of different organisms possess different complements of DAZ family genes. Thus, invertebrates such as flies and worms contain just a single DAZ homolog, boule, while genomes of vertebrates, other than catarrhine primates (Old World monkeys and hominids), possess both Boule and Dazl genes. Finally, catarrhine primates possess BOULE, DAZL, and DAZ genes. Since the DAZ genes arose recently in evolution in the catarrhine lineage, we sought to examine how the sequences and expression of this gene family may have changed after the introduction of a new member, DAZ. Based on previous results, we hypothesized that the introduction of a new member of the DAZ gene family into catarrhines could reduce functional constraint on DAZL. Surprisingly, however, we found that platyrrhine DAZL demonstrated significantly more sequence divergence than catarrhine DAZL (p=0.0006 for nucleotide and p=0.05 for amino acid sequence); however, comparison of K a/K s ratios suggests that the DAZL and BOULE genes are under similar functional constraints regardless of lineage. Thus, our data are most consistent with the hypothesis that the introduction of DAZ did not affect the evolution of DAZL or BOULE, and that a higher neutral mutation rate in platyrrhines than in catarrhines, along with the greater tolerance of DAZL for variation relative to BOULE, may be the foundation for the observed differences in sequence divergence in this gene family.  相似文献   

16.
Glutamate dehydrogenases (GDH, EC 1.4.1.2~4) are ubiquitous enzymes encoded by GDH genes. So far, at least two GDH members have been characterized in plants, but most members of this family in rice remains to be characterized. Here, we show that four putative GDH genes (OsGDH1-4) are present in the rice genome. The GDH sequences from rice and other species can be classified into two types (I and II). OsGDH1-3 belonged to type II genes, whereas OsGDH4 belonged to type I like gene. Our data implied that the expansion rate of type I genes was much slower than that of type II genes and species-specific expansion contributed to the evolution of type II genes in plants. The expression levels of the different members of GDH family in rice were evaluated using quantitative real-time PCR and microarray analysis. Gene expression patterns revealed that OsGDH1, OsGDH2, and OsGDH4 are expressed ubiquitously in various tissues, whereas OsGDH3 expression is glumes and stamens specific. The expression of the OsGDH family members responded differentially to nitrogen and phosphorus-deprivation, indicating their roles under such stress conditions. Implications of the expression patterns with respect to the functions of these genes were discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Proteins of the Caspr family are involved in cell contacts and communication in the nervous system. We identified and, by in silico reconstruction, compiled three orthologues of the human CASPR5 gene from the mouse genome, four from the rat genome, and one each from the chimpanzee, dog, opossum, and chicken genomes. Obviously, Caspr5 gene duplications have taken place during evolution of the rodent lineage. In the rat, the four paralogues are located in one chromosome arm, Chr 13p. In the mouse, however, the three Caspr5 genes are located in two chromosomes, Chr 1 and Chr 17. RT-PCR shows that all three mouse paralogues are being expressed. Common expression is found in brain tissue but different expression patterns are seen in other organs during fetal development and in the adult stage. Tissue specificity of expression has diverged during evolution of this young rodent gene family.  相似文献   

18.
19.
The genes and intergenic regions of the amoCAB operon were analyzed to establish their potential as molecular markers for analyzing ammonia-oxidizing betaproteobacterial (beta-AOB) communities. Initially, sequence similarity for related taxa, evolutionary rates from linear regressions, and the presence of conserved and variable regions were analyzed for all available sequences of the complete amoCAB operon. The gene amoB showed the highest sequence variability of the three amo genes, suggesting that it might be a better molecular marker than the most frequently used amoA to resolve closely related AOB species. To test the suitability of using the amoCAB genes for community studies, a strategy involving nested PCR was employed. Primers to amplify the whole amoCAB operon and each individual gene were tested. The specificity of the products generated was analyzed by denaturing gradient gel electrophoresis, cloning, and sequencing. The fragments obtained showed different grades of sequence identity to amoCAB sequences in the GenBank database. The nested PCR approach provides a possibility to increase the sensitivity of detection of amo genes in samples with low abundance of AOB. It also allows the amplification of the almost complete amoA gene, with about 300 bp more sequence information than the previous approaches. The coupled study of all three amo genes and the intergenic spacer regions that are under different selection pressure might allow a more detailed analysis of the evolutionary processes, which are responsible for the differentiation of AOB communities in different habitats. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Pilar Junier and Ok-Sun Kim contributed equally to this work.  相似文献   

20.
Analysis of polymorphism and divergence in the non-coding portion of the human genome yields crucial information about factors driving the evolution of gene regulation. Candidate cis-regulatory regions spanning more than 15,000 genes in 15 African Americans and 20 European Americans were re-sequenced and aligned to the chimpanzee genome in order to identify potentially functional polymorphism and to characterize and quantify departures from neutral evolution. Distortions of the site frequency spectra suggest a general pattern of selective constraint on conserved non-coding sites in the flanking regions of genes (CNCs). Moreover, there is an excess of fixed differences that cannot be explained by a Gamma model of deleterious fitness effects, suggesting the presence of positive selection on CNCs. Extensions of the McDonald-Kreitman test identified candidate cis-regulatory regions with high probabilities of positive and negative selection near many known human genes, the biological characteristics of which exhibit genome-wide trends that differ from patterns observed in protein-coding regions. Notably, there is a higher probability of positive selection in candidate cis-regulatory regions near genes expressed in the fetal brain, suggesting that a larger portion of adaptive regulatory changes has occurred in genes expressed during brain development. Overall we find that natural selection has played an important role in the evolution of candidate cis-regulatory regions throughout hominid evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号