首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome preparations treated for short periods with the proteolytic enzyme trypsin show well defined banding patterns, comparable to those obtained by more elaborate techniques.—With such patterns it is possible to map in detail the position of chromosome rearrangements.—A rare balanced A1–E18 translocation in a phenotypically normal female and the unbalanced product in her abnormal child has been used to demonstrate this mapping method.  相似文献   

2.
We demonstrated previously that an α1—β2—γ2 gene cluster of the γ-aminobutyric acid (GABAA) receptor is located on human chromosome 5q34–q35 and that an ancestral α—β—γ gene cluster probably spawned clusters on chromosomes 4, 5, and 15. Here, we report that the α4 gene (GABRA4) maps to human chromosome 4p14–q12, defining a cluster comprising the α2, α4, β1, and γ1 genes. The existence of an α2—α4—β1—γ1 cluster on chromosome 4 and an α1—α6—β2—γ2 cluster on chromosome 5 provides further evidence that the number of ancestral GABAA receptor subunit genes has been expanded by duplication within an ancestral gene cluster. Moreover, if duplication of the α gene occurred before duplication of the ancestral gene cluster, then a heretofore undiscovered subtype of α subunit should be located on human chromosome 15q11–q13 within an α5—αx—β3—γ3 gene cluster at the locus for Angelman and Prader—Willi syndromes.  相似文献   

3.
Chromosome breakage and rejoining of sister chromatids in Bloom's syndrome   总被引:2,自引:0,他引:2  
The occurrence of chromosome breaks and reunion of sister chromatids in lymphocytes of two patients with Bloom's syndrome has been compared with those found in X-rayed and control cells. The distribution of breaks in BS is non-random both between and within chromosomes, the centric regions of certain chromosomes being preferentially involved. The following working hypotheses are put forward: When chromosome breaks in human lymphocytes occur in G0— G1, practically no sister chromatid reunion (SCR) takes place, whereas ends created by an S—G2 break show a considerable tendency to SCR. We propose further that chromosome aberrations in BS mainly result from breaks in S—G2, including possible U-type rejoining of sister chromatid exchanges. Fragments extra to an intact chromosome complement result from a chromatid break or an asymmetrical chromatid translocation in a previous mitosis.  相似文献   

4.
Summary A total of 37 genetic markers located in chromosomes 2, 3, 4 and 5 were associated with specific arms by means of telotrisomic analysis in five telotrisomics (Triplo 2 L, 2 S, 3 S, 4 S, 5 L) of barley (Hordeum vulgare L.). The genes v, gp (= gp 2), li, gs 5, tr and msg2 showed a trisomic ratio with Triplo 2 L indicating that these genes were on the long arm of chromosome 2. A disomic ratio was obtained for genes wst 4, gs 5, and v with Triplo 2 S, confirming that these genes were on the long arm of chromosome 2(2 L). A disomic ratio was observed for genes e, f(= lg), sk, and gs6 with Triplo 2 L. Two genes, f(= lg) and gs6 showed a trisomic ratio with Triplo 2S. These results indicated that genes e, f(= lg), sk, and gs 6 are on the short arm of chromosome 2 (2S). Since only one telocentric chromosome was available for chromosome 3, 4 and 5, most of the well-mapped marker genes were tested with those telocentric chromosomes. The genes cu 2, uz, wst, als, gs 2, zb,f2, and cer-zn 348 showed trisomic ratio with the telocentric for chromosome 3. These genes were located on the short arm of chromosome 3 (Robertson 1971). This indicated that the telocentric chromosome is for the short arm of chromosome 3(3 S). A disomic ratio was obtained for genes yst, x c, al, yst2, a n, ari-a 6 and x s, indicating that these genes are on the long arm of chromosome 3. Two genes, f9 and K, showed trisomic ratio with the telocentric chromosome for 4, while genes gl(= gl2), br2, yh, lg 3, lg 4 and lk 5 showed disomic ratios. This indicated that the telocentric chromosome is for the short arm of chromosome 4. Two genes, fs 2 and g, were studied with Triplo 5 L. Both showed trisomic ratio, indicating that fs 2 and g are located on Triplo 5 L. The centromere position (C) on chromosome 2, 3 and 4 was thus located as (the left side of C is the short arm and the right is the long arm): chromosome 2: fskgs6e — C — gs5msg2wst4vgplitr; chromosome 3: f2cer-zn 348uzgs2alscu2wstzb — C — ystx calyst2a nari-a 6x s; chromosome 4: f9KClg4lg 3gl2br2lk5yh. The centromere position on chromosome 5 was not precisely located.Contribution from the Department of Agronomy, Published with the approval of the director of the Colorado State University Experiment Station as Scientific Series Paper No. 2606. This research was supported in part by by NSF Grant GB 4482X and GB 30 493 to T. Tsuchiya and Colorado State University Experiment Station Hatch Project  相似文献   

5.
M. K. Omara 《Chromosoma》1976,55(3):267-271
Cytomixis is a spontaneous process occurring through the formation of cytoplasmic bridges between adjacent pollen mother cells. This phenomenon was observed in the pollen mother cells of 3 genotypes of Lolium perenne which had been subjected to directional selection for productivity of green material. — The process has led to the formation of up to 34.8% of PMCs with chromosome numbers deviating from the normal diploid number 2n=14. The abnormal PMCs contained chromosome numbers ranging from 2–56 as observed at first metaphase. — Abnormal PMCs were also observed with approximately the same frequency in Meiosis II. This phenomenon is under genetic control. The evolutionary significance of cytomixis and the cytological consequences are discussed.  相似文献   

6.
Summary Since the successful induction of haploids from anthers cultured in vitro in 1964, a great deal of attention has been given to this problem by those interested in obtaining pure lines and mutants for crop improvement and biochemical genetics. In the last 16 years the anther culture technique has been refined and extended to over one hundred and fifty different species. More recently, isolated pollen culture — which is a refinement of the original anther culture technique — has also been developed. In this review we have made an effort to critically examine existing reports with the objective of analysing the effects of various factors — e.g. culture medium, the cultural conditions, and the effect of genotype and physiological state of the parent plant on pollen induction — and to speculate on the mechanism of action of different factors in order to throw some light on the process of haploid induction.  相似文献   

7.
The gene for the autosomal recessive neurodegenerative disorder spinal muscular atrophy has been mapped to a region of 5q13 flanked proximally by CMS-1 and distally by D5S557. We present a 2-Mb yeast artificial chromosome (YAC) contig constructed from three libraries encompassing the D5S435/D5S629/CMS-1—SMA—D5S557/D5S112 interval. The D5S629/CMS-1—SMA—D5S557 interval is unusual insofar as chromosome 5-specific repetitive sequences are present and many of the simple tandem repeats (STR) are located at multiple loci that are unstable in our YAC clones. A long-range restriction map that demonstrates the SMA-containing interval to be 550 kb is presented. Moreover, a 210-kb cosmid array from both a YAC-specific and a chromosome 5-specific cosmid library encompassing the multilocus STRs CATT-1, CMS-1, D5F149, D5F150, and D5F153 has been assembled. We have recently reported strong linkage disequilibrium with Type I SMA for two of these STRs, indicating that the gene is located in close proximity to or within our cosmid clone array.  相似文献   

8.
The gene coding for human collagenase-3 (CLG3), a recently described matrix metalloproteinase produced by breast carcinomas, has been localized by fluorescence in situ hybridization on chromosome 11q22.3. Physical mapping of an isolated YAC clone containing CLG3 has revealed that this gene is tightly linked to those encoding other matrix metalloproteinases, including fibroblast collagenase (CLG1), stromelysin-1 (STMY1), and stromelysin-2 (STMY2). Further mapping of this region using pulsed-field gel electrophoresis has shown that the CLG3 gene is localized to the telomeric side of the matrix metalloproteinase cluster, the relative order of the loci being centromere—STMY2—CLG1—STMY1—CLG3—telomere.  相似文献   

9.
Arachis hypogaea L. (cultivated peanut) is an allotetraploid (2n = 4x = 40) with an AABB genome type. Based on cytogenetic studies it has been assumed that peanut and wild-derived induced AABB allotetraploids have classic allotetraploid genetic behavior with diploid-like disomic recombination only between homologous chromosomes, at the exclusion of recombination between homeologous chromosomes. Using this assumption, numerous linkage map and quantitative trait loci studies have been carried out. Here, with a systematic analysis of genotyping and gene expression data, we show that this assumption is not entirely valid. In fact, autotetraploid-like tetrasomic recombination is surprisingly frequent in recombinant inbred lines generated from a cross of cultivated peanut and an induced allotetraploid derived from peanut’s most probable ancestral species. We suggest that a better, more predictive genetic model for peanut is that of a “segmental allotetraploid” with partly disomic, partly tetrasomic genetic behavior. This intermediate genetic behavior has probably had a previously overseen, but significant, impact on the genome and genetics of cultivated peanut.  相似文献   

10.
Von Hippel-Lindau disease is a heritable tumour syndrome caused by the loss of the function of a tumour suppressor gene on the short arm of human chromosome 3. The interval RAF1-D3S18 (3p25–3p26) has been identfied by genetic linkage studies to harbour the von Hippel-Lindau gene. We have constructed a long range restriction map of this region and have succeeded in demonstrating the physical linkage of loci D3S726 (DNA probe LIB31-38), D3S18 (c-LIB-1, L162E5), D3S601 (LIB1963) and D3S587 (LIB 12–48). Since multipoint analysis has located D3S601 proximal to D3S726, the physical map should be oriented with D3S726 towards the telomere. The order and distances of probes within the von Hippel-Lindau gene region is as follows: telomere — LIB3138 — (<280 kb) — c-LIB-1 — (overlapping) — L162E5 — (900–1600 kb) — (LIB 19-63, LIB 12–48) — centromere. In tissues that included blood, semen and Epstein-Barrvirus-transformed lymphocytes, we detected a putative CpG island flanking D3S18.  相似文献   

11.
We explore the distinctive characteristics of Mexico’s society, politics and history that impacted the establishment of genetics in Mexico, as a new disciplinary field that began in the early 20th century and was consolidated and institutionalized in the second half. We identify about three stages in the institutionalization of genetics in Mexico. The first stage can be characterized by Edmundo Taboada, who was the leader of a research program initiated during the Cárdenas government (1934–1940), which was primarily directed towards improving the condition of small Mexican farmers. Taboada is the first Mexican post-graduate investigator in phytotechnology and phytopathology, trained at Cornell University and the University of Minnesota, in 1932 and 1933, respectively. He was the first investigator to teach plant genetics at the National School of Agriculture and wrote the first textbook of general genetics, Genetics Notes, in 1938. Taboada’s most important single genetics contribution was the production of “stabilized” corn varieties. The extensive exile of Spanish intellectuals to Mexico, after the end of Spain’s Civil War (1936–1939), had a major influence in Mexican science and characterizes the second stage. The three main personalities contributing to Mexican genetics are Federico Bonet de Marco and Bibiano Fernández Osorio Tafall, at the National School of Biological Sciences, and José Luis de la Loma y Oteyza, at the Chapingo Agriculture School. The main contribution of the Spanish exiles to the introduction of genetics in Mexico concerned teaching. They introduced in several universities genetics as a distinctive discipline within the biology curriculum and wrote genetics text books and manuals. The third stage is identified with Alfonso León de Garay, who founded the Genetics and Radiobiology Program in 1960 within the National Commission of Nuclear Energy, which had been founded in 1956. The Genetics and Radiobiology Program rapidly became a disciplinary program, for it embraced research, teaching, and training of academics and technicians. The Mexican Genetics Society, created by de Garay in 1966, and the development of strains and cultures for genetics research were important activities. One of de Garay’s key requirements was the compulsory training of the Program’s scientists for at least one or two years in the best universities of the United States and Europe. De Garay’s role in the development of Mexican genetics was fundamental. His broad vision encompassed the practice of genetics in all its manifestations.  相似文献   

12.
李刚  陈凡国 《遗传》2015,37(6):605-612
果蝇唾腺多线染色体是细胞遗传学的3大经典染色体之一,从1934年至今因其具有显著的特点已经作为一个优异的模型用在不同的遗传学研究中。果蝇唾腺多线染色体最大的贡献就是为研究间期染色体结构和基因的表达调控提供了一个非凡的视角;另外,果蝇唾腺多线染色体还可以用于解释一些特殊的遗传现象,例如剂量补偿效应和花斑位置效应。文章一方面就以上进展作一简要总结,另一方面尝试将这一典型案例系统地用于遗传学教学中,引导和激发学生学习遗传学的兴趣。  相似文献   

13.
原位杂交技术在植物遗传育种上的应用   总被引:4,自引:0,他引:4  
本文在简要介绍原位杂交技术的基础之上 ,重点介绍了该技术在植物遗传育种领域 ,即在 (1 )异源染色质及染色体畸变检测 ;(2 )植物基因工程及基因表达研究 ;(3)构建植物基因物理图谱 ;(4)染色体RNA研究等方面的应用现状 ,并对原位杂交技术在提高检出率 ,与染色体显带技术结合 ,PCR 原位杂交等方面提了一些见解。  相似文献   

14.
15.
A comparison of the karyotypes of races D (2n=8), E (2n=10), B (2n=12) and C (2n=16) of B. lineariloba suggests that these races have in common a basic set of four chromosome pairs, and that the higher chromosome number races are related to race D by successive chromosome addition. — A study of meiosis in B × C and A1 × B hybrids supports this contention and elucidates the homologies of the additional chromosomes. — Meiotic pairing in hybrids between A and C is very complex. At present it can only be stated that there are extensive interchromosomal homologies between the two races. — Two phyletic schemes of the relationships of the races are considered. The second, which is favoured, involves successive chromosome addition, with the quasidiploid race E (2n = 10) giving rise to race B by diploidisation of the univalent chromosomes. This scheme is supported by features of univalent behaviour in the various races and their hybrids. — The ecogeographic distribution pattern of the races shows replacement of D by E by B by C as the species extends into more arid and more harsh environments. This replacement is also associated with increasing vigour. — It seems most likely that the addition chromosomes are derived from a race A (2n=4) source since they are added always by twos, and each addition increases both vigour and drought tolerance. Race A is the most vigorous and one of the most drought tolerant of the five races.It is suggested that the evolution of the races can be related to the increasing aridity of the Late Pleistocene and Recent geological epochs.  相似文献   

16.
For more than 50 years it has been a dream of medical entomologists and public health workers to control diseases like malaria and dengue fever by modifying, through genetics and other methods, the arthropods that transmit them to humans. A brief synopsis of the history of these efforts as applied to mosquitoes is presented; none proved to be effective in reducing disease prevalence. Only in the last few years have novel approaches been developed or proposed that indicate the long wait may be over. Three recent developments are particularly promising: CRISPR-Cas9 driven genetic modification, shifting naturally occurring allele frequencies, and microbe-based modifications. The last is the furthest along in implementation. Dengue fever incidence has been reduced between 40% and 96% in 4 different regions of the world where Wolbachia-infected Aedes aegypti have been established in the field. It is not yet clear how sustainable such control programs will prove to be, but there is good reason for optimism. In light of this, the time is ripe for reinvigorated research on vectors, especially genetics. Vector-borne diseases primarily affect under-developed countries and thus have not received the attention they deserve from wealthier countries with well-developed and funded biomedical research establishments.  相似文献   

17.
18.
Model plants are facilitating the genetic characterization and comparative mapping of a number of traditional crops. Medicago truncatula has been widely accepted as a model plant to this end as it provides the essential tools for multiple aspects of legume genetics and genomics. A large set of markers from highly conserved M. truncatula gene regions is being created and used to establish a worldwide framework for comparative genomic studies in legumes. We have investigated the potential for cross-species amplification of 209 expressed sequence tag (EST)-based and 33 bacterial artificial chromosome (BAC)-based microsatellites from M. truncatula in the three most important European legume pulses—pea, faba bean and chickpea—that might facilitate future comparative mapping. Our results revealed significant transferability of M. truncatula microsatellites to the three pulses (40% in faba bean, 36.3% in chickpea and 37.6% in pea). The percentage of M. truncatula EST-SSRs (simple sequence repeats) amplified in the three crops (39–43%) was twofold higher than that of the genomic SSRs (21–24%). Sequence analysis determined that the level of conservation in the microsatellite motif was very low, while the flanking regions were generally well conserved. The variations in the sequences were mainly due to changes in the number of repeat motifs in the microsatellite region combined with indel and base substitutions. None of the functional microsatellites showed direct polymorphism among the parental genotypes tested, consequently preventing their immediate use for mapping purposes.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

19.
C. B. Gillies 《Chromosoma》1973,43(2):145-176
Aldehyde fixation followed by staining with phosphotungstic acid produces differential contrast between the synaptonemal complex and the chromatin of maize pachytene bivalents. Centromeres, heterochromatic knobs and large chromomeres are easily recognised. With this and other staining techniques the nucleolus organizer region can be differentiated into two components. — Microsporocyte nuclei at pachytene were serially sectioned and all ten bivalents reconstructed in five nuclei. An idiogram was derived from the mean chromosome (= synaptonemal complex) lengths, the arm ratios, positions of knobs and the nucleolus organizer region. The idiogram agrees well with that published from light microscopic analyses. However, bivalent lengths are only two thirds of those observed by light microscopy of squash preparations. Many telomeres of the bivalents are connected via chromatin to the nuclear envelope, but a varying number of free bivalent ends are observed in all five reconstructed nuclei. — Bivalents heterozygous for inversion 3b were reconstructed. In the presence of abnormal chromosome 10 (K10) the lateral components of the synaptonemal complex of chromosome 3 formed a typical inversion loop, while in one of the nuclei having no K10 the two lateral components of the long arms of chromosome 3 remained unpaired in the region of inversion heterozygosity. The presence of K10, which increases crossing-over frequencies and promotes intimate pairing at the light microscopic level, was thus found to permit formation of complete synaptonemal complexes in the inverted region. The extra terminal portion of the K10 chromosome folded back on itself and formed a morphologically normal synaptonemal complex in this — possibly non-homologously paired — region. The chromatin of centromeres and knobs from different bivalents were sometimes found to fuse, but the synaptonemal complexes transversing the fused centromeres or knobs retained their individuality.  相似文献   

20.
Summary Although Giemsa C-banding techniques have been used extensively for assaying cereal heterochromatin, a more specific technique for analyzing cereal heterochromatin has been developed recently with the isolation of DNA sequences present in heterochromatin and their employment in in situ hybridization to cereal chromosomes. A number of triticales were examined for the occurrence of modified rye chromosomes using the in situ hybridization technique. With a heterogeneous sequence probe the amount of rye heterochromatin appears to be relatively constant in wheat backgrounds but when a specific sequence probe was employed variation was observed. Whether this variation reflects polymorphism in rye or whether it is a result of adaption of the rye genome to coexistence with the wheat genome in triticales is discussed. — The triticale Rosner was examined in detail and it was established that the rye chromosome 2R had been replaced by the wheat chromosome 2D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号