首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of heme and reduced glutathione, prostaglandin (PG) endoperoxides underwent rapid conversion to malondialdehyde and 12l-hydroxy-5,8,10-heptadecatrienoic acid. In addition, PG endoperoxides as well as lipid peroxides produced malondialdehyde to yield a red pigment during the thiobarbituric acid reaction with different efficiencies. The relative rates of the reaction were: 1,1,3,3-tetraethoxypropane, 100; PGG2, 55; PGH2, 32; and 15-hydroperoxyarachidonic acid, 6. The thiobarbituric acid reactive materials in rabbit serum decreased by 25–60%, after intravenous administration of aspirin (a cyclo-oxygenase inhibitor) and with a concomitant decline of serum PG levels. These results, taken together, suggested that serum thiobarbituric acid values, considered to be an indicator of lipid peroxide levels, were to a significant extent due to PG endoperoxides and their derivatives.  相似文献   

2.
The reduction of prostaglandin H synthase compound II by ascorbic acid in the presence of diethyldithiocarbamate was studied in 0.1 M phosphate buffer (pH 8.0) at 4.0 +/- 0.5 degrees C, by rapid scan spectrometry and transient state kinetics. A saturation effect and nonzero intercept were observed in the plot of pseudo-first-order rate constant versus ascorbic acid concentration. The saturation behavior suggests formation of a complex between prostaglandin H synthase compound II and ascorbic acid, whereas the nonzero intercept is attributable to the reaction of compound II of prostaglandin H synthase with diethyldithiocarbamate present in the system as a stabilizing agent. A rate equation has been derived which includes all pathways for the conversion of prostaglandin H synthase compound II back to native enzyme. Kinetic parameters for the reduction of compound II by ascorbic acid were obtained. They are the second-order rate constant of (1.4 +/- 0.5) X 10(5) M-1, S-1, for the formation of the compound II-ascorbic acid complex, the first-order rate constant of (14 +/- 4) S-1 for the oxidation-reduction reaction of the complex and its dissociation, and a parameter, Km of 92 +/- 10 microM analogous to the Michaelis-Menten constant. Thus we demonstrate that a quantitative kinetic study on the prostaglandin H synthase reactions can be performed in the presence of diethyldithiocarbamate.  相似文献   

3.
Enzymatic sulfation of mucus glycoprotein by rat submandibular salivary gland and the effect of prostaglandin and acetylsalicylic acid on this process were investigated in vitro. The sulfotransferase enzyme which catalyzes the transfer of sulfate ester group from 3'-phosphoadenosine-5'-phosphosulfate to submandibular gland mucus glycoprotein has been located in the detergent extracts of Golgi-rich membrane fraction of the gland. Optimum enzyme activity was obtained at pH 6.8 with 0.5% Triton X-100, 25 mM NaF and 4 mM MgCl2, using the desulfated glycoprotein. The enzyme was also capable of sulfation of the intact mucus glycoprotein, but the acceptor capacity of such glycoprotein was 68% lower. The apparent Km of the submandibular gland sulfotransferase for salivary mucus glycoprotein was 11.1 microM. The 35S-labeled glycoprotein product of the enzyme reaction gave in CsCl density gradient a 35S-labeled peak which coincided with that of the glycoprotein. This glycoprotein upon reductive beta-elimination yielded several acidic 35S-labeled oligosaccharide alditols which accounted for 75% of the 35S-labeled glycoprotein label. Based on the analytical data, the two most abundant oligosaccharides were identified as sulfated tri- and pentasaccharides. The submandibular gland sulfotransferase activity was stimulated by 16,16-dimethyl prostaglandin E2 and inhibited by acetylsalicylic acid. The rate of enhancement of the glycoprotein sulfation was proportional to the concentration of prostaglandin up to 2.10(-5) M, at which point a 31% increase in sulfation was attained. The inhibition of the glycoprotein sulfation by acetylsalicylic acid was proportional to the drug concentration up to 2.5.10(-4) M at which concentration a 48% reduction in the sulfotransferase activity occurred. The apparent Ki value for sulfation of salivary mucus glycoprotein in presence of acetylsalicylic acid was 58.9 microM. The results suggest that prostaglandins may play a role in salivary mucin sulfation and that this process is sensitive to such nonsteroidal anti-inflammatory agents as acetylsalicylic acid.  相似文献   

4.
The prostaglandin D synthetase system was isolated from rat brain. Prostaglandin endoperoxide synthetase solubilized from a microsomal fraction catalyzed the conversion of arachidonic acid to prostaglandin H2 in the presence of heme and tryptophan. Prostaglandin D synthetase (prostaglandin endoperoxidase-D isomerase) catalyzing the isomerization of prostaglandin H2 to prostaglandin D2 was found predominantly in a cytosol fraction and was purified to apparent homogeneity with a specific activity of 1.7 mumol/min/mg of protein at 24 degrees C. The enzyme also acted upon prostaglandin G2 and produced a compound presumed to be 15-hydroperoxy-prostaglandin D2. Glutathione was not required for the enzyme reaction, but the enzyme was stabilized by thiol compounds including glutathione. The enzyme was inhibited by p-chloromercuribenzoic acid in a reversible manner. The purified enzyme was essentially free of the glutathione S-transferase activity which was found in the cytosol of brain.  相似文献   

5.
The mechanism of prostaglandin synthase-dependent N-dealkylation has been investigated using an enzyme preparation derived from ram seminal vesicles. Incubation of an N-alkyl substrate, aminopyrine, with enzyme and arachidonic acid, 15-hydroperoxyarachidonic acid, or tert-butyl hydroperoxide resulted in the formation of the transient aminopyrine free radical species. Formation of this radical species, which was detected by electron paramagnetic resonance spectroscopy and/or absorbance at 580 nm, was maximal approximately 30 s following initiation of the reaction and declined thereafter. Free radical formation corresponded closely with formaldehyde formation in this system, in terms of dependence upon substrate and cofactor concentration, as well as in terms of time course. Both aminopyrine free radical and formaldehyde formation were inhibited by indomethacin and flufenamic acid, inhibitors of prostaglandin synthase. The results suggest that the aminopyrine free radical is an intermediate in the prostaglandin synthase-dependent aminopyrine N-demethylase pathway. The aminopyrine free radical electron paramagnetic resonance spectrum revealed that this species is a one-electron oxidized cation radical of the parent compound. A reaction mechanism has been proposed in which aminopyrine undergoes two sequential one-electron oxidations to an iminium cation, which is then hydrolyzed to the demethylated amine and formaldehyde. Accordingly, the oxygen atom of the aldehyde product is derived from neither molecular nor hydroperoxide oxygen, but from water.  相似文献   

6.
The biosynthesis of prostaglandin E(2) (PGE(2)) from [1-(14)C]arachidonic acid has been demonstrated in homogenates and subcellular fractions of human epidermis. This biosynthetic capacity is localized in the microsomal fraction, indicating the presence of an active prostaglandin synthetase system associated with membranes of the skin. The incorporation of (14)C from [1-(14)C]arachidonic acid into PGE(2) by the microsomal fraction was enhanced by EDTA. This apparent increase in (14)C incorporation into PGE(2) in the presence of EDTA could be due at least in part to its chelating properties of removing the divalent cations in the homogenate that enhance the selective formation of PGF(2alpha) and the suppression of the activity of epidermal phospholipase A, which causes the release of nonradioactive fatty acid precursors from endogenous phospholipids. This study has also demonstrated that the formation of PGE(2) from arachidonic acid by the microsomal fraction from human skin could be inhibited by polyunsaturated fatty acids, suggesting a possible regulatory role of fatty acids released from endogenous phospholipids on prostaglandin synthesis in this tissue. The inhibitory effects of some anti-inflammatory drugs on skin microsomal prostaglandin synthetase were also demonstrated in these studies. Results from these studies indicate that the skin is therefore a useful tissue for the study of mechanisms of prostaglandin biosynthesis and the mode of action of various anti-inflammatory drugs.  相似文献   

7.
Summary A method histochemical localization of prostaglandin synthetase using DAB, potassium cyanide and polyunsaturated fatty acid has been revised. The arachidonic acid-induced DAB oxidation observed in the secretory epithelium of sheep vesicular glands and in collecting tubules as well as interstitial cells of rabbit kidney medulla was found to be insensitive to antiinflammatory cyclooxygenase (formerly referred as prostaglandin synthetase) inhibitors, such as indomethacin, aspirin, mefenamic acid and paracetamol, whereas aminotriazole caused complete inhibition of the reaction. Furthermore, DAB was oxidized in the presence of polyunsaturated fatty acids inconvertible to prostaglandins (linoleic and linolenic acid) as well as in the presence of H2O2 — in the latter case reaction possessed identical features with that induced by fatty acids. Ultrastructurally, the reaction product was localized on the membranes of nuclear envelope and endoplasmic reticulum. On the ground of the results obtained a hypothesis is presented, that the polyunsaturated fatty acid-induced DAB oxidation is due to a peroxidatic activity of the investigated tissues. Possible relations between such peroxidatic activity and prostaglandin biosynthesis are discussed.  相似文献   

8.
Prostaglandin F synthetase from bovine lung was purified 540-fold to apparent homogeneity, as assessed by polyacrylamide gel electrophoreses and ultracentrifugation. The purified enzyme proved to be a monomeric protein with a molecular weight of about 30,500. The enzyme catalyzed not only the reduction of the 11-keto group of prostaglandin D2 but also the reduction of 9,11-endoperoxide of prostaglandin H2 and various carbonyl compounds (e.g. phenanthrenequinone). Experiments using column chromatography, polyacrylamide gel electrophoreses, immunotitration using antibody against the purified enzyme, and heat treatment indicated that three enzyme activities resided in a single protein. Although phenanthrenequinone and prostaglandin D2 competitively inhibited the prostaglandin D2 and phenanthrenequinone reductase activities, respectively, these two substrates were all but ineffective on the prostaglandin H2 (at the Km value) reductase activity up to 14-fold of those Km values. These results suggest that a single enzyme protein purified from the bovine lung catalyzes the reduction of prostaglandin D2, prostaglandin H2, and various carbonyl compounds and that prostaglandin D2 and prostaglandin H2 are metabolized at two different active sites, yielding prostaglandin F2 alpha as the reaction product.  相似文献   

9.
Prostaglandin H synthase can oxidize arachidonic acid with leuco-dichlorofluorescein as reducing cosubstrate. Addition of 0.5 mM phenol increases the oxidation of leuco-dichlorofluorescein 5-fold, probably by acting as a cyclic intermediate in the oxidation. Tetramethyl-p-phenylenediamine is also oxidized as cosubstrate. Its oxidation is not influenced by phenol. A stoichiometry of close to one mole of tetramethyl-p-phenylenediamine or leuco-dichlorofluorescein consumed per mole of arachidonic acid was found in the initial phase of the reaction. In the presence of phenol + leuco-dichlorofluorescein, the oxidation rate of arachidonic acid is about 40% lower than with phenol alone as cosubstrate. Since dichlorofluorescein has a molar extinction coefficient of 91 · 103 at 502 nm, the oxidation of less than 1 μM leuco-dichlorofluorescein can be detected spectrophotometrically. The rate of extinction change with leuco-dichlorofluorescein (at 502 nm) is about 4-fold more rapid than with tetramethyl-p-phenylenediamine (at 611 nm). With this spectrophotometric assay we have confirmed that arachidonic acid, linolenic acid, adrenic acid, γ-linolenic acid, eicosapentaenoic acid, are substrates for prostaglandin H synthase with decreasing reaction rates in the mentioned order. The same order of reaction rates were found when oxygen consumption was measured. The assay also shows that docosahexaenoic acid is substrate for the enzyme. The reaction rate of the enzyme evidently is decreased both by a n − 3 double bond and by deviation from a 20 carbon chain length of the fatty acid substrate.  相似文献   

10.
Constraints on prostaglandin biosynthesis in tissues   总被引:8,自引:0,他引:8  
The formation of prostaglandins by prostaglandin H synthase can be limited by the availability of the fatty acid substrate or the hydroperoxide activator and also by a self-catalyzed inactivation associated with the oxygenation reaction. Each pmol of synthase appeared able to form only about 1300 pmol of prostaglandin from arachidonate before it was inactivated. This extent of synthesis was not diminished when substrate fatty acid was complexed with cytosolic proteins even though the velocity of the oxygenation reaction was greatly decreased by the lower availability of substrate acid. When the availability of hydroperoxide activator was decreased by added glutathione peroxidase, the extent of oxygenation per mol of synthase was decreased irrespective of the amount of cytosolic protein present. Approximately 65% of the total prostaglandin synthesis by homogenates was suppressed with a glutathione peroxidase to prostaglandin H synthase ratio of about 90. The remaining prostaglandin synthetic activity was more resistant, being completely suppressed only when the ratio of peroxidase to synthase exceeded 750. The overall ratio of glutathione peroxidase (peroxide-removing) capacity to prostaglandin synthetic (peroxide-forming) capacity in selected tissues ranged from over 1800 in rat liver to less than 30 in leukocytes. A comparison between the daily urinary output of prostaglandin metabolites and tissue prostaglandin synthetic capacity suggested that prostaglandin H synthase inactivation along with glutathione peroxidase suppression of the extent of prostaglandin synthase may be important in limiting prostaglandin biosynthesis within cells.  相似文献   

11.
The synthesis of an isomer of prostaglandin F 2alpha,9alpha,11alpha,15(S)-trihydroxyprosta-4-cis,13-transdienoic acid is described. The metabolism of this compound in the rat has been investigated. The rate of degradation by beta-oxidation was slowed down considerably. Thus 10-20% of the injected isomer was excreted in the urine unchanged indicating a longer half-life in the circulation than for prostaglandin F 2alpha. More over 2% was excreted as C20 metabolites, 11-18% as C18 metabolites and 8-15% as C16 metabolites. This relative resistance to degradation by beta-oxidation is of considerable biochemical and pharmacological interest.  相似文献   

12.
Incubation of purified prostaglandin endoperoxide synthetase from sheep vesicular glands with aspirin results in a covalent binding of the acetyl group of acetylsalicylic acid to the protein. During this acetylation, the cyclooxygenase activity is lost, but not the peroxidase activity. The reaction is completed when almost one acetyl group is bound per polypeptide chain (Mr = 68 000). After proteolysis of [3H]acetyl-protein with pronase, radioactive N-acetylserine was obtained. Originally, however, the hydroxyl group of an internal serine residue in the chain is acetylated. The formation of N-acetylserine can be explained by a rapid O leads to N acetyl shift as soon as the NH2 group of serine is liberated. A radioactive dipeptide was isolated from a thermolysin digest of the [3H]acetyl-enzyme containing phenylalanine and serine, phenylalanine being its N-terminal amino acid. Automatic Edman degradation of native and acetylated enzyme showed that only one polypeptide sequence was present: Ala-Asp-Pro-Gly-Ala-Pro-Ala-Pro-Val-Asn-Pro-X-X-Tyr-. The N-terminal sequence has an apolar character.  相似文献   

13.
Spectral intermediates of prostaglandin hydroperoxidase   总被引:1,自引:0,他引:1  
Microsomes from ram seminal vesicles or purified prostaglandin H synthase supplemented with either arachidonic acid or prostaglandin G2 formed an unstable spectral intermediate with maxima at 430 nm, 525 nm and 555 nm and minima at 410 nm, 490 nm and 630 nm. At -15 degrees C the band at 430 nm disappeared within 4 min whereas the trough at 410 nm increased three fold. At higher temperatures (10-37 degrees C) spectral complex formation and decay were observed in less than 1 s. An apparent KS-value of about 3 microM was determined for the titration of purified prostaglandin synthase with prostaglandin G2 at -20 degrees C. Substrates for cooxidation reactions of prostaglandin synthase such as phenol, hydroquinone and reduced glutathione as well as the peroxidase inhibitors cyanide and azide inhibited the prostaglandin G2-induced spectral complex formation. The oxene donor iodosobenzene and hydrogen peroxide formed a spectral intermediate analogous to the complex observed with prostaglandin G2 or arachidonic acid in ram seminal vesicle microsomes as well as with the purified prostaglandin synthase. These results are interpreted as the formation of a ferryl-oxo complex (FeO)3+ of the heme of prostaglandin synthase with prostaglandin G2 analogous to the formation of compound I of horseradish peroxidase.  相似文献   

14.
The formation in vitro of prostaglandins E2, D2, and F2alpha from arachidonic acid by rabbit kidney medulla homogenate or microsomal fraction is markedly affected by the composition of the incubation medium employed. Optimal biosynthesis is obtained in 0.1 M potassium phosphate buffer, with the optimum pH being 8.0--8.8. Under these conditions prostaglandin formation is linear up to arachidonic acid concentration of 30 muM. The initial rate of formation of prostaglandin E2 + prostaglandin D2 is 3--4 times higher than that of prostaglandin F2alpha. Reduced glutathione (1 mM) did not affect the biosynthesis by medulla homogenate and produced only small stimulation of the biosynthesis by microsomal powder. Hydroquinone produced a small stimulation at a low concentration of 0.005 mM, and a strong inhibition at concentrations of 0.1 mM or higher. Addition of bovine serum albumin (0.1%) reduced the microsomal biosynthesis of prostaglandins by approximately 80%. Addition of boiled homogenate or boiled 140 000 X g supernatant produced small stimulation of microsomal biosynthesis while 140 000 X g supernatant (not boiled) caused small inhibition which was not dose-related. It appears that rabbit kidney prostaglandin-synthetase converts arachidonic acid to prostaglandins E2 and F2alpha in comparable amounts, without apparent need for a cytoplasmic soluble cofactor or specific reducing agents.  相似文献   

15.
C Yokoyama  T Takai  T Tanabe 《FEBS letters》1988,231(2):347-351
The complete amino acid sequence of prostaglandin endoperoxide synthase from sheep vesicular gland has been deduced by cloning and sequence analysis of DNA complementary to its messenger RNA. The results were confirmed by digestion of the enzyme with carboxypeptidase Y and by automated Edman degradation of the intact enzyme polypeptide and peptide fragments obtained by limited proteolysis of the enzyme with Achromobacter proteinase I. Mature sheep prostaglandin endoperoxide synthase is shown to be composed of 576 amino acids with an Mr of 66,175. The precursor peptide is predicted to contain a 24-residue signal peptide. The serine residue susceptible to acetylation by aspirin is found to be located near the C-terminus of the enzyme polypeptide.  相似文献   

16.
Lipoic acid has recently been found to stimulate prostaglandin biosynthesis by sheep vesicular gland microsomes (Marnett, L. J., and Wilcox, C. L. (1977). Biochim. Biophys. Acta 487, 222). The increase in oxygenated products is predominantly in the formation of prostaglandin F and its structure has been verified by gas chromatography-mass spectrometry. Endoperoxide trapping experiments employing reduced glutathione show that the conversion of prostaglandin H to prostaglandin F is slow in lipoate containing incubation mixtures. Therefore, the net effect of the addition of lipoic acid to vesicular gland microsomes is the stimulation of prostaglandin endoperoxide biosynthesis. Further experiments reveal that the reduction of prostaglandin H to prostaglandin F by lipoate is nonenzymatic and occurs after the termination of biosynthesis in the work-up mixture. The reduction takes place preferentially in the organic phase of a Folch extract (chloroform-methanol-2% formic acid 8:4:3). Authentic prostaglandin H2 is reduced by lipoic acid to prostaglandin F 2alpha in high yield under these conditions.  相似文献   

17.
The interaction of lipid hydroperoxides and secondary oxidation products with DNA was investigated by evaluating the fluorescence formed in the presence of metals and reducing agents. We also investigated the effect of malonaldehyde, because it has been generally considered responsible for the formation of fluorescence with DNA. However, malonaldehyde usually has been estimated by the notoriously unspecific thiobarbituric acid test. At low concentration of oxidation products (1 mM), fluorescence formation required the presence of metals and ascorbic acid. In contrast, a positive thiobarbituric acid reaction was obtained with many lipid oxidation products without metals or ascorbic acid. Monohydroperoxides from autoxidized methyl linoleate and linolenate produced the highest level of fluorescence. Hydroperoxy epidioxides of linolenate and dihydroperoxides of linoleate and linolenate were among the most active secondary products in forming fluorescence with DNA. In contrast, malonaldehyde produced very little fluorescence under our conditions. The thiobarbituric acid values did not correlate with fluorescence formation. This study showed that, in our model reaction system, DNA forms fluorescent products by the breakdown of lipid oxidation products in the presence of metals and ascorbic acid into reactive materials other than malonaldehyde. Therefore, the importance of malonaldehyde in its crosslinking properties with DNA may have been exaggerated in the literature.  相似文献   

18.
G J Roth  E T Machuga  J Ozols 《Biochemistry》1983,22(20):4672-4675
Aspirin (acetylsalicylic acid) inhibits prostaglandin synthesis by acetylating a single internal serine residue of the initial enzyme in the biosynthetic pathway, prostaglandin synthetase. In this study, the region of the enzyme that is modified by aspirin has been isolated, and its amino acid sequence has been determined. Sheep vesicular gland [acetyl-3H]prostaglandin synthetase was purified following treatment with [acetyl-3H]aspirin and digest with pepsin. An acetyl-3H-labeled peptic peptide of approximately 25 residues was isolated by high-pressure liquid chromatography, and its amino acid sequence was determined to be Ile-Glu-Met-Gly-Ala-Pro-Phe-Ser-Leu-Lys-Gly-Leu-Gly-Asn-Pro-Ile-Glu-Ser-Pro-Glu-Tyr. The acetylated serine residue was located at position 8 in this sequence. The current study marks this polypeptide sequence as a region related to an active site of the enzyme.  相似文献   

19.
Arachidonic acid (AA) is the essential substrate for production of platelet endoperoxides and thromboxanes. Iron or heme is an essential cofactor for the peroxidase, lipoxygenase and cyclo-oxygenase enzymes involved in formation of these products. The present study has examined the direct interactions between iron and arachidonic acid. Iron caused the oxidation of AA into more polar products which could be detected by UV absorbtion at 232 nM or the thiobarbituric acid (TBA) reaction. High pressure liquid chromatography, chem-ionization and electron-impact mass spectrometry and nuclear magnetic resonance spectroscopy suggest that the major product was a hydroperoxide of AA. Ferrous iron (Fe++) and oxygen were absolute requirements. Fe++ was converted to the ferric iron (Fe+++) state during oxidation of AA, but Fe+++ could not substitute for Fe++. No other enzymes, cofactors or ions were involved. Conversion of AA to a hydroperoxide by Fe++ was inhibited by the antioxidant, 2, (3)-Tert-butyl-4-hydroxyanisole, the radical scavenger, nitroblue tetrazolium, and iron chelating agents, including EDTA, imidazole and dihydroxybenzoic acid. The reaction was not affected by superoxide dismutase, catalase or aspirin. These findings and preliminary studies of the Fe++ induced oxidation product of AA as a substrate for prostaglandin synthesis and inhibitor of prostacyclin production indicate the critical role of Fe++ in AA activation.  相似文献   

20.
Arachidonic acid (5 microM), prostaglandin E2 (0.28 microM) and F2 alpha (14 microM) inhibited (P less than 0.01) the rates of net leucine transamination, leucine oxidative decarboxylation and total CO2 production from leucine in extensor digitorum communis muscles from fed ten-day-old chicks. Indomethacin (50 microM) markedly inhibited (P less than 0.01) the rate of PGE2 production in the presence of 5 microM arachidonic acid and prevented the inhibition of leucine degradation by arachidonic acid in skeletal muscle. These results demonstrate that the actions of arachidonic acid on leucine degradation in chick skeletal muscle are mediated by metabolites generated via the cyclooxygenase pathway and that prostaglandins may play a role in the regulation of leucine degradation in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号